|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "render_pch.h"
#include "shadowmgr.h"
#include "utllinkedlist.h"
#include "utlvector.h"
#include "interface.h"
#include "mathlib/vmatrix.h"
#include "bsptreedata.h"
#include "materialsystem/itexture.h"
#include "filesystem.h"
#include "utlbidirectionalset.h"
#include "l_studio.h"
#include "istudiorender.h"
#include "engine/ivmodelrender.h"
#include "collisionutils.h"
#include "debugoverlay.h"
#include "tier0/vprof.h"
#include "disp.h"
#include "gl_rmain.h"
#include "MaterialBuckets.h"
#include "r_decal.h"
#include "cmodel_engine.h"
#include "iclientrenderable.h"
#include "cdll_engine_int.h"
#include "sys_dll.h"
#include "render.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Shadow-related functionality exported by the engine
//
// We have two shadow-related caches in this system
// 1) A surface cache. We keep track of which surfaces the shadows can
// potentially hit. The computation of the surface cache should be
// as fast as possible
// 2) A surface vertex cache. Once we know what surfaces the shadow
// hits, we caompute the actual polygons using a clip. This is only
// useful for shadows that we know don't change too frequently, so
// we pass in a flag when making the shadow to indicate whether the
// vertex cache should be used or not. The assumption is that the client
// of this system should know whether the shadows are always changing or not
//
// The first cache is generated when the shadow is initially projected, and
// the second cache is generated when the surfaces are actually being rendered.
//
// For rendering, I assign a sort order ID to all materials used by shadow
// decals. The sort order serves the identical purpose to the material's EnumID
// but I remap those IDs so I can keep a small list of decals to render with
// that enum ID (the other option would be to allocate an array with a number
// of elements == to the number of material enumeration IDs, which is pretty large).
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// forward decarations
//-----------------------------------------------------------------------------
extern int r_surfacevisframe; extern IStudioRender *g_pStudioRender;
#define BACKFACE_EPSILON 0.01f
// Max number of vertices per shadow decal
enum { SHADOW_VERTEX_SMALL_CACHE_COUNT = 8, SHADOW_VERTEX_LARGE_CACHE_COUNT = 32, SHADOW_VERTEX_TEMP_COUNT = 48, MAX_CLIP_PLANE_COUNT = 4, SURFACE_BOUNDS_CACHE_COUNT = 1024, //=============================================================================
// HPE_BEGIN:
// [smessick] Cache size for the shadow decals. This used to be on the stack.
//=============================================================================
SHADOW_DECAL_CACHE_COUNT = 16*1024, MAX_SHADOW_DECAL_CACHE_COUNT = 64*1024, //=============================================================================
// HPE_END
//=============================================================================
};
//-----------------------------------------------------------------------------
// Used to clip the shadow decals
//-----------------------------------------------------------------------------
struct ShadowClipState_t { int m_CurrVert; int m_TempCount; int m_ClipCount; ShadowVertex_t m_pTempVertices[SHADOW_VERTEX_TEMP_COUNT]; ShadowVertex_t* RESTRICT m_ppClipVertices[2][SHADOW_VERTEX_TEMP_COUNT]; };
//-----------------------------------------------------------------------------
// ConVars (must be defined before CShadowMgr is instanced!)
//-----------------------------------------------------------------------------
ConVar r_shadows("r_shadows", "1"); ConVar r_shadows_gamecontrol("r_shadows_gamecontrol", "-1", FCVAR_CHEAT ); // Shadow override controlled by game entities (shadow_controller)
static ConVar r_shadowwireframe("r_shadowwireframe", "0", FCVAR_CHEAT ); static ConVar r_shadowids("r_shadowids", "0", FCVAR_CHEAT ); static ConVar r_flashlightdrawsweptbbox( "r_flashlightdrawsweptbbox", "0" ); static ConVar r_flashlightdrawfrustumbbox( "r_flashlightdrawfrustumbbox", "0" ); static ConVar r_flashlightnodraw( "r_flashlightnodraw", "0" );
static ConVar r_flashlightupdatedepth( "r_flashlightupdatedepth", "1" ); static ConVar r_flashlightdrawdepth( "r_flashlightdrawdepth", "0" ); static ConVar r_flashlightrenderworld( "r_flashlightrenderworld", "1" ); static ConVar r_flashlightrendermodels( "r_flashlightrendermodels", "1" ); static ConVar r_flashlightrender( "r_flashlightrender", "1" ); static ConVar r_flashlightculldepth( "r_flashlightculldepth", "1" ); ConVar r_flashlight_version2( "r_flashlight_version2", "0", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY );
//-----------------------------------------------------------------------------
// Implementation of IShadowMgr
//-----------------------------------------------------------------------------
class CShadowMgr : public IShadowMgrInternal, ISpatialLeafEnumerator { public: // constructor
CShadowMgr();
// Methods inherited from IShadowMgr
virtual ShadowHandle_t CreateShadow( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags ); virtual ShadowHandle_t CreateShadowEx( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags ); virtual void DestroyShadow( ShadowHandle_t handle ); virtual void SetShadowMaterial( ShadowHandle_t handle, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy ); virtual void EnableShadow( ShadowHandle_t handle, bool bEnable ); virtual void ProjectFlashlight( ShadowHandle_t handle, const VMatrix& worldToShadow, int nLeafCount, const int *pLeafList ); virtual void ProjectShadow( ShadowHandle_t handle, const Vector &origin, const Vector& projectionDir, const VMatrix& worldToShadow, const Vector2D& size, int nLeafCount, const int *pLeafList, float maxHeight, float falloffOffset, float falloffAmount, const Vector &vecCasterOrigin ); virtual const Frustum_t &GetFlashlightFrustum( ShadowHandle_t handle ); virtual const FlashlightState_t &GetFlashlightState( ShadowHandle_t handle ); virtual int ProjectAndClipVertices( ShadowHandle_t handle, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex ); virtual void AddShadowToBrushModel( ShadowHandle_t handle, model_t* pModel, const Vector& origin, const QAngle& angles ); virtual void RemoveAllShadowsFromBrushModel( model_t* pModel ); virtual void AddShadowToModel( ShadowHandle_t shadow, ModelInstanceHandle_t handle ); virtual void RemoveAllShadowsFromModel( ModelInstanceHandle_t handle ); virtual const ShadowInfo_t& GetInfo( ShadowHandle_t handle ); virtual void SetFlashlightRenderState( ShadowHandle_t handle );
// Methods inherited from IShadowMgrInternal
virtual void LevelInit( int nSurfCount ); virtual void LevelShutdown(); virtual void AddShadowsOnSurfaceToRenderList( ShadowDecalHandle_t decalHandle ); virtual void ClearShadowRenderList(); virtual void ComputeRenderInfo( ShadowDecalRenderInfo_t* pInfo, ShadowHandle_t handle ) const; virtual void SetModelShadowState( ModelInstanceHandle_t instance ); virtual unsigned short InvalidShadowIndex( );
// Methods of ISpatialLeafEnumerator
virtual bool EnumerateLeaf( int leaf, int context );
// Sets the texture coordinate range for a shadow...
virtual void SetShadowTexCoord( ShadowHandle_t handle, float x, float y, float w, float h );
// Set extra clip planes related to shadows...
// These are used to prevent pokethru and back-casting
virtual void ClearExtraClipPlanes( ShadowHandle_t shadow ); virtual void AddExtraClipPlane( ShadowHandle_t shadow, const Vector& normal, float dist );
// Gets the first model associated with a shadow
unsigned short& FirstModelInShadow( ShadowHandle_t h ) { return m_Shadows[h].m_FirstModel; } // Set the darkness falloff bias
virtual void SetFalloffBias( ShadowHandle_t shadow, unsigned char ucBias );
// Set the number of world material buckets. This should happen exactly once per level load.
virtual void SetNumWorldMaterialBuckets( int numMaterialSortBins );
// Update the state for a flashlight.
virtual void UpdateFlashlightState( ShadowHandle_t shadowHandle, const FlashlightState_t &lightState );
virtual void DrawFlashlightDecals( int sortGroup, bool bDoMasking ); virtual void DrawFlashlightDecalsOnSingleSurface( SurfaceHandle_t surfID, bool bDoMasking );
virtual void DrawFlashlightOverlays( int sortGroup, bool bDoMasking );
virtual void DrawFlashlightDepthTexture( ); virtual void SetFlashlightDepthTexture( ShadowHandle_t shadowHandle, ITexture *pFlashlightDepthTexture, unsigned char ucShadowStencilBit );
virtual void AddFlashlightRenderable( ShadowHandle_t shadow, IClientRenderable *pRenderable ); virtual void DrawFlashlightDecalsOnDisplacements( int sortGroup, CDispInfo **visibleDisps, int nVisibleDisps, bool bDoMasking ); virtual bool ModelHasShadows( ModelInstanceHandle_t instance );
private: enum { SHADOW_DISABLED = (SHADOW_LAST_FLAG << 1), };
typedef CUtlFixedLinkedList< ShadowDecalHandle_t >::IndexType_t ShadowSurfaceIndex_t;
struct SurfaceBounds_t { fltx4 m_vecMins; fltx4 m_vecMaxs; Vector m_vecCenter; float m_flRadius; int m_nSurfaceIndex; };
struct ShadowVertexSmallList_t { ShadowVertex_t m_Verts[SHADOW_VERTEX_SMALL_CACHE_COUNT]; };
struct ShadowVertexLargeList_t { ShadowVertex_t m_Verts[SHADOW_VERTEX_LARGE_CACHE_COUNT]; };
// A cache entries' worth of vertices....
struct ShadowVertexCache_t { unsigned short m_Count; ShadowHandle_t m_Shadow; unsigned short m_CachedVerts; ShadowVertex_t* m_pVerts; };
typedef unsigned short FlashlightHandle_t;
// Shadow state
struct Shadow_t : public ShadowInfo_t { Vector m_ProjectionDir; IMaterial* m_pMaterial; // material for rendering surfaces
IMaterial* m_pModelMaterial; // material for rendering models
void* m_pBindProxy; unsigned short m_Flags; unsigned short m_SortOrder; float m_flSphereRadius; // Radius of sphere surrounding the shadow
Ray_t m_Ray; // NOTE: Ray needs to be on 16-byte boundaries.
Vector m_vecSphereCenter; // Sphere surrounding the shadow
FlashlightHandle_t m_FlashlightHandle; ITexture *m_pFlashlightDepthTexture;
// Extra clip planes
unsigned short m_ClipPlaneCount; Vector m_ClipPlane[MAX_CLIP_PLANE_COUNT]; float m_ClipDist[MAX_CLIP_PLANE_COUNT]; // First shadow decal the shadow has
ShadowSurfaceIndex_t m_FirstDecal;
// First model the shadow is projected onto
unsigned short m_FirstModel; // Stencil bit used to mask this shadow
unsigned char m_ucShadowStencilBit; };
// Each surface has one of these, they reference the main shadow
// projector and cached off shadow decals.
struct ShadowDecal_t { SurfaceHandle_t m_SurfID; ShadowSurfaceIndex_t m_ShadowListIndex; ShadowHandle_t m_Shadow; DispShadowHandle_t m_DispShadow; unsigned short m_ShadowVerts;
// This is a handle of the next shadow decal to be rendered
ShadowDecalHandle_t m_NextRender; };
// This structure is used when building new shadow information
struct ShadowBuildInfo_t { ShadowHandle_t m_Shadow; Vector m_RayStart; Vector m_ProjectionDirection; Vector m_vecSphereCenter; // Sphere surrounding the shadow
float m_flSphereRadius; // Radius of sphere surrounding the shadow
const byte *m_pVis; // Vis from the ray start
};
// This structure contains rendering information
struct ShadowRenderInfo_t { int m_VertexCount; int m_IndexCount; int m_nMaxVertices; int m_nMaxIndices; int m_Count; int* m_pCache; int m_DispCount; const VMatrix* m_pModelToWorld; VMatrix m_WorldToModel; DispShadowHandle_t* m_pDispCache; };
// Structures used to assign sort order handles
struct SortOrderInfo_t { int m_MaterialEnum; int m_RefCount; };
typedef void (*ShadowDebugFunc_t)( ShadowHandle_t shadowHandle, const Vector &vecCentroid );
// m_FlashlightWorldMaterialBuckets is where surfaces are stored per flashlight each frame.
typedef CUtlVector<FlashlightHandle_t> WorldMaterialBuckets_t;
struct FlashlightInfo_t { FlashlightState_t m_FlashlightState; unsigned short m_Shadow; Frustum_t m_Frustum; CMaterialsBuckets<SurfaceHandle_t> m_MaterialBuckets; CMaterialsBuckets<SurfaceHandle_t> m_OccluderBuckets;
CUtlVector< IClientRenderable *> m_Renderables; };
private: // Applies a flashlight to all surfaces in the leaf
void ApplyFlashlightToLeaf( const Shadow_t &shadow, mleaf_t* pLeaf, ShadowBuildInfo_t* pBuild );
// Applies a shadow to all surfaces in the leaf
void ApplyShadowToLeaf( const Shadow_t &shadow, mleaf_t* RESTRICT pLeaf, ShadowBuildInfo_t* RESTRICT pBuild );
// These functions deal with creation of render sort ids
void SetMaterial( Shadow_t& shadow, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy ); void CleanupMaterial( Shadow_t& shadow );
// These functions add/remove shadow decals to surfaces
ShadowDecalHandle_t AddShadowDecalToSurface( SurfaceHandle_t surfID, ShadowHandle_t handle ); void RemoveShadowDecalFromSurface( SurfaceHandle_t surfID, ShadowDecalHandle_t decalHandle );
// Adds the surface to the list for this shadow
bool AddDecalToShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle );
// Removes the shadow to the list of surfaces
void RemoveDecalFromShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle );
// Actually projects + clips vertices
int ProjectAndClipVertices( const Shadow_t& shadow, const VMatrix& worldToShadow, const VMatrix *pWorldToModel, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex );
// These functions hook/unhook shadows up to surfaces + vice versa
void AddSurfaceToShadow( ShadowHandle_t handle, SurfaceHandle_t surfID ); void RemoveSurfaceFromShadow( ShadowHandle_t handle, SurfaceHandle_t surfID ); void RemoveAllSurfacesFromShadow( ShadowHandle_t handle ); void RemoveAllShadowsFromSurface( SurfaceHandle_t surfID );
// Deals with model shadow management
void RemoveAllModelsFromShadow( ShadowHandle_t handle );
// Applies the shadow to a surface
void ApplyShadowToSurface( ShadowBuildInfo_t& build, SurfaceHandle_t surfID );
// Applies the shadow to a displacement
void ApplyShadowToDisplacement( ShadowBuildInfo_t& build, IDispInfo *pDispInfo, bool bIsFlashlight );
// Renders shadows that all share a material enumeration
void RenderShadowList( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, const VMatrix* pModelToWorld );
// Should we cache vertices?
bool ShouldCacheVertices( const ShadowDecal_t& decal );
// Generates a list displacement shadow vertices to render
bool GenerateDispShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info );
// Generates a list shadow vertices to render
bool GenerateNormalShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info );
// Adds normal shadows to the mesh builder
int AddNormalShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info );
// Adds displacement shadows to the mesh builder
int AddDisplacementShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info, int baseIndex );
// Does the actual work of computing shadow vertices
bool ComputeShadowVertices( ShadowDecal_t& decal, const VMatrix* pModelToWorld, const VMatrix* pWorldToModel, ShadowVertexCache_t* pVertexCache );
// Project vertices into shadow space
bool ProjectVerticesIntoShadowSpace( const VMatrix& modelToShadow, float maxDist, int count, Vector** RESTRICT ppPosition, ShadowClipState_t& clip );
// Copies vertex info from the clipped vertices
void CopyClippedVertices( int count, ShadowVertex_t** ppSrcVert, ShadowVertex_t* pDstVert, const Vector &vToAdd );
// Allocate, free vertices
ShadowVertex_t* AllocateVertices( ShadowVertexCache_t& cache, int count ); void FreeVertices( ShadowVertexCache_t& cache );
// Gets at cache entry...
