|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Queued Loading of map resources. !!!!Specifically!!! designed for the map loading process.
//
// Not designed for application startup or gameplay time. Layered on top of async i/o.
// Queued loading is allowed during the map load process until full connection only,
// but can complete the remaining low priority jobs during the game render.
// The normal loading path can run in units of seconds if it does not have to do I/O,
// which is why this system runs first and gets all the data in memory unhindered
// by dependency blocking. The I/O delivery process achieves its speed by having all the I/O
// requests at once, performing the I/O, and handing the actual consumption
// of the I/O buffer to another available core/thread (via job pool) for computation work.
// The I/O (should be all unbuffered) is then only throttled by physical transfer rates.
//
// The Load process is broken into three phases. The first phase build up I/O requests.
// The second phase fulfills only the high priority I/O requests. This gets the critical
// data in memory, that has to be there for the normal load path to query, or the renderer
// to run (i.e. models and shaders). The third phase is the normal load process.
// The low priority jobs run concurrently with the normal load process. Low priority jobs
// are those that have been specially built such that the game or loading can operate unblocked
// without the actual data (i.e. d3d texture bits).
//
// Phase 1: The reslist is parsed into seperate lists based on handled extensions. Each list
// call its own loader which in turn generates its own dictionaries and I/O requests through
// "AddJob". A single reslist entry could cause a laoder to request multiple jobs. ( i.e. models )
// A loader marks its jobs as high or low priority.
// Phase 2: The I/O requests are sorted (which achieves seek offset order) and
// async i/o commences. Phase 2 does not end until all the high priority jobs
// are complete. This ensures critical data is resident.
// Phase 3: The !!!NORMAL!!! loading path can commence. The legacy loading path then
// is not expected to do I/O (it can, but that's a hole in the reslist), as all of the data
// that it queries, should be resident.
//
// Late added jobs are non-optimal (should have been in reslist), warned, but handled.
//
//===========================================================================//
#include "basefilesystem.h"
#include "tier0/vprof.h"
#include "tier0/tslist.h"
#include "tier1/utlbuffer.h"
#include "tier1/convar.h"
#include "tier1/KeyValues.h"
#include "tier1/utllinkedlist.h"
#include "tier1/utlstring.h"
#include "tier1/UtlSortVector.h"
#include "tier1/utldict.h"
#include "basefilesystem.h"
#include "tier0/icommandline.h"
#include "vstdlib/jobthread.h"
#include "filesystem/IQueuedLoader.h"
#include "tier2/tier2.h"
#include "characterset.h"
#if !defined( _X360 )
#include "xbox/xboxstubs.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define PRIORITY_HIGH 1
#define PRIORITY_NORMAL 0
#define PRIORITY_LOW -1
// main thread has reason to block and wait for thread pool to finish jobs
#define MAIN_THREAD_YIELD_TIME 20
// discrete stages in the preload process to tick the progress bar
#define PROGRESS_START 0.10f
#define PROGRESS_GOTRESLIST 0.12f
#define PROGRESS_PARSEDRESLIST 0.15f
#define PROGRESS_CREATEDRESOURCES 0.20f
#define PROGRESS_PREPURGE 0.22f
#define PROGRESS_IO 0.25f // up to 1.0
struct FileJob_t { FileJob_t() { Q_memset( this, 0, sizeof( FileJob_t ) ); }
FileNameHandle_t m_hFilename; QueuedLoaderCallback_t m_pCallback; FSAsyncControl_t m_hAsyncControl; void *m_pContext; void *m_pContext2; void *m_pTargetData; int m_nBytesToRead; unsigned int m_nStartOffset; LoaderPriority_t m_Priority;
unsigned int m_SubmitTime; unsigned int m_FinishTime; int m_SubmitTag; int m_nActualBytesRead; LoaderError_t m_LoaderError; unsigned int m_ThreadId;
unsigned int m_bFinished : 1; unsigned int m_bFreeTargetAfterIO : 1; unsigned int m_bFileExists : 1; unsigned int m_bClaimed : 1; };
// dummy stubbed progress interface
class CDummyProgress : public ILoaderProgress { void BeginProgress() {} void UpdateProgress( float progress ) {} void EndProgress() {} }; static CDummyProgress s_DummyProgress;
class CQueuedLoader : public CTier2AppSystem< IQueuedLoader > { typedef CTier2AppSystem< IQueuedLoader > BaseClass;
public: CQueuedLoader(); virtual ~CQueuedLoader();
// Inherited from IAppSystem
virtual InitReturnVal_t Init(); virtual void Shutdown();
// IQueuedLoader
virtual void InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader ); virtual void InstallProgress( ILoaderProgress *pProgress ); // Set bOptimizeReload if you want appropriate data (such as static prop lighting)
// to persist - rather than being purged and reloaded - when going from map A to map A.
virtual bool BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload ); virtual void EndMapLoading( bool bAbort ); virtual bool AddJob( const LoaderJob_t *pLoaderJob ); virtual void AddMapResource( const char *pFilename ); virtual void DynamicLoadMapResource( const char *pFilename, DynamicResourceCallback_t pCallback, void *pContext, void *pContext2 ); virtual void QueueDynamicLoadFunctor( CFunctor* pFunctor ); virtual bool CompleteDynamicLoad(); virtual void QueueCleanupDynamicLoadFunctor( CFunctor* pFunctor ); virtual bool CleanupDynamicLoad(); virtual bool ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ); virtual bool ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError ); virtual bool IsMapLoading() const; virtual bool IsSameMapLoading() const; virtual bool IsFinished() const; virtual bool IsBatching() const; virtual bool IsDynamic() const; virtual int GetSpewDetail() const;
char *GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize ); FileNameHandle_t FindFilename( const char *pFilename ); void SpewInfo();
// submit any queued jobs to the async loader, called by main or async thread to get more work
void SubmitPendingJobs();
void PurgeAll();
private:
class CFileJobsLessFunc { public: int GetLayoutOrderForFilename( const char *pFilename ); bool Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx ); };
class CResourceNameLessFunc { public: bool Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx ); }; typedef CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > ResourceList_t;
static void BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ); static void BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime );
void PurgeQueue(); void CleanQueue(); void SubmitBatchedJobs(); void SubmitBatchedJobsAndWait(); void ParseResourceList( CUtlBuffer &resourceList ); void GetJobRequests(); void PurgeUnreferencedResources(); void AddResourceToTable( const char *pFilename );
bool m_bStarted; bool m_bActive; bool m_bBatching; bool m_bDynamic; bool m_bCanBatch; bool m_bLoadForHDR; bool m_bDoProgress; bool m_bSameMap; int m_nSubmitCount; unsigned int m_StartTime; unsigned int m_EndTime; char m_szMapNameToCompareSame[MAX_PATH];
DynamicResourceCallback_t m_pfnDynamicCallback; CUtlString m_DynamicFileName; void* m_pDynamicContext; void* m_pDynamicContext2; CThreadFastMutex m_FunctorQueueMutex; CUtlVector< CFunctor* > m_FunctorQueue; CUtlVector< CFunctor* > m_CleanupFunctorQueue;
CUtlFilenameSymbolTable m_Filenames; CTSList< FileJob_t* > m_PendingJobs; CTSList< FileJob_t* > m_BatchedJobs; CUtlLinkedList< FileJob_t* > m_SubmittedJobs; CUtlDict< FileJob_t*, int > m_AnonymousJobs; CUtlSymbolTable m_AdditionalResources;
CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > m_ResourceNames[RESOURCEPRELOAD_COUNT]; IResourcePreload *m_pLoaders[RESOURCEPRELOAD_COUNT]; float m_LoaderTimes[RESOURCEPRELOAD_COUNT]; ILoaderProgress *m_pProgress; CThreadFastMutex m_Mutex; }; static CQueuedLoader g_QueuedLoader; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CQueuedLoader, IQueuedLoader, QUEUEDLOADER_INTERFACE_VERSION, g_QueuedLoader );
class CResourcePreloadAnonymous : public IResourcePreload { virtual bool CreateResource( const char *pName ) { // create an anonymous job to get the data in memory, claimed during load, or auto-freed
LoaderJob_t loaderJob; loaderJob.m_pFilename = pName; loaderJob.m_pPathID = "GAME"; loaderJob.m_Priority = LOADERPRIORITY_DURINGPRELOAD; g_QueuedLoader.AddJob( &loaderJob ); return true; }