ShadowVertex_t* GetCachedVerts( const ShadowVertexCache_t& cache );
// Clears out vertices in the temporary cache
void ClearTempCache( );
// Renders debugging information
void RenderDebuggingInfo( const ShadowRenderInfo_t &info, ShadowDebugFunc_t func );
// Methods for dealing with world material buckets for flashlights.
void ClearAllFlashlightMaterialBuckets( void ); void AddSurfaceToFlashlightMaterialBuckets( ShadowHandle_t handle, SurfaceHandle_t surfID ); void AllocFlashlightMaterialBuckets( FlashlightHandle_t flashlightID );
// Render all projected textures (including shadows and flashlights)
void RenderProjectedTextures( const VMatrix* pModelToWorld );
void RenderFlashlights( bool bDoMasking, const VMatrix* pModelToWorld );
void SetFlashlightStencilMasks( bool bDoMasking );
void SetStencilAndScissor( IMatRenderContext *pRenderContext, FlashlightInfo_t &flashlightInfo, bool bUseStencil );
void EnableStencilAndScissorMasking( IMatRenderContext *pRenderContext, const FlashlightInfo_t &flashlightInfo, bool bDoMasking );
void DisableStencilAndScissorMasking( IMatRenderContext *pRenderContext );
void RenderShadows( const VMatrix* pModelToWorld );
// Generates a list shadow vertices to render
void GenerateShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, ShadowRenderInfo_t& info );
// Methods related to the surface bounds cache
void ComputeSurfaceBounds( SurfaceBounds_t* pBounds, SurfaceHandle_t nSurfID ); const SurfaceBounds_t* GetSurfaceBounds( SurfaceHandle_t nSurfID ); bool IsShadowNearSurface( ShadowHandle_t h, SurfaceHandle_t nSurfID, const VMatrix* pModelToWorld, const VMatrix* pWorldToModel );
private: // List of all shadows (one per cast shadow)
// Align it so the Ray in the Shadow_t is aligned
CUtlLinkedList< Shadow_t, ShadowHandle_t, false, int, CUtlMemoryAligned< UtlLinkedListElem_t< Shadow_t, ShadowHandle_t >, 16 > > m_Shadows; // List of all shadow decals (one per surface hit by a shadow)
CUtlLinkedList< ShadowDecal_t, ShadowDecalHandle_t, true, int > m_ShadowDecals;
// List of all shadow decals associated with a particular shadow
CUtlFixedLinkedList< ShadowDecalHandle_t > m_ShadowSurfaces;
// List of queued decals waiting to be rendered....
CUtlVector<ShadowDecalHandle_t> m_RenderQueue;
// Used to assign sort order handles
CUtlLinkedList<SortOrderInfo_t, unsigned short> m_SortOrderIds;
// A cache of shadow vertex data...
CUtlLinkedList<ShadowVertexCache_t, unsigned short> m_VertexCache;
// This is temporary, not saved off....
CUtlVector<ShadowVertexCache_t> m_TempVertexCache;
// Vertex data
CUtlLinkedList<ShadowVertexSmallList_t, unsigned short> m_SmallVertexList; CUtlLinkedList<ShadowVertexLargeList_t, unsigned short> m_LargeVertexList;
// Model-shadow association
CBidirectionalSet< ModelInstanceHandle_t, ShadowHandle_t, unsigned short > m_ShadowsOnModels;
// Cache of information for surface bounds
typedef CUtlLinkedList< SurfaceBounds_t, unsigned short, false, int, CUtlMemoryFixed< UtlLinkedListElem_t< SurfaceBounds_t, unsigned short >, SURFACE_BOUNDS_CACHE_COUNT, 16 > > SurfaceBoundsCache_t; typedef SurfaceBoundsCache_t::IndexType_t SurfaceBoundsCacheIndex_t; SurfaceBoundsCache_t m_SurfaceBoundsCache; SurfaceBoundsCacheIndex_t *m_pSurfaceBounds;
// The number of decals we're gonna need to render
int m_DecalsToRender;
CUtlLinkedList<FlashlightInfo_t> m_FlashlightStates; int m_NumWorldMaterialBuckets; bool m_bInitialized;
//=============================================================================
// HPE_BEGIN:
// [smessick] These used to be dynamically allocated on the stack.
//=============================================================================
CUtlMemory<int> m_ShadowDecalCache; CUtlMemory<DispShadowHandle_t> m_DispShadowDecalCache; //=============================================================================
// HPE_END
//=============================================================================
};
//-----------------------------------------------------------------------------
// Singleton
//-----------------------------------------------------------------------------
static CShadowMgr s_ShadowMgr; IShadowMgrInternal* g_pShadowMgr = &s_ShadowMgr; EXPOSE_SINGLE_INTERFACE_GLOBALVAR(CShadowMgr, IShadowMgr, ENGINE_SHADOWMGR_INTERFACE_VERSION, s_ShadowMgr);
//-----------------------------------------------------------------------------
// Shadows on model instances
//-----------------------------------------------------------------------------
unsigned short& FirstShadowOnModel( ModelInstanceHandle_t h ) { // See l_studio.cpp
return FirstShadowOnModelInstance( h ); }
unsigned short& FirstModelInShadow( ShadowHandle_t h ) { return s_ShadowMgr.FirstModelInShadow(h); }
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CShadowMgr::CShadowMgr() { m_ShadowSurfaces.SetGrowSize( 4096 ); m_ShadowDecals.SetGrowSize( 4096 );
m_ShadowsOnModels.Init( ::FirstShadowOnModel, ::FirstModelInShadow ); m_NumWorldMaterialBuckets = 0; m_pSurfaceBounds = NULL; m_bInitialized = false; ClearShadowRenderList();
//=============================================================================
// HPE_BEGIN:
// [smessick] Initialize the shadow decal caches. These used to be dynamically
// allocated on the stack, but we were getting stack overflows.
//=============================================================================
m_ShadowDecalCache.SetGrowSize( 4096 ); m_DispShadowDecalCache.SetGrowSize( 4096 );
m_ShadowDecalCache.Grow( SHADOW_DECAL_CACHE_COUNT ); m_DispShadowDecalCache.Grow( SHADOW_DECAL_CACHE_COUNT );
//=============================================================================
// HPE_END
//=============================================================================
}
//-----------------------------------------------------------------------------
// Level init, shutdown
//-----------------------------------------------------------------------------
void CShadowMgr::LevelInit( int nSurfCount ) { if ( m_bInitialized ) return; m_bInitialized = true;
m_pSurfaceBounds = new SurfaceBoundsCacheIndex_t[nSurfCount];
// NOTE: Need to memset to 0 if we switch to integer SurfaceBoundsCacheIndex_t here
COMPILE_TIME_ASSERT( sizeof(SurfaceBoundsCacheIndex_t) == 2 ); memset( m_pSurfaceBounds, 0xFF, nSurfCount * sizeof(SurfaceBoundsCacheIndex_t) ); }
void CShadowMgr::LevelShutdown() { if ( !m_bInitialized ) return;
if ( m_pSurfaceBounds ) { delete[] m_pSurfaceBounds; m_pSurfaceBounds = NULL; }
m_SurfaceBoundsCache.RemoveAll(); m_bInitialized = false; }
//-----------------------------------------------------------------------------
// Create, destroy material sort order ids...
//-----------------------------------------------------------------------------
void CShadowMgr::SetMaterial( Shadow_t& shadow, IMaterial* pMaterial, IMaterial* pModelMaterial, void *pBindProxy ) { shadow.m_pMaterial = pMaterial; shadow.m_pModelMaterial = pModelMaterial; shadow.m_pBindProxy = pBindProxy;
// We're holding onto this material
if ( pMaterial ) { pMaterial->IncrementReferenceCount(); } if ( pModelMaterial ) { pModelMaterial->IncrementReferenceCount(); }
// Search the sort order handles for an enumeration id match
int materialEnum = (int)pMaterial; for (unsigned short i = m_SortOrderIds.Head(); i != m_SortOrderIds.InvalidIndex(); i = m_SortOrderIds.Next(i) ) { // Found a match, lets increment the refcount of this sort order id
if (m_SortOrderIds[i].m_MaterialEnum == materialEnum) { ++m_SortOrderIds[i].m_RefCount; shadow.m_SortOrder = i; return; } }
// Didn't find it, lets assign a new sort order ID, with a refcount of 1
shadow.m_SortOrder = m_SortOrderIds.AddToTail(); m_SortOrderIds[shadow.m_SortOrder].m_MaterialEnum = materialEnum; m_SortOrderIds[shadow.m_SortOrder].m_RefCount = 1;
// Make sure the render queue has as many entries as the max sort order id.
int count = m_RenderQueue.Count(); while( count < m_SortOrderIds.MaxElementIndex() ) { MEM_ALLOC_CREDIT(); m_RenderQueue.AddToTail( SHADOW_DECAL_HANDLE_INVALID ); ++count; } }
void CShadowMgr::CleanupMaterial( Shadow_t& shadow ) { // Decrease the sort order reference count
if (--m_SortOrderIds[shadow.m_SortOrder].m_RefCount <= 0) { // No one referencing the sort order number?
// Then lets clean up the sort order id
m_SortOrderIds.Remove(shadow.m_SortOrder); }
// We're done with this material
if ( shadow.m_pMaterial ) { shadow.m_pMaterial->DecrementReferenceCount(); } if ( shadow.m_pModelMaterial ) { shadow.m_pModelMaterial->DecrementReferenceCount(); } }
//-----------------------------------------------------------------------------
// For the model shadow list
//-----------------------------------------------------------------------------
unsigned short CShadowMgr::InvalidShadowIndex( ) { return m_ShadowsOnModels.InvalidIndex(); }
//-----------------------------------------------------------------------------
// Create, destroy shadows
//-----------------------------------------------------------------------------
ShadowHandle_t CShadowMgr::CreateShadow( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags ) { return CreateShadowEx( pMaterial, pModelMaterial, pBindProxy, creationFlags ); }
ShadowHandle_t CShadowMgr::CreateShadowEx( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags ) { #ifndef SWDS
ShadowHandle_t h = m_Shadows.AddToTail(); //=============================================================================
// HPE_BEGIN:
// [smessick] Check for overflow.
//=============================================================================
if ( h == m_Shadows.InvalidIndex() ) { ExecuteNTimes( 10, Warning( "CShadowMgr::CreateShadowEx - overflowed m_Shadows linked list!\n" ) ); return h; } //=============================================================================
// HPE_END
//=============================================================================
Shadow_t& shadow = m_Shadows[h]; SetMaterial( shadow, pMaterial, pModelMaterial, pBindProxy ); shadow.m_Flags = creationFlags; shadow.m_FirstDecal = m_ShadowSurfaces.InvalidIndex(); shadow.m_FirstModel = m_ShadowsOnModels.InvalidIndex(); shadow.m_ProjectionDir.Init( 0, 0, 1 ); shadow.m_TexOrigin.Init( 0, 0 ); shadow.m_TexSize.Init( 1, 1 ); shadow.m_ClipPlaneCount = 0; shadow.m_FalloffBias = 0; shadow.m_pFlashlightDepthTexture = NULL; shadow.m_FlashlightHandle = m_FlashlightStates.InvalidIndex();
if ( ( creationFlags & SHADOW_FLASHLIGHT ) != 0 ) { shadow.m_FlashlightHandle = m_FlashlightStates.AddToTail(); m_FlashlightStates[shadow.m_FlashlightHandle].m_Shadow = h; if ( !IsX360() && !r_flashlight_version2.GetInt() ) { AllocFlashlightMaterialBuckets( shadow.m_FlashlightHandle ); } }
MatrixSetIdentity( shadow.m_WorldToShadow ); return h; #endif
}
void CShadowMgr::DestroyShadow( ShadowHandle_t handle ) { CleanupMaterial( m_Shadows[handle] ); RemoveAllSurfacesFromShadow( handle ); RemoveAllModelsFromShadow( handle ); if( m_Shadows[handle].m_FlashlightHandle != m_FlashlightStates.InvalidIndex() ) { m_FlashlightStates.Remove( m_Shadows[handle].m_FlashlightHandle ); }
m_Shadows.Remove(handle); }
//-----------------------------------------------------------------------------
// Resets the shadow material (useful for shadow LOD.. doing blobby at distance)
//-----------------------------------------------------------------------------
void CShadowMgr::SetShadowMaterial( ShadowHandle_t handle, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy ) { Shadow_t& shadow = m_Shadows[handle]; if ( (shadow.m_pMaterial != pMaterial) || (shadow.m_pModelMaterial != pModelMaterial) || (shadow.m_pBindProxy != pBindProxy) ) { CleanupMaterial( shadow ); SetMaterial( shadow, pMaterial, pModelMaterial, pBindProxy ); } }
//-----------------------------------------------------------------------------
// Sets the texture coordinate range for a shadow...
//-----------------------------------------------------------------------------
void CShadowMgr::SetShadowTexCoord( ShadowHandle_t handle, float x, float y, float w, float h ) { Shadow_t& shadow = m_Shadows[handle]; shadow.m_TexOrigin.Init( x, y ); shadow.m_TexSize.Init( w, h ); }
//-----------------------------------------------------------------------------
// Set extra clip planes related to shadows...
//-----------------------------------------------------------------------------
void CShadowMgr::ClearExtraClipPlanes( ShadowHandle_t h ) { m_Shadows[h].m_ClipPlaneCount = 0; }
void CShadowMgr::AddExtraClipPlane( ShadowHandle_t h, const Vector& normal, float dist ) { Shadow_t& shadow = m_Shadows[h]; Assert( shadow.m_ClipPlaneCount < MAX_CLIP_PLANE_COUNT );
VectorCopy( normal, shadow.m_ClipPlane[shadow.m_ClipPlaneCount] ); shadow.m_ClipDist[shadow.m_ClipPlaneCount] = dist; ++shadow.m_ClipPlaneCount; }
//-----------------------------------------------------------------------------
// Gets at information about a particular shadow
//-----------------------------------------------------------------------------
const ShadowInfo_t& CShadowMgr::GetInfo( ShadowHandle_t handle ) { return m_Shadows[handle]; }
//-----------------------------------------------------------------------------
// Gets at cache entry...
//-----------------------------------------------------------------------------
ShadowVertex_t* CShadowMgr::GetCachedVerts( const ShadowVertexCache_t& cache ) { if (cache.m_Count == 0) return 0 ;
if (cache.m_pVerts) return cache.m_pVerts;
if (cache.m_Count <= SHADOW_VERTEX_SMALL_CACHE_COUNT) return m_SmallVertexList[cache.m_CachedVerts].m_Verts;
return m_LargeVertexList[cache.m_CachedVerts].m_Verts; }
//-----------------------------------------------------------------------------
// Allocates, cleans up vertex cache vertices
//-----------------------------------------------------------------------------
inline ShadowVertex_t* CShadowMgr::AllocateVertices( ShadowVertexCache_t& cache, int count ) { cache.m_pVerts = 0; if (count <= SHADOW_VERTEX_SMALL_CACHE_COUNT) { cache.m_Count = count; cache.m_CachedVerts = m_SmallVertexList.AddToTail( ); return m_SmallVertexList[cache.m_CachedVerts].m_Verts; } else if (count <= SHADOW_VERTEX_LARGE_CACHE_COUNT) { cache.m_Count = count; cache.m_CachedVerts = m_LargeVertexList.AddToTail( ); return m_LargeVertexList[cache.m_CachedVerts].m_Verts; }
cache.m_Count = count; if (count > 0) { cache.m_pVerts = new ShadowVertex_t[count]; } cache.m_CachedVerts = m_LargeVertexList.InvalidIndex(); return cache.m_pVerts; }
inline void CShadowMgr::FreeVertices( ShadowVertexCache_t& cache ) { if (cache.m_Count == 0) return;
if (cache.m_pVerts) { delete[] cache.m_pVerts; } else if (cache.m_Count <= SHADOW_VERTEX_SMALL_CACHE_COUNT) { m_SmallVertexList.Remove( cache.m_CachedVerts ); } else { m_LargeVertexList.Remove( cache.m_CachedVerts ); } }
//-----------------------------------------------------------------------------
// Clears out vertices in the temporary cache
//-----------------------------------------------------------------------------
void CShadowMgr::ClearTempCache( ) { // Clear out the vertices
for (int i = m_TempVertexCache.Count(); --i >= 0; ) { FreeVertices( m_TempVertexCache[i] ); }
m_TempVertexCache.RemoveAll(); }
//-----------------------------------------------------------------------------
// Adds the surface to the list for this shadow
//-----------------------------------------------------------------------------
bool CShadowMgr::AddDecalToShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle ) { // Add the shadow to the list of surfaces affected by this shadow
ShadowSurfaceIndex_t idx = m_ShadowSurfaces.Alloc( true ); if ( idx == m_ShadowSurfaces.InvalidIndex() ) { ExecuteNTimes( 10, Warning( "CShadowMgr::AddDecalToShadowList - overflowed m_ShadowSurfaces linked list!\n" ) ); return false; }
m_ShadowSurfaces[idx] = decalHandle; if ( m_Shadows[handle].m_FirstDecal != m_ShadowSurfaces.InvalidIndex() ) { m_ShadowSurfaces.LinkBefore( m_Shadows[handle].m_FirstDecal, idx ); } m_Shadows[handle].m_FirstDecal = idx; m_ShadowDecals[decalHandle].m_ShadowListIndex = idx;
return true; }
//-----------------------------------------------------------------------------
// Removes the shadow to the list of surfaces
//-----------------------------------------------------------------------------
void CShadowMgr::RemoveDecalFromShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle ) { ShadowSurfaceIndex_t idx = m_ShadowDecals[decalHandle].m_ShadowListIndex;
// Make sure the list of shadow decals for a single shadow is ok
if ( m_Shadows[handle].m_FirstDecal == idx ) { m_Shadows[handle].m_FirstDecal = m_ShadowSurfaces.Next(idx); }
// Remove it from the shadow surfaces list
m_ShadowSurfaces.Free(idx);
// Blat out the decal index
m_ShadowDecals[decalHandle].m_ShadowListIndex = m_ShadowSurfaces.InvalidIndex(); }
//-----------------------------------------------------------------------------
// Computes spherical bounds for a surface
//-----------------------------------------------------------------------------
void CShadowMgr::ComputeSurfaceBounds( SurfaceBounds_t* pBounds, SurfaceHandle_t nSurfID ) { pBounds->m_vecCenter.Init(); pBounds->m_vecMins = ReplicateX4( FLT_MAX ); pBounds->m_vecMaxs = ReplicateX4( -FLT_MAX ); int nCount = MSurf_VertCount( nSurfID ); for ( int i = 0; i < nCount; ++i ) { int nVertIndex = host_state.worldbrush->vertindices[ MSurf_FirstVertIndex( nSurfID ) + i ]; const Vector &position = host_state.worldbrush->vertexes[ nVertIndex ].position; pBounds->m_vecCenter += position;
fltx4 pos4 = LoadUnaligned3SIMD( position.Base() ); pBounds->m_vecMins = MinSIMD( pos4, pBounds->m_vecMins ); pBounds->m_vecMaxs = MaxSIMD( pos4, pBounds->m_vecMaxs ); }
fltx4 eps = ReplicateX4( 1e-3 ); pBounds->m_vecMins = SetWToZeroSIMD( SubSIMD( pBounds->m_vecMins, eps ) ); pBounds->m_vecMaxs = SetWToZeroSIMD( AddSIMD( pBounds->m_vecMaxs, eps ) ); pBounds->m_vecCenter /= nCount;
pBounds->m_flRadius = 0.0f; for ( int i = 0; i < nCount; ++i ) { int nVertIndex = host_state.worldbrush->vertindices[ MSurf_FirstVertIndex( nSurfID ) + i ]; const Vector &position = host_state.worldbrush->vertexes[ nVertIndex ].position; float flDistSq = position.DistToSqr( pBounds->m_vecCenter ); if ( flDistSq > pBounds->m_flRadius ) { pBounds->m_flRadius = flDistSq; } } pBounds->m_flRadius = sqrt( pBounds->m_flRadius ); }
//-----------------------------------------------------------------------------
// Get spherical bounds for a surface
//-----------------------------------------------------------------------------
const CShadowMgr::SurfaceBounds_t* CShadowMgr::GetSurfaceBounds( SurfaceHandle_t surfID ) { int nSurfaceIndex = MSurf_Index( surfID );
// NOTE: We're not bumping the surface index to the front of the LRU
// here, but I think if we did the cost doing that would exceed the cost
// of anything else in this path.
// If this turns out to not be true, then we should make this a true LRU
if ( m_pSurfaceBounds[nSurfaceIndex] != m_SurfaceBoundsCache.InvalidIndex() ) return &m_SurfaceBoundsCache[ m_pSurfaceBounds[nSurfaceIndex] ];
SurfaceBoundsCacheIndex_t nIndex; if ( m_SurfaceBoundsCache.Count() >= SURFACE_BOUNDS_CACHE_COUNT ) { // Retire existing cache entry if we're out of space,
// move it to the head of the LRU cache
nIndex = m_SurfaceBoundsCache.Tail( ); m_SurfaceBoundsCache.Unlink( nIndex ); m_SurfaceBoundsCache.LinkToHead( nIndex ); m_pSurfaceBounds[ m_SurfaceBoundsCache[nIndex].m_nSurfaceIndex ] = m_SurfaceBoundsCache.InvalidIndex(); } else { // Allocate new cache entry if we have more room
nIndex = m_SurfaceBoundsCache.AddToHead( ); } m_pSurfaceBounds[ nSurfaceIndex ] = nIndex;
// Computes the surface bounds
SurfaceBounds_t &bounds = m_SurfaceBoundsCache[nIndex]; bounds.m_nSurfaceIndex = nSurfaceIndex; ComputeSurfaceBounds( &bounds, surfID ); return &bounds; }
//-----------------------------------------------------------------------------
// Is the shadow near the surface?
//-----------------------------------------------------------------------------
bool CShadowMgr::IsShadowNearSurface( ShadowHandle_t h, SurfaceHandle_t nSurfID, const VMatrix* pModelToWorld, const VMatrix* pWorldToModel ) { const Shadow_t &shadow = m_Shadows[h]; const SurfaceBounds_t* pBounds = GetSurfaceBounds( nSurfID ); Vector vecSurfCenter; if ( !pModelToWorld ) { vecSurfCenter = pBounds->m_vecCenter; } else { Vector3DMultiplyPosition( *pModelToWorld, pBounds->m_vecCenter, vecSurfCenter ); }
// Sphere check
Vector vecDelta; VectorSubtract( shadow.m_vecSphereCenter, vecSurfCenter, vecDelta ); float flDistSqr = vecDelta.LengthSqr(); float flMinDistSqr = pBounds->m_flRadius + shadow.m_flSphereRadius; flMinDistSqr *= flMinDistSqr; if ( flDistSqr >= flMinDistSqr ) return false;
if ( !pModelToWorld ) return IsBoxIntersectingRay( pBounds->m_vecMins, pBounds->m_vecMaxs, shadow.m_Ray );
Ray_t transformedRay; Vector3DMultiplyPosition( *pWorldToModel, shadow.m_Ray.m_Start, transformedRay.m_Start ); Vector3DMultiply( *pWorldToModel, shadow.m_Ray.m_Delta, transformedRay.m_Delta ); transformedRay.m_StartOffset = shadow.m_Ray.m_StartOffset; transformedRay.m_Extents = shadow.m_Ray.m_Extents; transformedRay.m_IsRay = shadow.m_Ray.m_IsRay; transformedRay.m_IsSwept = shadow.m_Ray.m_IsSwept; return IsBoxIntersectingRay( pBounds->m_vecMins, pBounds->m_vecMaxs, transformedRay ); }
//-----------------------------------------------------------------------------
// Adds the shadow decal reference to the surface
//-----------------------------------------------------------------------------
inline ShadowDecalHandle_t CShadowMgr::AddShadowDecalToSurface( SurfaceHandle_t surfID, ShadowHandle_t handle ) { ShadowDecalHandle_t decalHandle = m_ShadowDecals.Alloc( true ); if ( decalHandle == m_ShadowDecals.InvalidIndex() ) { ExecuteNTimes( 10, Warning( "CShadowMgr::AddShadowDecalToSurface - overflowed m_ShadowDecals linked list!\n" ) ); return decalHandle; }
ShadowDecal_t& decal = m_ShadowDecals[decalHandle];
decal.m_SurfID = surfID; m_ShadowDecals.LinkBefore( MSurf_ShadowDecals( surfID ), decalHandle ); MSurf_ShadowDecals( surfID ) = decalHandle;
// Hook the shadow into the displacement system....
if ( !SurfaceHasDispInfo( surfID ) ) { decal.m_DispShadow = DISP_SHADOW_HANDLE_INVALID; } else { decal.m_DispShadow = MSurf_DispInfo( surfID )->AddShadowDecal( handle ); }
decal.m_Shadow = handle; decal.m_ShadowVerts = m_VertexCache.InvalidIndex(); decal.m_NextRender = SHADOW_DECAL_HANDLE_INVALID; decal.m_ShadowListIndex = m_ShadowSurfaces.InvalidIndex();
//=============================================================================
// HPE_BEGIN:
// [smessick] Check the return value of AddDecalToShadowList and make sure
// to delete the newly created shadow decal if there is a failure.
//=============================================================================
if ( !AddDecalToShadowList( handle, decalHandle ) ) { m_ShadowDecals.Free( decalHandle ); decalHandle = m_ShadowDecals.InvalidIndex(); } //=============================================================================
// HPE_END
//=============================================================================
return decalHandle; }
inline void CShadowMgr::RemoveShadowDecalFromSurface( SurfaceHandle_t surfID, ShadowDecalHandle_t decalHandle ) { // Clean up its shadow verts if it has any
ShadowDecal_t& decal = m_ShadowDecals[decalHandle]; if (decal.m_ShadowVerts != m_VertexCache.InvalidIndex()) { FreeVertices( m_VertexCache[decal.m_ShadowVerts] ); m_VertexCache.Remove(decal.m_ShadowVerts); decal.m_ShadowVerts = m_VertexCache.InvalidIndex(); }
// Clean up displacement...
if ( decal.m_DispShadow != DISP_SHADOW_HANDLE_INVALID ) { MSurf_DispInfo( decal.m_SurfID )->RemoveShadowDecal( decal.m_DispShadow ); }
// Make sure the list of shadow decals on a surface is set up correctly
if ( MSurf_ShadowDecals( surfID ) == decalHandle ) { MSurf_ShadowDecals( surfID ) = m_ShadowDecals.Next(decalHandle); }
RemoveDecalFromShadowList( decal.m_Shadow, decalHandle );
// Kill the shadow decal
m_ShadowDecals.Free( decalHandle ); }
void CShadowMgr::AddSurfaceToFlashlightMaterialBuckets( ShadowHandle_t handle, SurfaceHandle_t surfID ) { // Make sure that this is a flashlight.
Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT ); // Get the flashlight id for this particular shadow handle and make sure that it's valid.
FlashlightHandle_t flashlightID = m_Shadows[handle].m_FlashlightHandle; Assert( flashlightID != m_FlashlightStates.InvalidIndex() );
m_FlashlightStates[flashlightID].m_MaterialBuckets.AddElement( MSurf_MaterialSortID( surfID ), surfID ); }
//-----------------------------------------------------------------------------
// Adds the shadow decal reference to the surface
// This causes a shadow decal to be made
//-----------------------------------------------------------------------------
void CShadowMgr::AddSurfaceToShadow( ShadowHandle_t handle, SurfaceHandle_t surfID ) { // FIXME: We could make this work, but there's a perf cost...
// Basically, we'd need to have a separate rendering batch for
// each translucent material the shadow is projected onto. The
// material alpha would have to be taken into account, so that
// no multiplication occurs where the alpha == 0
// FLASHLIGHTFIXME: get rid of some of these checks for the ones that will work just fine with the flashlight.
bool bIsFlashlight = ( ( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT ) != 0 ); if ( !bIsFlashlight && MSurf_Flags(surfID) & (SURFDRAW_TRANS | SURFDRAW_ALPHATEST | SURFDRAW_NOSHADOWS) ) return;
#ifdef _XBOX
// Don't let the flashlight get on water on XBox
if ( bIsFlashlight && ( MSurf_Flags(surfID) & SURFDRAW_WATERSURFACE ) ) return; #endif
#if 0
// Make sure the surface has the shadow on it exactly once...
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID ); while (dh != m_ShadowDecals.InvalidIndex() ) { Assert ( m_ShadowDecals[dh].m_Shadow != handle ); dh = m_ShadowDecals.Next(dh); } #endif
// Create a shadow decal for this surface and add it to the surface
AddShadowDecalToSurface( surfID, handle ); }
void CShadowMgr::RemoveSurfaceFromShadow( ShadowHandle_t handle, SurfaceHandle_t surfID ) { // Find the decal associated with the handle that lies on the surface
// FIXME: Linear search; bleah.
// Luckily the search is probably over only a couple items at most
// Linear searching over the shadow surfaces so we can remove the entry
// in the shadow surface list if we find a match
ASSERT_SURF_VALID( surfID ); ShadowSurfaceIndex_t i = m_Shadows[handle].m_FirstDecal; while ( i != m_ShadowSurfaces.InvalidIndex() ) { ShadowDecalHandle_t decalHandle = m_ShadowSurfaces[i]; if ( m_ShadowDecals[decalHandle].m_SurfID == surfID ) { // Found a match! There should be at most one shadow decal
// associated with a particular shadow per surface
RemoveShadowDecalFromSurface( surfID, decalHandle );
// FIXME: Could check the shadow doesn't appear again in the list
return; }
i = m_ShadowSurfaces.Next(i); }
#ifdef _DEBUG
// Here, the shadow didn't have the surface in its list
// let's make sure the surface doesn't think it's got the shadow in its list
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID ); while (dh != m_ShadowDecals.InvalidIndex() ) { Assert ( m_ShadowDecals[dh].m_Shadow != handle ); dh = m_ShadowDecals.Next(dh); }
#endif
}
void CShadowMgr::RemoveAllSurfacesFromShadow( ShadowHandle_t handle ) { // Iterate over all the decals associated with a particular shadow
// Remove the decals from the surfaces they are associated with
ShadowSurfaceIndex_t i = m_Shadows[handle].m_FirstDecal; ShadowSurfaceIndex_t next; while ( i != m_ShadowSurfaces.InvalidIndex() ) { ShadowDecalHandle_t decalHandle = m_ShadowSurfaces[i];
next = m_ShadowSurfaces.Next(i);
RemoveShadowDecalFromSurface( m_ShadowDecals[decalHandle].m_SurfID, decalHandle );
i = next; }
m_Shadows[handle].m_FirstDecal = m_ShadowSurfaces.InvalidIndex(); }
void CShadowMgr::RemoveAllShadowsFromSurface( SurfaceHandle_t surfID ) { // Iterate over all the decals associated with a particular shadow
// Remove the decals from the surfaces they are associated with
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID ); while (dh != m_ShadowDecals.InvalidIndex() ) { // Remove this shadow from the surface
ShadowDecalHandle_t next = m_ShadowDecals.Next(dh);
// Remove the surface from the shadow
RemoveShadowDecalFromSurface( m_ShadowDecals[dh].m_SurfID, dh );
dh = next; }
MSurf_ShadowDecals( surfID ) = m_ShadowDecals.InvalidIndex(); }
//-----------------------------------------------------------------------------
// Shadow/model association
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowToModel( ShadowHandle_t handle, ModelInstanceHandle_t model ) { // FIXME: Add culling here based on the model bbox
// and the shadow bbox
// FIXME:
/*
// Trivial bbox reject.
Vector bbMin, bbMax; pDisp->GetBoundingBox( bbMin, bbMax ); if( decalinfo->m_Position.x - decalinfo->m_Size < bbMax.x && decalinfo->m_Position.x + decalinfo->m_Size > bbMin.x && decalinfo->m_Position.y - decalinfo->m_Size < bbMax.y && decalinfo->m_Position.y + decalinfo->m_Size > bbMin.y && decalinfo->m_Position.z - decalinfo->m_Size < bbMax.z && decalinfo->m_Position.z + decalinfo->m_Size > bbMin.z ) */
if ( model == MODEL_INSTANCE_INVALID ) { // async data not loaded yet
return; }
if( r_flashlightrender.GetBool()==false ) return;
m_ShadowsOnModels.AddElementToBucket( model, handle );
}
void CShadowMgr::RemoveAllShadowsFromModel( ModelInstanceHandle_t model ) { if( model != MODEL_INSTANCE_INVALID ) { m_ShadowsOnModels.RemoveBucket( model );
FOR_EACH_LL( m_FlashlightStates, i ) { FlashlightInfo_t &info = m_FlashlightStates[i];
for( int j=0;j<info.m_Renderables.Count();j++ ) { if( info.m_Renderables[j]->GetModelInstance() == model ) { info.m_Renderables.Remove( j ); break; } } } } }
void CShadowMgr::RemoveAllModelsFromShadow( ShadowHandle_t handle ) { m_ShadowsOnModels.RemoveElement( handle );
FOR_EACH_LL( m_FlashlightStates, i ) { FlashlightInfo_t &info = m_FlashlightStates[i];
if( info.m_Shadow==handle ) { info.m_Renderables.RemoveAll(); } } }
//-----------------------------------------------------------------------------
// Shadow state...
//-----------------------------------------------------------------------------
void CShadowMgr::SetModelShadowState( ModelInstanceHandle_t instance ) { #ifndef SWDS
g_pStudioRender->ClearAllShadows(); if (instance != MODEL_INSTANCE_INVALID && r_shadows.GetInt() ) { bool bWireframe = r_shadowwireframe.GetBool(); unsigned short i = m_ShadowsOnModels.FirstElement( instance ); while ( i != m_ShadowsOnModels.InvalidIndex() ) { Shadow_t& shadow = m_Shadows[m_ShadowsOnModels.Element(i)];
if( !bWireframe ) { if( shadow.m_Flags & SHADOW_FLASHLIGHT ) { // NULL means that the models material should be used.
// This is what we want in the case of the flashlight
// since we need to render the models material again with different lighting.