virtual void PurgeUnreferencedResources() {} virtual void OnEndMapLoading( bool bAbort ) {} virtual void PurgeAll() {} }; static CResourcePreloadAnonymous s_ResourcePreloadAnonymous;
const char *g_ResourceLoaderNames[RESOURCEPRELOAD_COUNT] = { "???", // RESOURCEPRELOAD_UNKNOWN
"Sounds", // RESOURCEPRELOAD_SOUND
"Materials", // RESOURCEPRELOAD_MATERIAL
"Models", // RESOURCEPRELOAD_MODEL
"Cubemaps", // RESOURCEPRELOAD_CUBEMAP
"PropLighting", // RESOURCEPRELOAD_STATICPROPLIGHTING
"Anonymous", // RESOURCEPRELOAD_ANONYMOUS
};
static CInterlockedInt g_nActiveJobs; static CInterlockedInt g_nQueuedJobs; static CInterlockedInt g_nHighPriorityJobs; // tracks jobs that must finish during preload
static CInterlockedInt g_nJobsToFinishBeforePlay; // tracks jobs that must finish before gameplay
static CInterlockedInt g_nIOMemory; // tracks I/O data from async delivery until consumed
static CInterlockedInt g_nAnonymousIOMemory; // tracks anonymous I/O data from async delivery until consumed
static CInterlockedInt g_SuspendIO; // used to throttle the I/O
static int g_nIOMemoryPeak; static int g_nAnonymousIOMemoryPeak; static int g_nHighIOSuspensionMark; static int g_nLowIOSuspensionMark;
ConVar loader_spew_info( "loader_spew_info", "0", 0, "0:Off, 1:Timing, 2:Completions, 3:Late Completions, 4:Purges, -1:All " );
// Kyle says: this is here only to change the DLL size to force clients to update! This should be removed
// by whoever sees this comment after we've shipped a DLL using it!
ConVar loader_sped_info_ex( "loader_spew_info_ex", "0", 0, "(internal)" );
CON_COMMAND( loader_dump_table, "" ) { g_QueuedLoader.SpewInfo(); }
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CQueuedLoader::CQueuedLoader() : BaseClass( false ) { m_bStarted = false; m_bActive = false; m_bBatching = false; m_bDynamic = false; m_bCanBatch = false; m_bLoadForHDR = false; m_bDoProgress = false; m_bSameMap = false;
m_nSubmitCount = 0;
m_pfnDynamicCallback = NULL; m_pDynamicContext = NULL; m_pDynamicContext2 = NULL;
m_szMapNameToCompareSame[0] = '\0';
m_pProgress = &s_DummyProgress; V_memset( m_pLoaders, 0, sizeof( m_pLoaders ) );
// set resource dictionaries sort context
for ( int i = 0; i < RESOURCEPRELOAD_COUNT; i++ ) { m_ResourceNames[i].SetLessContext( (void *)i ); }
InstallLoader( RESOURCEPRELOAD_ANONYMOUS, &s_ResourcePreloadAnonymous ); }
//-----------------------------------------------------------------------------
// Destructor
//-----------------------------------------------------------------------------
CQueuedLoader::~CQueuedLoader() { }
//-----------------------------------------------------------------------------
// Computation job to build out objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ) { float t0 = Plat_FloatTime();
if ( pLoader ) { pList->RedoSort();
for ( int i = 0; i < pList->Count(); i++ ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) ); if ( szFilename[0] ) { if ( !pLoader->CreateResource( szFilename ) ) { Warning( "QueuedLoader: Failed to create resource %s\n", szFilename ); } } } }
// finished with list
pList->Purge();
*pBuildTime = Plat_FloatTime() - t0; }
//-----------------------------------------------------------------------------
// Computation job to build out material objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ) { float t0 = Plat_FloatTime();
char szLastFilename[MAX_PATH]; szLastFilename[0] = '\0';
// ensure cubemaps are first
pList->RedoSort();
// run a clean operation to cull the non-patched env_cubemap materials, which are not built directly