// Need to add something here to specify which flashlight.
g_pStudioRender->AddShadow( NULL, NULL, &m_FlashlightStates[shadow.m_FlashlightHandle].m_FlashlightState, &shadow.m_WorldToShadow, shadow.m_pFlashlightDepthTexture ); } else if( r_shadows_gamecontrol.GetInt() != 0 ) { g_pStudioRender->AddShadow( shadow.m_pModelMaterial, shadow.m_pBindProxy ); } } else if( ( shadow.m_Flags & SHADOW_FLASHLIGHT ) || r_shadows_gamecontrol.GetInt() != 0 ) { g_pStudioRender->AddShadow( g_pMaterialMRMWireframe, NULL ); }
i = m_ShadowsOnModels.NextElement(i); } } #endif
}
bool CShadowMgr::ModelHasShadows( ModelInstanceHandle_t instance ) { if ( instance != MODEL_INSTANCE_INVALID ) { if ( m_ShadowsOnModels.FirstElement(instance) != m_ShadowsOnModels.InvalidIndex() ) return true; } return false; }
//-----------------------------------------------------------------------------
// Applies the shadow to a surface
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToSurface( ShadowBuildInfo_t& build, SurfaceHandle_t surfID ) { // We've found a potential surface to add to the shadow
// At this point, we want to do fast culling to see whether we actually
// should apply the shadow or not before actually adding it to any lists
// FIXME: implement
// Put the texture extents into shadow space; see if there's an intersection
// If not, we can early out
// To do this, we're gonna want to project the surface into the space of the decal
// Therefore, we want to produce a surface->world transformation, and a
// world->shadow/light space transformation
// Then we transform the surface points into shadow space and apply the projection
// in shadow space.
/*
// Get the texture associated with this surface
mtexinfo_t* tex = pSurface->texinfo;
Vector4D &textureU = tex->textureVecsTexelsPerWorldUnits[0]; Vector4D &textureV = tex->textureVecsTexelsPerWorldUnits[1];
// project decal center into the texture space of the surface
float s = DotProduct( decalinfo->m_Position, textureU.AsVector3D() ) + textureU.w - surf->textureMins[0]; float t = DotProduct( decalinfo->m_Position, textureV.AsVector3D() ) + textureV.w - surf->textureMins[1]; */
// Don't do any more computation at the moment, only do it if
// we end up rendering the surface later on
AddSurfaceToShadow( build.m_Shadow, surfID ); }
//-----------------------------------------------------------------------------
// Applies the shadow to a displacement
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToDisplacement( ShadowBuildInfo_t& build, IDispInfo *pDispInfo, bool bIsFlashlight ) { // Avoid noshadow displacements
if ( !bIsFlashlight && ( MSurf_Flags( pDispInfo->GetParent() ) & SURFDRAW_NOSHADOWS ) ) return;
// Trivial bbox reject.
Vector bbMin, bbMax; pDispInfo->GetBoundingBox( bbMin, bbMax ); if ( !bIsFlashlight ) { if ( !IsBoxIntersectingSphere( bbMin, bbMax, build.m_vecSphereCenter, build.m_flSphereRadius ) ) return; } else { if( R_CullBox( bbMin, bbMax, GetFlashlightFrustum( build.m_Shadow ) ) ) return; }
SurfaceHandle_t surfID = pDispInfo->GetParent();
if ( surfID->m_bDynamicShadowsEnabled == false && !bIsFlashlight ) return;
AddSurfaceToShadow( build.m_Shadow, surfID ); }
//-----------------------------------------------------------------------------
// Allows us to disable particular shadows
//-----------------------------------------------------------------------------
void CShadowMgr::EnableShadow( ShadowHandle_t handle, bool bEnable ) { if (!bEnable) { // We need to remove the shadow from all surfaces it may currently be in
RemoveAllSurfacesFromShadow( handle ); RemoveAllModelsFromShadow( handle );
m_Shadows[handle].m_Flags |= SHADOW_DISABLED; } else { // FIXME: Could make this recompute the cache...
m_Shadows[handle].m_Flags &= ~SHADOW_DISABLED; } }
//-----------------------------------------------------------------------------
// Purpose: Set the darkness falloff bias
// Input : shadow -
// ucBias -
//-----------------------------------------------------------------------------
void CShadowMgr::SetFalloffBias( ShadowHandle_t shadow, unsigned char ucBias ) { m_Shadows[shadow].m_FalloffBias = ucBias; }
//-----------------------------------------------------------------------------
// Recursive routine to find surface to apply a decal to. World coordinates of
// the decal are passed in r_recalpos like the rest of the engine. This should
// be called through R_DecalShoot()
//-----------------------------------------------------------------------------
void CShadowMgr::ProjectShadow( ShadowHandle_t handle, const Vector &origin, const Vector& projectionDir, const VMatrix& worldToShadow, const Vector2D& size, int nLeafCount, const int *pLeafList, float maxHeight, float falloffOffset, float falloffAmount, const Vector &vecCasterOrigin ) { VPROF_BUDGET( "CShadowMgr::ProjectShadow", VPROF_BUDGETGROUP_SHADOW_RENDERING );
// First, we need to remove the shadow from all surfaces it may
// currently be in; in other words we're invalidating the shadow surface cache
RemoveAllSurfacesFromShadow( handle ); RemoveAllModelsFromShadow( handle );
// Don't bother with this shadow if it's disabled
Shadow_t &shadow = m_Shadows[handle]; if ( shadow.m_Flags & SHADOW_DISABLED ) return;
// Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() ) return;
// Set the falloff coefficient
shadow.m_FalloffOffset = falloffOffset; VectorCopy( projectionDir, shadow.m_ProjectionDir );
// We need to know about surfaces in leaves hit by the ray...
// We'd like to stop iterating as soon as the entire swept volume
// enters a solid leaf; that may be hard to determine. Instead,
// we should stop iterating when the ray center enters a solid leaf?
AssertFloatEquals( projectionDir.LengthSqr(), 1.0f, 1e-3 );
// The maximum ray distance is equal to the distance it takes the
// falloff to get to 15%.
shadow.m_MaxDist = maxHeight; //sqrt( coeff / 0.10f ) + falloffOffset;
shadow.m_FalloffAmount = falloffAmount; MatrixCopy( worldToShadow, shadow.m_WorldToShadow );
// Compute a rough bounding sphere for the ray
float flRadius = sqrt( size.x * size.x + size.y * size.y ) * 0.5f; VectorMA( origin, 0.5f * maxHeight, projectionDir, shadow.m_vecSphereCenter ); shadow.m_flSphereRadius = 0.5f * maxHeight + flRadius;
Vector vecEndPoint; Vector vecMins( -flRadius, -flRadius, -flRadius ); Vector vecMaxs( flRadius, flRadius, flRadius ); VectorMA( origin, maxHeight, projectionDir, vecEndPoint ); shadow.m_Ray.Init( origin, vecEndPoint, vecMins, vecMaxs );
// No more work necessary if it hits no leaves
if ( nLeafCount == 0 ) return;
// We're hijacking the surface vis frame to make sure we enumerate
// surfaces only once;
++r_surfacevisframe;
// Clear out the displacement tags also
DispInfo_ClearAllTags( host_state.worldbrush->hDispInfos );
ShadowBuildInfo_t build; build.m_Shadow = handle; build.m_RayStart = origin; build.m_pVis = NULL; build.m_vecSphereCenter = shadow.m_vecSphereCenter; build.m_flSphereRadius = shadow.m_flSphereRadius; VectorCopy( projectionDir, build.m_ProjectionDirection );
// Enumerate leaves
for ( int i = 0; i < nLeafCount; ++i ) { // NOTE: Scope specifier eliminates virtual function call
CShadowMgr::EnumerateLeaf( pLeafList[i], (int)&build ); } }
void DrawFrustum( Frustum_t &frustum ) { const int maxPoints = 8; int i; for( i = 0; i < FRUSTUM_NUMPLANES; i++ ) { Vector points[maxPoints]; Vector points2[maxPoints]; int numPoints = PolyFromPlane( points, frustum.GetPlane( i )->normal, frustum.GetPlane( i )->dist ); Assert( numPoints <= maxPoints ); Vector *in, *out; in = points; out = points2; int j; for( j = 0; j < FRUSTUM_NUMPLANES; j++ ) { if( i == j ) { continue; } numPoints = ClipPolyToPlane( in, numPoints, out, frustum.GetPlane( j )->normal, frustum.GetPlane( j )->dist ); Assert( numPoints <= maxPoints ); V_swap( in, out ); } int c; for( c = 0; c < numPoints; c++ ) { CDebugOverlay::AddLineOverlay( in[c], in[(c+1)%numPoints], 0, 255, 0, 255, true, 0.0f ); } } }
//static void LineDrawHelper( const Vector &startShadowSpace, const Vector &endShadowSpace,
// const VMatrix &shadowToWorld, unsigned char r, unsigned char g,
// unsigned char b, bool ignoreZ )
//{
// Vector startWorldSpace, endWorldSpace;
// Vector3DMultiplyPositionProjective( shadowToWorld, startShadowSpace, startWorldSpace );
// Vector3DMultiplyPositionProjective( shadowToWorld, endShadowSpace, endWorldSpace );
//
// CDebugOverlay::AddLineOverlay( startWorldSpace,
// endWorldSpace,
// r, g, b, ignoreZ
// , 0.0 );
//}
void CShadowMgr::ProjectFlashlight( ShadowHandle_t handle, const VMatrix& worldToShadow, int nLeafCount, const int *pLeafList ) { VPROF_BUDGET( "CShadowMgr::ProjectFlashlight", VPROF_BUDGETGROUP_SHADOW_DEPTH_TEXTURING );
Shadow_t& shadow = m_Shadows[handle];
if ( !IsX360() && !r_flashlight_version2.GetInt() ) { // First, we need to remove the shadow from all surfaces it may
// currently be in; in other words we're invalidating the shadow surface cache
RemoveAllSurfacesFromShadow( handle ); RemoveAllModelsFromShadow( handle );
m_FlashlightStates[ shadow.m_FlashlightHandle ].m_OccluderBuckets.Flush(); }
// Don't bother with this shadow if it's disabled
if ( m_Shadows[handle].m_Flags & SHADOW_DISABLED ) return;
// Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() ) return;
MatrixCopy( worldToShadow, shadow.m_WorldToShadow );
// We need this for our various bounding computations
VMatrix shadowToWorld; MatrixInverseGeneral( shadow.m_WorldToShadow, shadowToWorld );
// Set up the frustum for the flashlight so that we can cull each leaf against it.
Assert( shadow.m_Flags & SHADOW_FLASHLIGHT ); Frustum_t &frustum = m_FlashlightStates[shadow.m_FlashlightHandle].m_Frustum; FrustumPlanesFromMatrix( shadowToWorld, frustum ); CalculateSphereFromProjectionMatrixInverse( shadowToWorld, &shadow.m_vecSphereCenter, &shadow.m_flSphereRadius );
if ( nLeafCount == 0 ) return;
// We're hijacking the surface vis frame to make sure we enumerate
// surfaces only once;
++r_surfacevisframe;
// Clear out the displacement tags also
DispInfo_ClearAllTags( host_state.worldbrush->hDispInfos );
ShadowBuildInfo_t build; build.m_Shadow = handle; build.m_RayStart = m_FlashlightStates[shadow.m_FlashlightHandle].m_FlashlightState.m_vecLightOrigin; build.m_pVis = NULL; build.m_vecSphereCenter = shadow.m_vecSphereCenter; build.m_flSphereRadius = shadow.m_flSphereRadius;
if( r_flashlightdrawfrustumbbox.GetBool() ) { Vector mins, maxs; CalculateAABBFromProjectionMatrixInverse( shadowToWorld, &mins, &maxs ); CDebugOverlay::AddBoxOverlay( Vector( 0.0f, 0.0f, 0.0f ), mins, maxs, QAngle( 0, 0, 0 ), 0, 0, 255, 100, 0.0f ); } for ( int i = 0; i < nLeafCount; ++i ) { // NOTE: Scope specifier eliminates virtual function call
CShadowMgr::EnumerateLeaf( pLeafList[i], (int)&build ); } }
//-----------------------------------------------------------------------------
// Applies the flashlight to all surfaces in the leaf
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyFlashlightToLeaf( const Shadow_t &shadow, mleaf_t* pLeaf, ShadowBuildInfo_t* pBuild ) { // Get the bounds of the leaf so that we can test it against the flashlight frustum.
Vector leafMins, leafMaxs; VectorAdd( pLeaf->m_vecCenter, pLeaf->m_vecHalfDiagonal, leafMaxs ); VectorSubtract( pLeaf->m_vecCenter, pLeaf->m_vecHalfDiagonal, leafMins );
// The flashlight frustum didn't intersect the bounding box for this leaf! Get outta here!
if( R_CullBox( leafMins, leafMaxs, GetFlashlightFrustum( pBuild->m_Shadow ) ) ) return;
// Iterate over all surfaces in the leaf, check for backfacing
// and apply the shadow to the surface if it's not backfaced.
// Note that this really only indicates that the shadow may potentially
// sit on the surface; when we render, we'll actually do the clipping
// computation and at that point we'll remove surfaces that don't
// actually hit the surface
bool bCullDepth = r_flashlightculldepth.GetBool();
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface]; for ( int i = 0; i < pLeaf->nummarksurfaces; i++ ) { SurfaceHandle_t surfID = pHandle[i]; // only process each surface once;
if( MSurf_VisFrame( surfID ) == r_surfacevisframe ) continue; MSurf_VisFrame( surfID ) = r_surfacevisframe; Assert( !MSurf_DispInfo( surfID ) ); // perspective projection
// world-space vertex
int vertIndex = host_state.worldbrush->vertindices[MSurf_FirstVertIndex( surfID )]; Vector& worldPos = host_state.worldbrush->vertexes[vertIndex].position;
// Get the lookdir
Vector lookdir; VectorSubtract( worldPos, pBuild->m_RayStart, lookdir ); VectorNormalize( lookdir );
const cplane_t &surfPlane = MSurf_Plane( surfID );
// Now apply the spherical cull
float flDist = DotProduct( surfPlane.normal, pBuild->m_vecSphereCenter ) - surfPlane.dist; if ( fabs(flDist) >= pBuild->m_flSphereRadius ) continue;
ApplyShadowToSurface( *pBuild, surfID );
// Backface cull
if( bCullDepth ) { if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 ) { if ( DotProduct(surfPlane.normal, lookdir) < BACKFACE_EPSILON ) continue; } else { // Avoid edge-on shadows regardless.
float dot = DotProduct(surfPlane.normal, lookdir); if (fabs(dot) < BACKFACE_EPSILON) continue; } }
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ]; flashlightInfo.m_OccluderBuckets.AddElement( MSurf_MaterialSortID( surfID ), surfID ); } }
//-----------------------------------------------------------------------------
// Applies a shadow to all surfaces in the leaf
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToLeaf( const Shadow_t &shadow, mleaf_t* RESTRICT pLeaf, ShadowBuildInfo_t* RESTRICT pBuild ) { // Iterate over all surfaces in the leaf, check for backfacing
// and apply the shadow to the surface if it's not backfaced.
// Note that this really only indicates that the shadow may potentially
// sit on the surface; when we render, we'll actually do the clipping
// computation and at that point we'll remove surfaces that don't
// actually hit the surface
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface]; for ( int i = 0; i < pLeaf->nummarksurfaces; i++ ) { SurfaceHandleRestrict_t surfID = pHandle[i]; // only process each surface once;
if( MSurf_VisFrame( surfID ) == r_surfacevisframe ) continue; MSurf_VisFrame( surfID ) = r_surfacevisframe; Assert( !MSurf_DispInfo( surfID ) );
// If this surface has specifically had dynamic shadows disabled on it, then get out!
if ( !MSurf_AreDynamicShadowsEnabled( surfID ) ) continue; // Backface cull
const cplane_t * RESTRICT pSurfPlane = &MSurf_Plane( surfID ); bool bInFront; if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 ) { if ( DotProduct( pSurfPlane->normal, pBuild->m_ProjectionDirection) > -BACKFACE_EPSILON ) continue; bInFront = true; } else { // Avoid edge-on shadows regardless.
float dot = DotProduct( pSurfPlane->normal, pBuild->m_ProjectionDirection ); if (fabs(dot) < BACKFACE_EPSILON) continue; bInFront = (dot < 0); } // Here, it's front facing...
// Discard stuff on the wrong side of the ray start
if (bInFront) { if ( DotProduct( pSurfPlane->normal, pBuild->m_RayStart) < pSurfPlane->dist ) continue; } else { if ( DotProduct( pSurfPlane->normal, pBuild->m_RayStart) > pSurfPlane->dist ) continue; }
// Now apply the spherical cull
float flDist = DotProduct( pSurfPlane->normal, pBuild->m_vecSphereCenter ) - pSurfPlane->dist; if ( fabs(flDist) >= pBuild->m_flSphereRadius ) continue;
ApplyShadowToSurface( *pBuild, surfID ); } }
#define BIT_SET( a, b ) ((a)[(b)>>3] & (1<<((b)&7)))
//-----------------------------------------------------------------------------
// Applies a projected texture to all surfaces in the leaf
//-----------------------------------------------------------------------------
bool CShadowMgr::EnumerateLeaf( int leaf, int context ) { VPROF( "CShadowMgr::EnumerateLeaf" ); ShadowBuildInfo_t* pBuild = (ShadowBuildInfo_t*)context;
// Skip this leaf if it's not visible from the shadow caster
if ( pBuild->m_pVis ) { int cluster = CM_LeafCluster( leaf ); if ( !BIT_SET( pBuild->m_pVis, cluster ) ) return true; }
const Shadow_t &shadow = m_Shadows[pBuild->m_Shadow]; mleaf_t* pLeaf = &host_state.worldbrush->leafs[leaf];
bool bIsFlashlight; if( shadow.m_Flags & SHADOW_FLASHLIGHT ) { bIsFlashlight = true; ApplyFlashlightToLeaf( shadow, pLeaf, pBuild ); } else { bIsFlashlight = false; ApplyShadowToLeaf( shadow, pLeaf, pBuild ); }
// Add the decal to each displacement in the leaf it touches.
for ( int i = 0; i < pLeaf->dispCount; i++ ) { IDispInfo *pDispInfo = MLeaf_Disaplcement( pLeaf, i ); // Make sure the decal hasn't already been added to it.
if( pDispInfo->GetTag() ) continue;
pDispInfo->SetTag(); ApplyShadowToDisplacement( *pBuild, pDispInfo, bIsFlashlight ); } return true; }
//-----------------------------------------------------------------------------
// Adds a shadow to a brush model
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowToBrushModel( ShadowHandle_t handle, model_t* pModel, const Vector& origin, const QAngle& angles ) { // Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() ) return;
const Shadow_t * RESTRICT pShadow = &m_Shadows[handle];
// Transform the shadow ray direction into model space
Vector shadowDirInModelSpace; bool bIsFlashlight = ( pShadow->m_Flags & SHADOW_FLASHLIGHT ) != 0; if( !bIsFlashlight ) { // FLASHLIGHTFIXME: should do backface culling for projective light sources.
matrix3x4_t worldToModel; AngleIMatrix( angles, worldToModel ); VectorRotate( pShadow->m_ProjectionDir, worldToModel, shadowDirInModelSpace ); }
// Just add all non-backfacing brush surfaces to the list of potential
// surfaces that we may be casting a shadow onto.
SurfaceHandleRestrict_t surfID = SurfaceHandleFromIndex( pModel->brush.firstmodelsurface, pModel->brush.pShared ); for (int i=0; i<pModel->brush.nummodelsurfaces; ++i, ++surfID) { // Don't bother with nodraw surfaces
int nFlags = MSurf_Flags( surfID ); if ( nFlags & SURFDRAW_NODRAW ) continue; if( !bIsFlashlight ) { // FLASHLIGHTFIXME: should do backface culling for projective light sources.
// Don't bother with backfacing surfaces
if ( (nFlags & SURFDRAW_NOCULL) == 0 ) { const cplane_t * RESTRICT pSurfPlane = &MSurf_Plane( surfID ); float dot = DotProduct( shadowDirInModelSpace, pSurfPlane->normal ); if ( dot > 0 ) continue; } }
// FIXME: We may want to do some more high-level per-surface culling
// If so, it'll be added to ApplyShadowToSurface. Call it instead.
AddSurfaceToShadow( handle, surfID ); } }
//-----------------------------------------------------------------------------
// Removes all shadows from a brush model
//-----------------------------------------------------------------------------
void CShadowMgr::RemoveAllShadowsFromBrushModel( model_t* pModel ) { SurfaceHandle_t surfID = SurfaceHandleFromIndex( pModel->brush.firstmodelsurface, pModel->brush.pShared ); for (int i=0; i<pModel->brush.nummodelsurfaces; ++i, ++surfID) { RemoveAllShadowsFromSurface( surfID ); } }
//-----------------------------------------------------------------------------
// Adds the shadow decals on the surface to a queue of things to render
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowsOnSurfaceToRenderList( ShadowDecalHandle_t decalHandle ) { // Don't compute the surface cache if shadows are off..
if (!r_shadows.GetInt() ) return;
// Add all surface decals into the appropriate render lists
while( decalHandle != m_ShadowDecals.InvalidIndex() ) { ShadowDecal_t& shadowDecal = m_ShadowDecals[decalHandle]; if( m_Shadows[shadowDecal.m_Shadow].m_Flags & SHADOW_FLASHLIGHT ) { AddSurfaceToFlashlightMaterialBuckets( shadowDecal.m_Shadow, shadowDecal.m_SurfID );
// We've got one more decal to render
++m_DecalsToRender; } else if( r_shadows_gamecontrol.GetInt() != 0 ) { // For shadow rendering, hook the decal into the render list based on the shadow material, not the surface material.
int sortOrder = m_Shadows[shadowDecal.m_Shadow].m_SortOrder; m_ShadowDecals[decalHandle].m_NextRender = m_RenderQueue[sortOrder]; m_RenderQueue[sortOrder] = decalHandle;
// We've got one more decal to render
++m_DecalsToRender; } decalHandle = m_ShadowDecals.Next(decalHandle); } }
void CShadowMgr::ClearShadowRenderList() { COMPILE_TIME_ASSERT( sizeof(ShadowDecalHandle_t) == 2 );
// Clear out the render list
if (m_RenderQueue.Count() > 0) { memset( m_RenderQueue.Base(), 0xFF, m_RenderQueue.Count() * sizeof(ShadowDecalHandle_t) ); } m_DecalsToRender = 0; // Clear all lists pertaining to flashlight decals that need to be rendered.
ClearAllFlashlightMaterialBuckets(); }
void CShadowMgr::RenderShadows( const VMatrix* pModelToWorld ) { VPROF_BUDGET( "CShadowMgr::RenderShadows", VPROF_BUDGETGROUP_SHADOW_RENDERING ); // Iterate through all sort ids and render for regular shadows, which get their materials from the shadow material.
CMatRenderContextPtr pRenderContext( materials ); int i; for( i = 0; i < m_RenderQueue.Count(); ++i ) { if (m_RenderQueue[i] != m_ShadowDecals.InvalidIndex()) { RenderShadowList(pRenderContext, m_RenderQueue[i], pModelToWorld ); } } }
void CShadowMgr::RenderProjectedTextures( const VMatrix* pModelToWorld ) { VPROF_BUDGET( "CShadowMgr::RenderProjectedTextures", VPROF_BUDGETGROUP_SHADOW_RENDERING );
RenderFlashlights( true, pModelToWorld ); RenderShadows( pModelToWorld );
// Clear out the render list, we've rendered it now
ClearShadowRenderList(); }
//-----------------------------------------------------------------------------
// A 2D sutherland-hodgman clipper
//-----------------------------------------------------------------------------
class CClipTop { public: static inline bool Inside( ShadowVertex_t const& vert ) { return vert.m_ShadowSpaceTexCoord.y < 1;} static inline float Clip( const Vector& one, const Vector& two ) { return (1 - one.y) / (two.y - one.y);} static inline bool IsPlane() {return false;} static inline bool IsAbove() {return false;} };
class CClipLeft { public: static inline bool Inside( ShadowVertex_t const& vert ) { return vert.m_ShadowSpaceTexCoord.x > 0;} static inline float Clip( const Vector& one, const Vector& two ) { return one.x / (one.x - two.x);} static inline bool IsPlane() {return false;} static inline bool IsAbove() {return false;} };
class CClipRight { public: static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.x < 1;} static inline float Clip( const Vector& one, const Vector& two ) {return (1 - one.x) / (two.x - one.x);} static inline bool IsPlane() {return false;} static inline bool IsAbove() {return false;} };
class CClipBottom { public: static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.y > 0;} static inline float Clip( const Vector& one, const Vector& two ) {return one.y / (one.y - two.y);} static inline bool IsPlane() {return false;} static inline bool IsAbove() {return false;} };
class CClipAbove { public: static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.z > 0;} static inline float Clip( const Vector& one, const Vector& two ) {return one.z / (one.z - two.z);} static inline bool IsPlane() {return false;} static inline bool IsAbove() {return true;} };
class CClipPlane { public: static inline bool Inside( ShadowVertex_t const& vert ) { return DotProduct( vert.m_Position, *m_pNormal ) < m_Dist; }
static inline float Clip( const Vector& one, const Vector& two ) { Vector dir; VectorSubtract( two, one, dir ); return IntersectRayWithPlane( one, dir, *m_pNormal, m_Dist ); }
static inline bool IsAbove() {return false;} static inline bool IsPlane() {return true;}
static void SetPlane( const Vector& normal, float dist ) { m_pNormal = &normal; m_Dist = dist; }
private: static const Vector *m_pNormal; static float m_Dist; };
const Vector *CClipPlane::m_pNormal; float CClipPlane::m_Dist;
static inline void ClampTexCoord( ShadowVertex_t *pInVertex, ShadowVertex_t *pOutVertex ) { if ( fabs(pInVertex->m_ShadowSpaceTexCoord[0]) < 1e-3 ) pOutVertex->m_ShadowSpaceTexCoord[0] = 0.0f; else if ( fabs(pInVertex->m_ShadowSpaceTexCoord[0] - 1.0f) < 1e-3 ) pOutVertex->m_ShadowSpaceTexCoord[0] = 1.0f;
if ( fabs(pInVertex->m_ShadowSpaceTexCoord[1]) < 1e-3 ) pOutVertex->m_ShadowSpaceTexCoord[1] = 0.0f; else if ( fabs(pInVertex->m_ShadowSpaceTexCoord[1] - 1.0f) < 1e-3 ) pOutVertex->m_ShadowSpaceTexCoord[1] = 1.0f; } template <class Clipper> static inline void Intersect( ShadowVertex_t* pStart, ShadowVertex_t* pEnd, ShadowVertex_t* pOut, bool startInside, Clipper& clipper ) { // Clip the edge to the clip plane
float t; if (!Clipper::IsPlane()) { if (!Clipper::IsAbove()) { // This is the path the we always take for perspective light volumes.
t = Clipper::Clip( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord );
VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord ); } else { t = Clipper::Clip( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord ); VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord );
// This is a special thing we do here to avoid hard-edged shadows
if (startInside) ClampTexCoord( pEnd, pOut ); else ClampTexCoord( pStart, pOut ); } } else { t = Clipper::Clip( pStart->m_Position, pEnd->m_Position ); VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord ); }
VectorLerp( pStart->m_Position, pEnd->m_Position, t, pOut->m_Position ); }
template <class Clipper> static void ShadowClip( ShadowClipState_t& clip, Clipper& clipper ) { if ( clip.m_ClipCount == 0 ) return;
// Ye Olde Sutherland-Hodgman clipping algorithm
int numOutVerts = 0; ShadowVertex_t** pSrcVert = clip.m_ppClipVertices[clip.m_CurrVert]; ShadowVertex_t** pDestVert = clip.m_ppClipVertices[!clip.m_CurrVert];
int numVerts = clip.m_ClipCount; ShadowVertex_t* pStart = pSrcVert[numVerts-1]; bool startInside = Clipper::Inside( *pStart ); for (int i = 0; i < numVerts; ++i) { ShadowVertex_t* pEnd = pSrcVert[i]; bool endInside = Clipper::Inside( *pEnd ); if (endInside) { if (!startInside) { // Started outside, ended inside, need to clip the edge
if ( clip.m_TempCount >= SHADOW_VERTEX_TEMP_COUNT ) return; // Allocate a new clipped vertex
pDestVert[numOutVerts] = &clip.m_pTempVertices[clip.m_TempCount++];
// Clip the edge to the clip plane
Intersect( pStart, pEnd, pDestVert[numOutVerts], startInside, clipper ); ++numOutVerts; } pDestVert[numOutVerts++] = pEnd; } else { if (startInside) { // Started inside, ended outside, need to clip the edge
if ( clip.m_TempCount >= SHADOW_VERTEX_TEMP_COUNT ) return;
// Allocate a new clipped vertex
pDestVert[numOutVerts] = &clip.m_pTempVertices[clip.m_TempCount++];
// Clip the edge to the clip plane
Intersect( pStart, pEnd, pDestVert[numOutVerts], startInside, clipper ); ++numOutVerts; } } pStart = pEnd; startInside = endInside; }
// Switch source lists
clip.m_CurrVert = 1 - clip.m_CurrVert; clip.m_ClipCount = numOutVerts; Assert( clip.m_ClipCount <= SHADOW_VERTEX_TEMP_COUNT ); }
//-----------------------------------------------------------------------------
// Project vertices into shadow space
//-----------------------------------------------------------------------------
bool CShadowMgr::ProjectVerticesIntoShadowSpace( const VMatrix& modelToShadow, float maxDist, int count, Vector** RESTRICT ppPosition, ShadowClipState_t& clip ) { bool insideVolume = false;
// Create vertices to clip to...
for (int i = 0; i < count; ++i ) { Assert( ppPosition[i] );
VectorCopy( *ppPosition[i], clip.m_pTempVertices[i].m_Position );
// Project the points into shadow texture space
Vector3DMultiplyPosition( modelToShadow, *ppPosition[i], clip.m_pTempVertices[i].m_ShadowSpaceTexCoord );
// Set up clipping coords...
clip.m_ppClipVertices[0][i] = &clip.m_pTempVertices[i];
if (clip.m_pTempVertices[i].m_ShadowSpaceTexCoord[2] < maxDist ) { insideVolume = true; } }
clip.m_TempCount = clip.m_ClipCount = count; clip.m_CurrVert = 0;
return insideVolume; }
//-----------------------------------------------------------------------------
// Projects + clips shadows
//-----------------------------------------------------------------------------
int CShadowMgr::ProjectAndClipVertices( const Shadow_t& shadow, const VMatrix& worldToShadow, const VMatrix *pWorldToModel, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex ) { VPROF( "ProjectAndClipVertices" ); static ShadowClipState_t clip; if ( !ProjectVerticesIntoShadowSpace( worldToShadow, shadow.m_MaxDist, count, ppPosition, clip ) ) return 0;
// Clippers...
CClipTop top; CClipBottom bottom; CClipLeft left; CClipRight right; CClipAbove above; CClipPlane plane;
// Sutherland-hodgman clip
ShadowClip( clip, top ); ShadowClip( clip, bottom ); ShadowClip( clip, left ); ShadowClip( clip, right ); ShadowClip( clip, above );
// Planes to suppress back-casting
for (int i = 0; i < shadow.m_ClipPlaneCount; ++i) { if ( pWorldToModel ) { cplane_t worldPlane, modelPlane; worldPlane.normal = shadow.m_ClipPlane[i]; worldPlane.dist = shadow.m_ClipDist[i]; MatrixTransformPlane( *pWorldToModel, worldPlane, modelPlane ); plane.SetPlane( modelPlane.normal, modelPlane.dist ); } else { plane.SetPlane( shadow.m_ClipPlane[i], shadow.m_ClipDist[i] ); } ShadowClip( clip, plane ); }
if (clip.m_ClipCount < 3) return 0;
// Return a pointer to the array of clipped vertices...
Assert(ppOutVertex); *ppOutVertex = clip.m_ppClipVertices[clip.m_CurrVert]; return clip.m_ClipCount; }
//-----------------------------------------------------------------------------
// Accessor for use by the displacements
//-----------------------------------------------------------------------------
int CShadowMgr::ProjectAndClipVertices( ShadowHandle_t handle, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex ) { return ProjectAndClipVertices( m_Shadows[handle], m_Shadows[handle].m_WorldToShadow, NULL, count, ppPosition, ppOutVertex ); }
//-----------------------------------------------------------------------------
// Copies vertex info from the clipped vertices
//-----------------------------------------------------------------------------
// This version treats texcoords as Vector
inline void CShadowMgr::CopyClippedVertices( int count, ShadowVertex_t** ppSrcVert, ShadowVertex_t* pDstVert, const Vector &vToAdd ) { for (int i = 0; i < count; ++i) { pDstVert[i].m_Position = ppSrcVert[i]->m_Position + vToAdd; pDstVert[i].m_ShadowSpaceTexCoord = ppSrcVert[i]->m_ShadowSpaceTexCoord;
// Make sure it's been clipped
Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[0] >= -1e-3f ); Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[0] - 1.0f <= 1e-3f ); Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[1] >= -1e-3f ); Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[1] - 1.0f <= 1e-3f ); } }
//-----------------------------------------------------------------------------
// Does the actual work of computing shadow vertices
//-----------------------------------------------------------------------------
bool CShadowMgr::ComputeShadowVertices( ShadowDecal_t& decal, const VMatrix* pModelToWorld, const VMatrix *pWorldToModel, ShadowVertexCache_t* pVertexCache ) { VPROF( "CShadowMgr::ComputeShadowVertices" ); // Prepare for the clipping
Vector **ppVec = (Vector**)stackalloc( MSurf_VertCount( decal.m_SurfID ) * sizeof(Vector*) ); for (int i = 0; i < MSurf_VertCount( decal.m_SurfID ); ++i ) { int vertIndex = host_state.worldbrush->vertindices[MSurf_FirstVertIndex( decal.m_SurfID )+i]; ppVec[i] = &host_state.worldbrush->vertexes[vertIndex].position; }
// Compute the modelToShadow transform.