for ( int i = 0; i < pList->Count(); i++ ) { char szFilename[MAX_PATH]; char *pFilename = g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) ); if ( !V_stristr( pFilename, "maps\\" ) ) { // list is sorted, first non-cubemap marks end of relevant list
break; }
// skip past maps/mapname/
pFilename += 5; pFilename = strchr( pFilename, '\\' ) + 1; // back up until end of material name is found, need to strip off _%d_%d_%d.vmt
char *pEndFilename = V_stristr( pFilename, ".vmt" ); if ( !pEndFilename ) { pEndFilename = pFilename + strlen( pFilename ); } int numUnderscores = 3; while ( pEndFilename != pFilename && numUnderscores > 0 ) { pEndFilename--; if ( pEndFilename[0] == '_' ) { numUnderscores--; } } if ( numUnderscores == 0 ) { *pEndFilename = '\0'; if ( !V_strcmp( szLastFilename, pFilename ) ) { // same cubemap material base already processed, skip it
continue; } V_strncpy( szLastFilename, pFilename, sizeof( szLastFilename ) );
strcat( pFilename, ".vmt" ); FileNameHandle_t hFilename = g_QueuedLoader.FindFilename( pFilename ); if ( hFilename ) { pList->Remove( hFilename ); } } }
// process clean list
BuildResources( pLoader, pList, pBuildTime );
*pBuildTime = Plat_FloatTime() - t0; }
//-----------------------------------------------------------------------------
// Called by multiple worker threads. Throttle the I/O to ensure too many
// buffers don't flood the work queue. Anonymous I/O is allowed to grow unbounded.
//-----------------------------------------------------------------------------
void AdjustAsyncIOSpeed() { if ( g_QueuedLoader.IsDynamic() == true ) { return; }
// throttle back the I/O to keep the pending buffers from exhausting memory
if ( g_SuspendIO == 0 ) { if ( g_nIOMemory >= g_nHighIOSuspensionMark && g_nActiveJobs != 0 ) { // protect against another worker thread
if ( g_SuspendIO.AssignIf( 0, 1 ) ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Suspending I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) ); } g_pFullFileSystem->AsyncSuspend(); } } } else if ( g_SuspendIO == 1 ) { if ( g_nIOMemory <= g_nLowIOSuspensionMark ) { // protect against another worker thread
if ( g_SuspendIO.AssignIf( 1, 0 ) ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Resuming I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) ); } g_pFullFileSystem->AsyncResume(); } } } }
//-----------------------------------------------------------------------------
// Computation job to do work after IO, runs callback
//-----------------------------------------------------------------------------
void IOComputationJob( FileJob_t *pFileJob, void *pData, int nSize, LoaderError_t loaderError ) { int spewDetail = g_QueuedLoader.GetSpewDetail(); if ( spewDetail & ( LOADER_DETAIL_COMPLETIONS|LOADER_DETAIL_LATECOMPLETIONS ) ) { const char *pLateString = ""; if ( !g_QueuedLoader.IsMapLoading() ) { // completed outside of load process
pLateString = "(Late) "; } if ( ( spewDetail & LOADER_DETAIL_COMPLETIONS ) || ( ( spewDetail & LOADER_DETAIL_LATECOMPLETIONS ) && pLateString[0] ) ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); Msg( "QueuedLoader: Computation:%8.8x, Size:%7d %s%s\n", ThreadGetCurrentId(), nSize, pLateString, szFilename ); } }
if ( loaderError != LOADERERROR_NONE && pFileJob->m_bFileExists ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); Warning( "QueuedLoader:: I/O Error on %s\n", szFilename ); }
pFileJob->m_nActualBytesRead = nSize; pFileJob->m_LoaderError = loaderError;
if ( !pFileJob->m_pCallback ) { // absent callback means resource loader want this system to delay buffer until ready for it