// In the case of the world, just use worldToShadow...
VMatrix* pModelToShadow = &m_Shadows[decal.m_Shadow].m_WorldToShadow;
VMatrix temp; if ( pModelToWorld ) { MatrixMultiply( *pModelToShadow, *pModelToWorld, temp ); pModelToShadow = &temp; } else { pWorldToModel = NULL; }
// Create vertices to clip to...
ShadowVertex_t** ppSrcVert; int clipCount = ProjectAndClipVertices( m_Shadows[decal.m_Shadow], *pModelToShadow, pWorldToModel, MSurf_VertCount( decal.m_SurfID ), ppVec, &ppSrcVert ); if (clipCount == 0) { pVertexCache->m_Count = 0; return false; } // Allocate the vertices we're going to use for the decal
ShadowVertex_t* pDstVert = AllocateVertices( *pVertexCache, clipCount ); Assert( pDstVert );
// Copy the clipped vertices into the cache
const Vector &vNormal = MSurf_Plane( decal.m_SurfID ).normal; CopyClippedVertices( clipCount, ppSrcVert, pDstVert, vNormal * OVERLAY_AVOID_FLICKER_NORMAL_OFFSET );
// Indicate which shadow this is related to
pVertexCache->m_Shadow = decal.m_Shadow;
return true; }
//-----------------------------------------------------------------------------
// Should we cache vertices?
//-----------------------------------------------------------------------------
inline bool CShadowMgr::ShouldCacheVertices( const ShadowDecal_t& decal ) { return (m_Shadows[decal.m_Shadow].m_Flags & SHADOW_CACHE_VERTS) != 0; }
//-----------------------------------------------------------------------------
// Generates a list displacement shadow vertices to render
//-----------------------------------------------------------------------------
inline bool CShadowMgr::GenerateDispShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info ) { //=============================================================================
// HPE_BEGIN:
// [smessick] Added an overflow condition for the max disp decal cache.
//=============================================================================
if ( info.m_DispCount >= MAX_SHADOW_DECAL_CACHE_COUNT ) { info.m_DispCount = MAX_SHADOW_DECAL_CACHE_COUNT; return true; } //=============================================================================
// HPE_END
//=============================================================================
int v, i; if ( !MSurf_DispInfo( decal.m_SurfID )->ComputeShadowFragments( decal.m_DispShadow, v, i ) ) return false;
// Catch overflows....
if ( ( info.m_VertexCount + v >= info.m_nMaxVertices ) || ( info.m_IndexCount + i >= info.m_nMaxIndices ) ) return true;
info.m_VertexCount += v; info.m_IndexCount += i; info.m_pDispCache[info.m_DispCount++] = decal.m_DispShadow; return true; }
//-----------------------------------------------------------------------------
// Generates a list shadow vertices to render
//-----------------------------------------------------------------------------
inline bool CShadowMgr::GenerateNormalShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info ) { //=============================================================================
// HPE_BEGIN:
// [smessick] Check for cache overflow.
//=============================================================================
if ( info.m_Count >= MAX_SHADOW_DECAL_CACHE_COUNT ) { info.m_Count = MAX_SHADOW_DECAL_CACHE_COUNT; return true; } //=============================================================================
// HPE_END
//=============================================================================
// Look for a cache hit
ShadowVertexCache_t* pVertexCache; if (decal.m_ShadowVerts != m_VertexCache.InvalidIndex()) { // Ok, we've already computed the data, lets use it
info.m_pCache[info.m_Count] = decal.m_ShadowVerts; pVertexCache = &m_VertexCache[decal.m_ShadowVerts]; } else { // Attempt to cull the surface
bool bIsNear = IsShadowNearSurface( decal.m_Shadow, decal.m_SurfID, info.m_pModelToWorld, &info.m_WorldToModel ); if ( !bIsNear ) return false;
// In this case, we gotta recompute the shadow decal vertices
// and maybe even store it into the cache....
bool shouldCacheVerts = ShouldCacheVertices( decal ); if (shouldCacheVerts) { decal.m_ShadowVerts = m_VertexCache.AddToTail(); info.m_pCache[info.m_Count] = decal.m_ShadowVerts; pVertexCache = &m_VertexCache[decal.m_ShadowVerts]; } else { int i = m_TempVertexCache.AddToTail(); info.m_pCache[info.m_Count] = -i-1; pVertexCache = &m_TempVertexCache[i]; Assert( info.m_pCache[info.m_Count] < 0 ); }
// Compute the shadow vertices
// If no vertices were created, indicate this surface should be removed from the cache
if ( !ComputeShadowVertices( decal, info.m_pModelToWorld, &info.m_WorldToModel, pVertexCache ) ) return false; }
// Catch overflows....
int nAdditionalIndices = 3 * (pVertexCache->m_Count - 2); if ( ( info.m_VertexCount + pVertexCache->m_Count >= info.m_nMaxVertices ) || ( info.m_IndexCount + nAdditionalIndices >= info.m_nMaxIndices ) ) { return true; }
// Update vertex, index, and decal counts
info.m_VertexCount += pVertexCache->m_Count; info.m_IndexCount += nAdditionalIndices; ++info.m_Count; return true; }
//-----------------------------------------------------------------------------
// Generates a list shadow vertices to render
//-----------------------------------------------------------------------------
void CShadowMgr::GenerateShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, ShadowRenderInfo_t& info ) { info.m_VertexCount = 0; info.m_IndexCount = 0; info.m_Count = 0; info.m_DispCount = 0;
// Keep the lists only full of valid decals; that way we can preserve
// the render lists in the case that we discover a shadow isn't needed.
ShadowDecalHandle_t next; for ( ; decalHandle != m_ShadowDecals.InvalidIndex(); decalHandle = next ) { ShadowDecal_t& decal = m_ShadowDecals[decalHandle]; next = m_ShadowDecals[decalHandle].m_NextRender; // Skip translucent shadows [ don't add their verts + indices to the render lists ]
Shadow_t &shadow = m_Shadows[ decal.m_Shadow ]; if ( shadow.m_FalloffBias == 255 ) continue;
bool keepShadow; if ( decal.m_DispShadow != DISP_SHADOW_HANDLE_INVALID ) { // Handle shadows on displacements...
keepShadow = GenerateDispShadowRenderInfo( pRenderContext, decal, info ); } else { // Handle shadows on normal surfaces
keepShadow = GenerateNormalShadowRenderInfo( pRenderContext, decal, info ); } // Retire the surface if the shadow didn't actually hit it
if ( !keepShadow && ShouldCacheVertices( decal ) ) { // If no triangles were generated
// (the decal was completely clipped off)
// In this case, remove the decal from the surface cache
// so next time it'll be faster (for cached decals)
RemoveShadowDecalFromSurface( decal.m_SurfID, decalHandle ); } } }
//-----------------------------------------------------------------------------
// Computes information for rendering
//-----------------------------------------------------------------------------
void CShadowMgr::ComputeRenderInfo( ShadowDecalRenderInfo_t* pInfo, ShadowHandle_t handle ) const { const ShadowInfo_t& i = m_Shadows[handle]; pInfo->m_vTexOrigin = i.m_TexOrigin; pInfo->m_vTexSize = i.m_TexSize; pInfo->m_flFalloffOffset = i.m_FalloffOffset; pInfo->m_flFalloffAmount = i.m_FalloffAmount; pInfo->m_flFalloffBias = i.m_FalloffBias;
float flFalloffDist = i.m_MaxDist - i.m_FalloffOffset; pInfo->m_flOOZFalloffDist = ( flFalloffDist > 0.0f ) ? 1.0f / flFalloffDist : 1.0f; }
//-----------------------------------------------------------------------------
// Adds normal shadows to the mesh builder
//-----------------------------------------------------------------------------
int CShadowMgr::AddNormalShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info ) { // Step through the cache and add all shadows on normal surfaces
ShadowDecalRenderInfo_t shadow; int baseIndex = 0; for (int i = 0; i < info.m_Count; ++i) { // Two loops here, basically to minimize the # of if statements we need
ShadowVertexCache_t* pVertexCache; if (info.m_pCache[i] < 0) { pVertexCache = &m_TempVertexCache[-info.m_pCache[i]-1]; } else { pVertexCache = &m_VertexCache[info.m_pCache[i]]; }
ShadowVertex_t* pVerts = GetCachedVerts( *pVertexCache ); g_pShadowMgr->ComputeRenderInfo( &shadow, pVertexCache->m_Shadow );
int j; unsigned char c; Vector2D texCoord; int vCount = pVertexCache->m_Count - 2; if ( vCount <= 0 ) continue;
for ( j = 0; j < vCount; ++j, ++pVerts ) { // Transform + offset the texture coords
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord ); texCoord += shadow.m_vTexOrigin; c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow );
meshBuilder.Position3fv( pVerts->m_Position.Base() ); meshBuilder.Color4ub( c, c, c, c ); meshBuilder.TexCoord2fv( 0, texCoord.Base() ); meshBuilder.AdvanceVertex();
meshBuilder.FastIndex( baseIndex ); meshBuilder.FastIndex( j + baseIndex + 1 ); meshBuilder.FastIndex( j + baseIndex + 2 ); }
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord ); texCoord += shadow.m_vTexOrigin; c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow ); meshBuilder.Position3fv( pVerts->m_Position.Base() ); meshBuilder.Color4ub( c, c, c, c ); meshBuilder.TexCoord2fv( 0, texCoord.Base() ); meshBuilder.AdvanceVertex(); ++pVerts;
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord ); texCoord += shadow.m_vTexOrigin; c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow ); meshBuilder.Position3fv( pVerts->m_Position.Base() ); meshBuilder.Color4ub( c, c, c, c ); meshBuilder.TexCoord2fv( 0, texCoord.Base() ); meshBuilder.AdvanceVertex();
// Update the base index
baseIndex += vCount + 2; } return baseIndex; }
//-----------------------------------------------------------------------------
// Adds displacement shadows to the mesh builder
//-----------------------------------------------------------------------------
int CShadowMgr::AddDisplacementShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info, int baseIndex ) { if ( !r_DrawDisp.GetBool() ) return baseIndex;
// Step through the cache and add all shadows on displacement surfaces
for (int i = 0; i < info.m_DispCount; ++i) { baseIndex = DispInfo_AddShadowsToMeshBuilder( meshBuilder, info.m_pDispCache[i], baseIndex ); }
return baseIndex; }
//-----------------------------------------------------------------------------
// The following methods will display debugging info in the middle of each shadow decal
//-----------------------------------------------------------------------------
static void DrawShadowID( ShadowHandle_t shadowHandle, const Vector &vecCentroid ) { #ifndef SWDS
char buf[32]; Q_snprintf(buf, sizeof( buf ), "%d", shadowHandle ); CDebugOverlay::AddTextOverlay( vecCentroid, 0, buf ); #endif
}
void CShadowMgr::RenderDebuggingInfo( const ShadowRenderInfo_t &info, ShadowDebugFunc_t func ) { // Step through the cache and add all shadows on normal surfaces
for (int i = 0; i < info.m_Count; ++i) { ShadowVertexCache_t* pVertexCache; if (info.m_pCache[i] < 0) { pVertexCache = &m_TempVertexCache[-info.m_pCache[i]-1]; } else { pVertexCache = &m_VertexCache[info.m_pCache[i]]; }
ShadowVertex_t* pVerts = GetCachedVerts( *pVertexCache );
Vector vecNormal; float flTotalArea = 0.0f; Vector vecCentroid(0,0,0); Vector vecApex = pVerts[0].m_Position; int vCount = pVertexCache->m_Count;
for ( int j = 0; j < vCount - 2; ++j ) { Vector v1 = pVerts[j + 1].m_Position; Vector v2 = pVerts[j + 2].m_Position; CrossProduct( v2 - v1, v1 - vecApex, vecNormal ); float flArea = vecNormal.Length(); flTotalArea += flArea; vecCentroid += (vecApex + v1 + v2) * flArea / 3.0f; }
if (flTotalArea) { vecCentroid /= flTotalArea; }
func( pVertexCache->m_Shadow, vecCentroid ); } }
//-----------------------------------------------------------------------------
// Renders shadows that all share a material enumeration
//-----------------------------------------------------------------------------
void CShadowMgr::RenderShadowList( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, const VMatrix* pModelToWorld ) { //=============================================================================
// HPE_BEGIN:
// [smessick] Make sure we don't overflow our caches.
//=============================================================================
if ( m_DecalsToRender > m_ShadowDecalCache.Count() ) { // Don't grow past the MAX_SHADOW_DECAL_CACHE_COUNT cap.
int diff = min( m_DecalsToRender, (int)MAX_SHADOW_DECAL_CACHE_COUNT ) - m_ShadowDecalCache.Count(); if ( diff > 0 ) { // Grow the cache.
m_ShadowDecalCache.Grow( diff ); DevMsg( "[CShadowMgr::RenderShadowList] growing shadow decal cache (decals: %d, cache: %d, diff: %d).\n", m_DecalsToRender, m_ShadowDecalCache.Count(), diff ); } }
if ( m_DecalsToRender > m_DispShadowDecalCache.Count() ) { // Don't grow past the MAX_SHADOW_DECAL_CACHE_COUNT cap.
int diff = min( m_DecalsToRender, (int)MAX_SHADOW_DECAL_CACHE_COUNT ) - m_DispShadowDecalCache.Count(); if ( diff > 0 ) { // Grow the cache.
m_DispShadowDecalCache.Grow( diff ); DevMsg( "[CShadowMgr::RenderShadowList] growing disp shadow decal cache (decals: %d, cache: %d, diff: %d).\n", m_DecalsToRender, m_DispShadowDecalCache.Count(), diff ); } }
//=============================================================================
// HPE_END
//=============================================================================
// Set the render state...
Shadow_t& shadow = m_Shadows[m_ShadowDecals[decalHandle].m_Shadow];
if ( r_shadowwireframe.GetInt() == 0 ) { pRenderContext->Bind( shadow.m_pMaterial, shadow.m_pBindProxy ); } else { pRenderContext->Bind( g_materialWorldWireframe ); }
// Blow away the temporary vertex cache (for normal surfaces)
ClearTempCache();
// Set up rendering info structure
ShadowRenderInfo_t info;
//=============================================================================
// HPE_BEGIN:
// [smessick] This code used to create the cache dynamically on the stack.
//=============================================================================
info.m_pCache = m_ShadowDecalCache.Base(); info.m_pDispCache = m_DispShadowDecalCache.Base(); //=============================================================================
// HPE_END
//=============================================================================
info.m_pModelToWorld = pModelToWorld; if ( pModelToWorld ) { MatrixInverseTR( *pModelToWorld, info.m_WorldToModel ); } info.m_nMaxIndices = pRenderContext->GetMaxIndicesToRender(); info.m_nMaxVertices = pRenderContext->GetMaxVerticesToRender( shadow.m_pMaterial );
// Iterate over all decals in the decal list and generate polygon lists
// Creating them from scratch if their shadow poly cache is invalid
GenerateShadowRenderInfo(pRenderContext, decalHandle, info); Assert( info.m_Count <= m_DecalsToRender ); Assert( info.m_DispCount <= m_DecalsToRender ); //=============================================================================
// HPE_BEGIN:
// [smessick] Also check against the max.
//=============================================================================
Assert( info.m_Count <= m_ShadowDecalCache.Count() && info.m_Count <= MAX_SHADOW_DECAL_CACHE_COUNT ); Assert( info.m_DispCount <= m_DispShadowDecalCache.Count() && info.m_DispCount <= MAX_SHADOW_DECAL_CACHE_COUNT ); //=============================================================================
// HPE_END
//=============================================================================
// Now that the vertex lists are created, render them
IMesh* pMesh = pRenderContext->GetDynamicMesh(); CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, info.m_VertexCount, info.m_IndexCount );
// Add in shadows from both normal surfaces + displacement surfaces
int baseIndex = AddNormalShadowsToMeshBuilder( meshBuilder, info ); AddDisplacementShadowsToMeshBuilder( meshBuilder, info, baseIndex );
meshBuilder.End(); pMesh->Draw();
if (r_shadowids.GetInt() != 0) { RenderDebuggingInfo( info, DrawShadowID ); } }
//-----------------------------------------------------------------------------
// Set the number of world material buckets. This should get called on level load.
//-----------------------------------------------------------------------------
void CShadowMgr::SetNumWorldMaterialBuckets( int numMaterialSortBins ) { m_NumWorldMaterialBuckets = numMaterialSortBins; FlashlightHandle_t flashlightID; for( flashlightID = m_FlashlightStates.Head(); flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { m_FlashlightStates[flashlightID].m_MaterialBuckets.SetNumMaterialSortIDs( numMaterialSortBins ); m_FlashlightStates[flashlightID].m_OccluderBuckets.SetNumMaterialSortIDs( numMaterialSortBins ); } ClearAllFlashlightMaterialBuckets(); }
//-----------------------------------------------------------------------------
// Per frame call to clear all of the flashlight world material buckets.
//-----------------------------------------------------------------------------
void CShadowMgr::ClearAllFlashlightMaterialBuckets( void ) { if ( IsX360() || r_flashlight_version2.GetInt() ) return;
FlashlightHandle_t flashlightID; for( flashlightID = m_FlashlightStates.Head(); flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { m_FlashlightStates[flashlightID].m_MaterialBuckets.Flush(); } }
//-----------------------------------------------------------------------------
// Allocate world material buckets for a particular flashlight. This should get called on flashlight creation.
//-----------------------------------------------------------------------------
void CShadowMgr::AllocFlashlightMaterialBuckets( FlashlightHandle_t flashlightID ) { Assert( m_FlashlightStates.MaxElementIndex() >= flashlightID ); m_FlashlightStates[flashlightID].m_MaterialBuckets.SetNumMaterialSortIDs( m_NumWorldMaterialBuckets ); m_FlashlightStates[flashlightID].m_OccluderBuckets.SetNumMaterialSortIDs( m_NumWorldMaterialBuckets ); }
//-----------------------------------------------------------------------------
// Update a particular flashlight's state.
//-----------------------------------------------------------------------------
void CShadowMgr::UpdateFlashlightState( ShadowHandle_t shadowHandle, const FlashlightState_t &lightState ) { m_FlashlightStates[m_Shadows[shadowHandle].m_FlashlightHandle].m_FlashlightState = lightState; }
void CShadowMgr::SetFlashlightDepthTexture( ShadowHandle_t shadowHandle, ITexture *pFlashlightDepthTexture, unsigned char ucShadowStencilBit ) { m_Shadows[shadowHandle].m_pFlashlightDepthTexture = pFlashlightDepthTexture; m_Shadows[shadowHandle].m_ucShadowStencilBit = ucShadowStencilBit; }
bool ScreenSpaceRectFromPoints( IMatRenderContext *pRenderContext, Vector vClippedPolygons[8][10], int *pNumPoints, int nNumPolygons, int *nLeft, int *nTop, int *nRight, int *nBottom ) { if( nNumPolygons == 0 ) return false;
VMatrix matView, matProj, matViewProj; pRenderContext->GetMatrix( MATERIAL_VIEW, &matView ); pRenderContext->GetMatrix( MATERIAL_PROJECTION, &matProj ); MatrixMultiply( matProj, matView, matViewProj );
float fMinX, fMaxX, fMinY, fMaxY; // Init bounding rect
fMinX = fMinY = FLT_MAX; fMaxX = fMaxY = -FLT_MAX;
for ( int i=0; i<nNumPolygons; i++ ) { for ( int j=0; j<pNumPoints[i]; j++ ) { Vector vScreenSpacePoint; matViewProj.V3Mul( vClippedPolygons[i][j], vScreenSpacePoint ); // Transform from World to screen space
fMinX = fpmin( fMinX, vScreenSpacePoint.x ); // Update mins/maxes
fMaxX = fpmax( fMaxX, vScreenSpacePoint.x ); //
fMinY = fpmin( fMinY, -vScreenSpacePoint.y ); // These are in -1 to +1 range
fMaxY = fpmax( fMaxY, -vScreenSpacePoint.y ); //
} }
int nWidth, nHeight; g_pMaterialSystem->GetBackBufferDimensions( nWidth, nHeight ); // Get render target dimensions
*nLeft = ((fMinX * 0.5f + 0.5f) * (float) nWidth ) - 1; // Convert to render target pixel units
*nTop = ((fMinY * 0.5f + 0.5f) * (float) nHeight) - 1; *nRight = ((fMaxX * 0.5f + 0.5f) * (float) nWidth ) + 1; *nBottom = ((fMaxY * 0.5f + 0.5f) * (float) nHeight) + 1;
*nLeft = clamp( *nLeft, 0, nWidth ); // Clamp to render target dimensions
*nTop = clamp( *nTop, 0, nHeight ); *nRight = clamp( *nRight, 0, nWidth ); *nBottom = clamp( *nBottom, 0, nHeight );
Assert( (*nLeft <= *nRight) && (*nTop <= *nBottom) );
// Do we have an actual subrect of the whole screen?
bool bWithinBounds = ((*nLeft > 0 ) || (*nTop > 0) || (*nRight < nWidth) || (*nBottom < nHeight));
// Compute valid area
nWidth = (*nRight - *nLeft); nHeight = (*nBottom - *nTop); int nArea = ( nWidth > 0 ) && ( nHeight > 0 ) ? nWidth * nHeight : 0;
// Valid rect?
return bWithinBounds && (nArea > 0); }
// Turn this optimization off by default
static ConVar r_flashlightclip("r_flashlightclip", "0", FCVAR_CHEAT ); static ConVar r_flashlightdrawclip("r_flashlightdrawclip", "0", FCVAR_CHEAT ); static ConVar r_flashlightscissor( "r_flashlightscissor", "1", 0 );
void ExtractFrustumPlanes( Frustum frustumPlanes, float flPlaneEpsilon ) { const CViewSetup &view = g_EngineRenderer->ViewGetCurrent();
float flFOVy = CalcFovY( view.fov, view.m_flAspectRatio );
Frustum_t frustum;
Vector vForward, vRight, vUp; AngleVectors( view.angles, &vForward, &vRight, &vUp );
GeneratePerspectiveFrustum( view.origin, vForward, vRight, vUp, view.zNear + flPlaneEpsilon, view.zFar - flPlaneEpsilon, // Apply epsilon to near and far
view.fov, flFOVy, frustum );
// Copy out to the planes that the engine renderer uses.
for( int i=0; i < FRUSTUM_NUMPLANES; i++ ) { frustumPlanes[i].m_Normal = frustum.GetPlane(i)->normal; frustumPlanes[i].m_Dist = frustum.GetPlane(i)->dist; } }
void ConstructNearAndFarPolygons( Vector *pVecNearPlane, Vector *pVecFarPlane, float flPlaneEpsilon ) { const CViewSetup &view = g_EngineRenderer->ViewGetCurrent();
float fovY = CalcFovY( view.fov, view.m_flAspectRatio );
// Compute near and far plane half-width and half-height
float flTanHalfAngleRadians = tan( view.fov * ( 0.5f * M_PI / 180.0f ) ); float flHalfNearWidth = flTanHalfAngleRadians * ( view.zNear + flPlaneEpsilon ); float flHalfFarWidth = flTanHalfAngleRadians * ( view.zFar - flPlaneEpsilon ); flTanHalfAngleRadians = tan( fovY * ( 0.5f * M_PI / 180.0f ) ); float flHalfNearHeight = flTanHalfAngleRadians * ( view.zNear + flPlaneEpsilon ); float flHalfFarHeight = flTanHalfAngleRadians * ( view.zFar - flPlaneEpsilon );
// World-space orientation of viewer
Vector vForward, vRight, vUp; AngleVectors( view.angles, &vForward, &vRight, &vUp ); vForward.NormalizeInPlace(); vRight.NormalizeInPlace(); vUp.NormalizeInPlace();
// Center of near and far planes in world space
Vector vCenterNear = view.origin + vForward * ( view.zNear + flPlaneEpsilon ); Vector vCenterFar = view.origin + vForward * ( view.zFar - flPlaneEpsilon );
pVecNearPlane[0] = vCenterNear - ( vRight * flHalfNearWidth ) - ( vUp * flHalfNearHeight ); pVecNearPlane[1] = vCenterNear - ( vRight * flHalfNearWidth ) + ( vUp * flHalfNearHeight ); pVecNearPlane[2] = vCenterNear + ( vRight * flHalfNearWidth ) + ( vUp * flHalfNearHeight ); pVecNearPlane[3] = vCenterNear + ( vRight * flHalfNearWidth ) - ( vUp * flHalfNearHeight );
pVecFarPlane[0] = vCenterNear - ( vRight * flHalfFarWidth ) - ( vUp * flHalfFarHeight ); pVecFarPlane[1] = vCenterNear + ( vRight * flHalfFarWidth ) - ( vUp * flHalfFarHeight ); pVecFarPlane[2] = vCenterNear + ( vRight * flHalfFarWidth ) + ( vUp * flHalfFarHeight ); pVecFarPlane[3] = vCenterNear - ( vRight * flHalfFarWidth ) + ( vUp * flHalfFarHeight ); }
void DrawDebugPolygon( int nNumVerts, Vector *pVecPoints, bool bFrontFacing, bool bNearPlane ) { int r=0, g=0, b=0; if ( bFrontFacing ) b = 255; else r = 255;
if ( bNearPlane ) // Draw near plane green for visualization
{ r = b = 0; g = 255; }
// Draw triangles fanned out from vertex zero
for (int i=1; i<(nNumVerts-1); i++) { Vector v0 = pVecPoints[0]; Vector v1 = pVecPoints[bFrontFacing ? i : i+1]; Vector v2 = pVecPoints[bFrontFacing ? i+1 : i];
CDebugOverlay::AddTriangleOverlay(v0, v1, v2, r, g, b, 20, true, 0 ); }
// Draw solid lines around the polygon
for (int i=0; i<nNumVerts; i++) { Vector v0 = pVecPoints[i]; Vector v1 = pVecPoints[ (i+1) % nNumVerts];
CDebugOverlay::AddLineOverlay( v0, v1, 255, 255, 255, 255, false, 0); } }
void DrawPolygonToStencil( IMatRenderContext *pRenderContext, int nNumVerts, Vector *pVecPoints, bool bFrontFacing, bool bNearPlane ) { IMaterial *pMaterial = materials->FindMaterial( "engine/writestencil", TEXTURE_GROUP_OTHER, true );
pRenderContext->Bind( pMaterial ); IMesh* pMesh = pRenderContext->GetDynamicMesh( true );
pRenderContext->MatrixMode( MATERIAL_MODEL ); pRenderContext->PushMatrix(); pRenderContext->LoadIdentity();
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nNumVerts-2 );
// Fan out from vertex zero
for (int i=1; i<(nNumVerts-1); i++) { meshBuilder.Position3f( pVecPoints[0].x, pVecPoints[0].y, pVecPoints[0].z ); meshBuilder.AdvanceVertex();
int index = bFrontFacing ? i : i+1; meshBuilder.Position3f( pVecPoints[index].x, pVecPoints[index].y, pVecPoints[index].z ); meshBuilder.AdvanceVertex();
index = bFrontFacing ? i+1 : i; meshBuilder.Position3f( pVecPoints[index].x, pVecPoints[index].y, pVecPoints[index].z ); meshBuilder.AdvanceVertex(); }
meshBuilder.End( false, true );
pRenderContext->MatrixMode( MATERIAL_MODEL ); pRenderContext->PopMatrix(); }
// Determine if two Vectors are sufficiently close (Manhattan-ish distance, not Euclidean)
bool SufficientlyClose( Vector v1, Vector v2, float flEpsilon ) { if ( fabs( v1.x - v2.x ) > flEpsilon ) // Bail if x components are sufficiently different
return false;
if ( fabs( v1.y - v2.y ) > flEpsilon ) // Bail if y components are sufficiently different
return false;
if ( fabs( v1.z - v2.z ) > flEpsilon ) // Bail if z components are sufficiently different
return false;
return true; }
int ClipPlaneToFrustum( Vector *pInPoints, Vector *pOutPoints, Vector *pVecWorldFrustumPoints ) { Vector vClipPing[10]; // Vector lists to ping-pong between while clipping
Vector vClipPong[10]; //
bool bPing = true; // Ping holds the latest polygon
vClipPing[0] = pInPoints[0]; // Copy into Ping
vClipPing[1] = pInPoints[1]; vClipPing[2] = pInPoints[2]; vClipPing[3] = pInPoints[3];
int nNumPoints = 4;
for ( int i=0; i < 6; i++ ) { Vector vNormal; float flDist; if ( nNumPoints < 3 ) // If we're already clipped away, bail out entirely
break;
Vector *pClipPolygon = pVecWorldFrustumPoints+(4*i); // Polygon defining clip plane
ComputeTrianglePlane( pClipPolygon[0], pClipPolygon[1], pClipPolygon[2], vNormal, flDist ); // Compute plane normal and dist
if ( bPing ) nNumPoints = ClipPolyToPlane( vClipPing, nNumPoints, vClipPong, vNormal, flDist ); // Clip Ping into Pong
else nNumPoints = ClipPolyToPlane( vClipPong, nNumPoints, vClipPing, vNormal, flDist ); // Clip Pong into Ping
bPing = !bPing; // Flip buffers
}
if ( nNumPoints < 3) return 0;
if ( bPing ) memcpy( pOutPoints, vClipPing, nNumPoints * sizeof(Vector) ); else memcpy( pOutPoints, vClipPong, nNumPoints * sizeof(Vector) );
return nNumPoints; }
void CShadowMgr::SetStencilAndScissor( IMatRenderContext *pRenderContext, FlashlightInfo_t &flashlightInfo, bool bUseStencil ) { VMatrix matFlashlightToWorld; MatrixInverseGeneral( m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow, matFlashlightToWorld );
// Eight points defining the frustum in Flashlight space
Vector vFrustumPoints[24] = { Vector(0.0f, 0.0f, 0.0f), Vector(1.0f, 0.0f, 0.0f), Vector(1.0f, 1.0f, 0.0f), Vector(0.0f, 1.0f, 0.0f), // Near
Vector(0.0f, 0.0f, 1.0f), Vector(0.0f, 1.0f, 1.0f), Vector(1.0f, 1.0f, 1.0f), Vector(1.0f, 0.0f, 1.0f), // Far
Vector(1.0f, 0.0f, 0.0f), Vector(1.0f, 0.0f, 1.0f), Vector(1.0f, 1.0f, 1.0f), Vector(1.0f, 1.0f, 0.0f), // Right
Vector(0.0f, 0.0f, 0.0f), Vector(0.0f, 1.0f, 0.0f), Vector(0.0f, 1.0f, 1.0f), Vector(0.0f, 0.0f, 1.0f), // Left
Vector(0.0f, 1.0f, 0.0f), Vector(1.0f, 1.0f, 0.0f), Vector(1.0f, 1.0f, 1.0f), Vector(0.0f, 1.0f, 1.0f), // Bottom
Vector(0.0f, 0.0f, 0.0f), Vector(0.0f, 0.0f, 1.0f), Vector(1.0f, 0.0f, 1.0f), Vector(1.0f, 0.0f, 0.0f)}; // Top
// Transform points to world space
Vector vWorldFrustumPoints[24]; for ( int i=0; i < 24; i++ ) { matFlashlightToWorld.V3Mul( vFrustumPoints[i], vWorldFrustumPoints[i] ); }
// Express near and far planes of View frustum in world space
Frustum frustumPlanes; const float flPlaneEpsilon = 0.4f; ExtractFrustumPlanes( frustumPlanes, flPlaneEpsilon ); Vector vNearNormal = frustumPlanes[FRUSTUM_NEARZ].m_Normal; Vector vFarNormal = frustumPlanes[FRUSTUM_FARZ].m_Normal; float flNearDist = frustumPlanes[FRUSTUM_NEARZ].m_Dist; float flFarDist = frustumPlanes[FRUSTUM_FARZ].m_Dist;
Vector vTempFace[5]; Vector vClippedFace[6]; Vector vClippedPolygons[8][10]; // Array of up to eight polygons (10 verts is more than enough for each)
int nNumVertices[8]; // Number vertices on each of the of clipped polygons
int nNumPolygons = 0; // How many polygons have survived the clip
// Clip each face individually to near and far planes
for ( int i=0; i < 6; i++ ) { Vector *inVerts = vWorldFrustumPoints+(4*i); // Series of quadrilateral inputs
Vector *tempVerts = vTempFace; Vector *outVerts = vClippedFace;
int nClipCount = ClipPolyToPlane( inVerts, 4, tempVerts, vNearNormal, flNearDist ); // need to set fOnPlaneEpsilon?
if ( nClipCount > 2 ) // If the polygon survived the near clip, try the far as well
{ nClipCount = ClipPolyToPlane( tempVerts, nClipCount, outVerts, vFarNormal, flFarDist ); // need to set fOnPlaneEpsilon?
if ( nClipCount > 2 ) // If we still have a poly after clipping to both planes, add it to the list
{ memcpy( vClippedPolygons[nNumPolygons], outVerts, nClipCount * sizeof (Vector) ); nNumVertices[nNumPolygons] = nClipCount; nNumPolygons++; } } }
// Construct polygons for near and far planes
Vector vNearPlane[4], vFarPlane[4]; ConstructNearAndFarPolygons( vNearPlane, vFarPlane, flPlaneEpsilon ); bool bNearPlane = false;
// Clip near plane to flashlight frustum and tack on to list
int nClipCount = ClipPlaneToFrustum( vNearPlane, vClippedPolygons[nNumPolygons], vWorldFrustumPoints ); if ( nClipCount > 2 ) // If the near plane clipped and resulted in a polygon, take note in the polygon list
{ nNumVertices[nNumPolygons] = nClipCount; nNumPolygons++; bNearPlane = true; }
/*
TODO: do we even need to do the far plane?
// Clip near plane to flashlight frustum and tack on to list
nClipCount = ClipPlaneToFrustum( vFarPlane, vClippedPolygons[nNumPolygons], vWorldFrustumPoints ); if ( nClipCount > 2 ) // If the near plane clipped and resulted in a polygon, take note in the polygon list
{ nNumVertices[nNumPolygons] = nClipCount; nNumPolygons++; } */ // Fuse positions of any verts which are within epsilon
for (int i=0; i<nNumPolygons; i++) // For each polygon
{ for (int j=0; j<nNumVertices[i]; j++) // For each vertex
{ for (int k=i+1; k<nNumPolygons; k++) // For each later polygon
{ for (int m=0; m<nNumVertices[k]; m++) // For each vertex
{ if ( SufficientlyClose(vClippedPolygons[i][j], vClippedPolygons[k][m], 0.1f) ) { vClippedPolygons[k][m] = vClippedPolygons[i][j]; } } } } }
// Calculate scissoring rect
flashlightInfo.m_FlashlightState.m_bScissor = false; if ( r_flashlightscissor.GetBool() && (nNumPolygons > 0) ) { int nLeft, nTop, nRight, nBottom; flashlightInfo.m_FlashlightState.m_bScissor = ScreenSpaceRectFromPoints( pRenderContext, vClippedPolygons, nNumVertices, nNumPolygons, &nLeft, &nTop, &nRight, &nBottom ); if ( flashlightInfo.m_FlashlightState.m_bScissor ) { flashlightInfo.m_FlashlightState.m_nLeft = nLeft; flashlightInfo.m_FlashlightState.m_nTop = nTop; flashlightInfo.m_FlashlightState.m_nRight = nRight; flashlightInfo.m_FlashlightState.m_nBottom = nBottom; } }
if ( r_flashlightdrawclip.GetBool() && r_flashlightclip.GetBool() && bUseStencil ) { // Draw back facing debug polygons
for (int i=0; i<nNumPolygons; i++) { DrawDebugPolygon( nNumVertices[i], vClippedPolygons[i], false, false ); } /*
// Draw front facing debug polygons
for (int i=0; i<nNumPolygons; i++) { DrawDebugPolygon( nNumVertices[i], vClippedPolygons[i], true, bNearPlane && (i == nNumPolygons-1) ); } */ }
if ( r_flashlightclip.GetBool() && bUseStencil ) { /*
// The traditional settings...
// Set up to set stencil bit on front facing polygons
pRenderContext->SetStencilEnable( true ); pRenderContext->SetStencilFailOperation( STENCILOPERATION_KEEP ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_KEEP ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_REPLACE ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_ALWAYS ); // Stencil always pass
pRenderContext->SetStencilReferenceValue( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); pRenderContext->SetStencilTestMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); pRenderContext->SetStencilWriteMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); // Bit mask which is specific to this shadow
*/
// Just blast front faces into the stencil buffer no matter what...
pRenderContext->SetStencilEnable( true ); pRenderContext->SetStencilFailOperation( STENCILOPERATION_REPLACE ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_REPLACE ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_REPLACE ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_ALWAYS ); // Stencil always pass
pRenderContext->SetStencilReferenceValue( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); pRenderContext->SetStencilTestMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); pRenderContext->SetStencilWriteMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); // Bit mask which is specific to this shadow
for ( int i=0; i<nNumPolygons; i++ ) // Set the stencil bit on front facing
{ DrawPolygonToStencil( pRenderContext, nNumVertices[i], vClippedPolygons[i], true, false ); }
/*
pRenderContext->SetStencilReferenceValue( 0x00000000 ); // All bits cleared
for (int i=0; i<nNumPolygons; i++) // Clear the stencil bit on back facing
{ DrawPolygonToStencil( nNumVertices[i], vClippedPolygons[i], false, false ); } */
pRenderContext->SetStencilEnable( false ); } }
//---------------------------------------------------------------------------------------
// Set masking stencil bits for all flashlights
//---------------------------------------------------------------------------------------
void CShadowMgr::SetFlashlightStencilMasks( bool bDoMasking ) { VPROF_BUDGET( "CShadowMgr::RenderFlashlights", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
// Bail out if we're not doing any of these optimizations
if ( !( r_flashlightclip.GetBool() || r_flashlightscissor.GetBool()) ) return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
CMatRenderContextPtr pRenderContext( materials );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
SetStencilAndScissor( pRenderContext, flashlightInfo, m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture != NULL ); } }
void CShadowMgr::DisableStencilAndScissorMasking( IMatRenderContext *pRenderContext ) { if ( r_flashlightclip.GetBool() ) { pRenderContext->SetStencilEnable( false ); }
// Scissor even if we're not shadow depth mapping
if ( r_flashlightscissor.GetBool() ) { pRenderContext->SetScissorRect( -1, -1, -1, -1, false ); } }
//---------------------------------------------------------------------------------------
// Enable/Disable masking based on stencil bit
//---------------------------------------------------------------------------------------
void CShadowMgr::EnableStencilAndScissorMasking( IMatRenderContext *pRenderContext, const FlashlightInfo_t &flashlightInfo, bool bDoMasking ) { // Bail out if we're not doing any of these optimizations
if ( !( r_flashlightclip.GetBool() || r_flashlightscissor.GetBool()) || !bDoMasking ) return;
// Only turn on scissor when rendering to the back buffer
if ( pRenderContext->GetRenderTarget() == NULL ) { // Only do the stencil optimization when shadow depth mapping
if ( r_flashlightclip.GetBool() && m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture != NULL ) { unsigned char ucShadowStencilBit = m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit;
pRenderContext->SetStencilEnable( true ); pRenderContext->SetStencilFailOperation( STENCILOPERATION_KEEP ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_KEEP ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_KEEP ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_EQUAL ); // Bit must be set
pRenderContext->SetStencilReferenceValue( ucShadowStencilBit ); // Specific bit
pRenderContext->SetStencilTestMask( ucShadowStencilBit ); // Specific bit
pRenderContext->SetStencilWriteMask( 0x00000000 ); }
// Scissor even if we're not shadow depth mapping
if ( r_flashlightscissor.GetBool() && flashlightInfo.m_FlashlightState.m_bScissor ) { pRenderContext->SetScissorRect( flashlightInfo.m_FlashlightState.m_nLeft, flashlightInfo.m_FlashlightState.m_nTop, flashlightInfo.m_FlashlightState.m_nRight, flashlightInfo.m_FlashlightState.m_nBottom, true ); } } else // disable
{ DisableStencilAndScissorMasking( pRenderContext ); } }
//---------------------------------------------------------------------------------------
// Sets the render states necessary to render a flashlight
//---------------------------------------------------------------------------------------
void CShadowMgr::SetFlashlightRenderState( ShadowHandle_t handle ) { CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); if ( handle == SHADOW_HANDLE_INVALID ) { pRenderContext->SetFlashlightMode( false ); return; }
const Shadow_t &shadow = m_Shadows[handle]; pRenderContext->SetFlashlightMode( true ); const FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ]; pRenderContext->SetFlashlightStateEx( flashlightInfo.m_FlashlightState, shadow.m_WorldToShadow, shadow.m_pFlashlightDepthTexture ); }
//---------------------------------------------------------------------------------------
// Render all of the world and displacement surfaces that need to be drawn for flashlights
//---------------------------------------------------------------------------------------
void CShadowMgr::RenderFlashlights( bool bDoMasking, const VMatrix* pModelToWorld ) { #ifndef SWDS
VPROF_BUDGET( "CShadowMgr::RenderFlashlights", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
if( r_flashlightrender.GetBool()==false ) return;
// Draw the projective light sources, which get their material
// from the surface and not from the shadow.
// Tell the materialsystem that we are drawing additive flashlight lighting.
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
bool bWireframe = r_shadowwireframe.GetBool();
CMatRenderContextPtr pRenderContext( materials ); PIXEVENT( pRenderContext, "CShadowMgr::RenderFlashlights" );
pRenderContext->SetFlashlightMode( true );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID]; CMaterialsBuckets<SurfaceHandle_t> &materialBuckets = flashlightInfo.m_MaterialBuckets; CMaterialsBuckets<SurfaceHandle_t>::SortIDHandle_t sortIDHandle = materialBuckets.GetFirstUsedSortID(); if ( sortIDHandle == materialBuckets.InvalidSortIDHandle() ) continue;
pRenderContext->SetFlashlightStateEx(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow, m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture ); EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
for( ; sortIDHandle != materialBuckets.InvalidSortIDHandle(); sortIDHandle = materialBuckets.GetNextUsedSortID( sortIDHandle ) ) { int sortID = materialBuckets.GetSortID( sortIDHandle );
if( bWireframe ) { pRenderContext->Bind( g_materialWorldWireframe ); } else { pRenderContext->Bind( materialSortInfoArray[sortID].material ); pRenderContext->BindLightmapPage( materialSortInfoArray[sortID].lightmapPageID ); }
CMaterialsBuckets<SurfaceHandle_t>::ElementHandle_t elemHandle; // Figure out how many indices we have.
int numIndices = 0; for( elemHandle = materialBuckets.GetElementListHead( sortID ); elemHandle != materialBuckets.InvalidElementHandle(); elemHandle = materialBuckets.GetElementListNext( elemHandle ) ) { SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle ); if( !SurfaceHasDispInfo( surfID ) ) { numIndices += 3 * ( MSurf_VertCount( surfID ) - 2 ); } }
if( numIndices > 0 ) { // NOTE: If we ever need to make this faster, we could get larger
// batches here.
// Draw this batch.
#if NEWMESH
IIndexBuffer *pIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT ); CIndexBufferBuilder indexBufferBuilder; indexBufferBuilder.Begin( pIndexBuffer, numIndices ); #else
IMesh *pMesh = pRenderContext->GetDynamicMesh( false, g_WorldStaticMeshes[sortID], 0 ); CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 0, numIndices ); #endif
for( elemHandle = materialBuckets.GetElementListHead( sortID ); elemHandle != materialBuckets.InvalidElementHandle(); elemHandle = materialBuckets.GetElementListNext( elemHandle ) ) { SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle ); if( !SurfaceHasDispInfo( surfID ) ) { #if NEWMESH
BuildIndicesForWorldSurface( indexBufferBuilder, surfID, host_state.worldbrush ); #else
BuildIndicesForWorldSurface( meshBuilder, surfID, host_state.worldbrush ); #endif
} } // close out the index buffer
#if NEWMESH
indexBufferBuilder.End( false ); // haven't tested this one yet (flashlights)
// FIXME: IMaterial::GetVertexFormat() should do this stripping (add a separate 'SupportsCompression' accessor)
VertexFormat_t vertexFormat = materialSortInfoArray[sortID].material->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED; pRenderContext->BindVertexBuffer( 0, g_WorldStaticMeshes[sortID], 0, materialSortInfoArray[sortID].material->GetVertexFormat() ); // hack fixme. . . use currently bound material format instead of passing in?
pRenderContext->BindIndexBuffer( pIndexBuffer, 0 ); pRenderContext->Draw( MATERIAL_TRIANGLES, 0, numIndices ); #else
meshBuilder.End( false, true ); #endif
}
// NOTE: If we ever need to make this faster, we could get larger batches here.
// Draw displacements
for( elemHandle = materialBuckets.GetElementListHead( sortID ); elemHandle != materialBuckets.InvalidElementHandle(); elemHandle = materialBuckets.GetElementListNext( elemHandle ) ) { SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle ); if( SurfaceHasDispInfo( surfID ) ) { CDispInfo *pDisp = ( CDispInfo * )MSurf_DispInfo( surfID ); Assert( pDisp ); if( bWireframe ) { pDisp->SpecifyDynamicMesh(); } else { Assert( pDisp && pDisp->m_pMesh && pDisp->m_pMesh->m_pMesh ); pDisp->m_pMesh->m_pMesh->Draw( pDisp->m_iIndexOffset, pDisp->m_nIndices ); } } } } }
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext ); #endif
}
const Frustum_t &CShadowMgr::GetFlashlightFrustum( ShadowHandle_t handle ) { Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT ); Assert( m_Shadows[handle].m_FlashlightHandle != m_Shadows.InvalidIndex() ); return m_FlashlightStates[m_Shadows[handle].m_FlashlightHandle].m_Frustum; }
const FlashlightState_t &CShadowMgr::GetFlashlightState( ShadowHandle_t handle ) { Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT ); Assert( m_Shadows[handle].m_FlashlightHandle != m_Shadows.InvalidIndex() ); return m_FlashlightStates[m_Shadows[handle].m_FlashlightHandle].m_FlashlightState; }
void CShadowMgr::DrawFlashlightDecals( int sortGroup, bool bDoMasking ) { VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecals", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID]; pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DecalSurfaceDraw( pRenderContext, sortGroup ); } // Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext ); }
void CShadowMgr::DrawFlashlightDecalsOnDisplacements( int sortGroup, CDispInfo *visibleDisps[MAX_MAP_DISPINFO], int nVisibleDisps, bool bDoMasking ) { VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecalsOnDisplacements", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
DispInfo_BatchDecals( visibleDisps, nVisibleDisps );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID]; pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DispInfo_DrawDecals( visibleDisps, nVisibleDisps ); }
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext ); }
void CShadowMgr::DrawFlashlightDecalsOnSingleSurface( SurfaceHandle_t surfID, bool bDoMasking ) { VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecalsOnSingleSurface", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID]; pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DrawDecalsOnSingleSurface( pRenderContext, surfID ); } // Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext ); }
void CShadowMgr::DrawFlashlightOverlays( int nSortGroup, bool bDoMasking ) { VPROF_BUDGET( "CShadowMgr::DrawFlashlightOverlays", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() ) return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); if ( flashlightID == m_FlashlightStates.InvalidIndex() ) return;
if ( r_flashlightrender.GetBool()==false ) return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ; flashlightID != m_FlashlightStates.InvalidIndex(); flashlightID = m_FlashlightStates.Next( flashlightID ) ) { FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID]; pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
OverlayMgr()->RenderOverlays( nSortGroup ); } // Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext ); }
void CShadowMgr::DrawFlashlightDepthTexture( ) { int i = 0; FlashlightHandle_t flashlightID = m_FlashlightStates.Head(); while ( flashlightID != m_FlashlightStates.InvalidIndex() ) // Count up the shadows
{ FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ flashlightID ];
if( m_Shadows[ flashlightInfo.m_Shadow ].m_pFlashlightDepthTexture ) { bool foundVar; IMaterial *pMaterial = materials->FindMaterial( "debug/showz", TEXTURE_GROUP_OTHER, true ); IMaterialVar *BaseTextureVar = pMaterial->FindVar( "$basetexture", &foundVar, false ); if (!foundVar) return; IMaterialVar *FrameVar = pMaterial->FindVar( "$frame", &foundVar, false ); if (!foundVar) return;
float w = 256.0f, h = 256.0f; float wOffset = (i % 2) * 256.0f; // Even|Odd go left|right
float hOffset = (i / 2) * 256.0f; // Rows of two
BaseTextureVar->SetTextureValue( m_Shadows[ flashlightInfo.m_Shadow ].m_pFlashlightDepthTexture ); FrameVar->SetIntValue( 0 );
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( pMaterial ); IMesh* pMesh = pRenderContext->GetDynamicMesh( true );
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 );
meshBuilder.Position3f( wOffset, hOffset, 0.0f ); #ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 0.0f, 1.0f ); // Posix is rotated due to render target origin differences
#else
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f ); #endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset + w, hOffset, 0.0f ); #ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f ); #else
meshBuilder.TexCoord2f( 0, 1.0f, 0.0f ); #endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset + w, hOffset + h, 0.0f ); #ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 1.0f, 0.0f ); #else
meshBuilder.TexCoord2f( 0, 1.0f, 1.0f ); #endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset, hOffset + h, 0.0f ); #ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 1.0f, 1.0f ); #else
meshBuilder.TexCoord2f( 0, 0.0f, 1.0f ); #endif
meshBuilder.AdvanceVertex();
meshBuilder.End(); pMesh->Draw();
i++; }
flashlightID = m_FlashlightStates.Next( flashlightID ); } }
void CShadowMgr::AddFlashlightRenderable( ShadowHandle_t shadowHandle, IClientRenderable *pRenderable ) { Shadow_t &shadow = m_Shadows[ shadowHandle ]; FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ];
if( pRenderable->GetModelInstance() != MODEL_INSTANCE_INVALID ) { flashlightInfo.m_Renderables.AddToTail( pRenderable ); } }
|