if ( !pFileJob->m_pTargetData ) { // track it for later, unclaimed buffers will get freed
pFileJob->m_pTargetData = pData; } } else { // regardless of error, call job callback so caller can do cleanup of their context
pFileJob->m_pCallback( pFileJob->m_pContext, pFileJob->m_pContext2, pData, nSize, loaderError ); if ( pFileJob->m_bFreeTargetAfterIO && pData ) { // free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pData ); }
// memory has been consumed
g_nIOMemory -= nSize; }
// mark as completed
pFileJob->m_bFinished = true; pFileJob->m_FinishTime = Plat_MSTime(); pFileJob->m_ThreadId = ThreadGetCurrentId();
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD ) { g_nHighPriorityJobs--; } else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY ) { g_nJobsToFinishBeforePlay--; }
g_nQueuedJobs--;
if ( g_nQueuedJobs == 0 && ( spewDetail & LOADER_DETAIL_TIMING ) ) { Msg( "QueuedLoader: Finished I/O of all queued jobs!\n" ); }
AdjustAsyncIOSpeed(); }
//-----------------------------------------------------------------------------
// Computation job to do work after anonymous job was asynchronously claimed, runs callback.
//-----------------------------------------------------------------------------
void FinishAnonymousJob( FileJob_t *pFileJob, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ) { // regardless of error, call job callback so caller can do cleanup of their context
pCallback( pContext, pContext2, pFileJob->m_pTargetData, pFileJob->m_nActualBytesRead, pFileJob->m_LoaderError ); if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData ) { // free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData ); pFileJob->m_pTargetData = NULL; }
pFileJob->m_bClaimed = true;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead; }
//-----------------------------------------------------------------------------
// Callback from I/O job thread. Purposely lightweight as possible to keep i/o from stalling.
//-----------------------------------------------------------------------------
void IOAsyncCallback( const FileAsyncRequest_t &asyncRequest, int numReadBytes, FSAsyncStatus_t asyncStatus ) { FileJob_t *pFileJob = (FileJob_t *)asyncRequest.pContext;
// interpret the async error
LoaderError_t loaderError; switch ( asyncStatus ) { case FSASYNC_OK: loaderError = LOADERERROR_NONE; break; case FSASYNC_ERR_FILEOPEN: loaderError = LOADERERROR_FILEOPEN; break; default: loaderError = LOADERERROR_READING; }
// track how much i/o data is in flight, consumption will decrement
if ( !pFileJob->m_pCallback ) { // anonymous io memory is tracked seperatley
g_nAnonymousIOMemory += numReadBytes; if ( g_nAnonymousIOMemory > g_nAnonymousIOMemoryPeak ) { g_nAnonymousIOMemoryPeak = g_nAnonymousIOMemory; } } else { g_nIOMemory += numReadBytes; if ( g_nIOMemory > g_nIOMemoryPeak ) { g_nIOMemoryPeak = g_nIOMemory; } }
// have data or error, do callback as a computation job
if ( !g_QueuedLoader.IsDynamic() ) { g_pThreadPool->QueueCall( IOComputationJob, pFileJob, asyncRequest.pData, numReadBytes, loaderError )->Release(); } else { g_QueuedLoader.QueueDynamicLoadFunctor( CreateFunctor( IOComputationJob, pFileJob, asyncRequest.pData, numReadBytes, loaderError ) ); } // don't let the i/o starve, possibly get some more work from the pending queue
g_QueuedLoader.SubmitPendingJobs();
// possibly goes to zero atomically, AFTER submission
// prevents contention between main thread
--g_nActiveJobs; }
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
char *CQueuedLoader::GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize ) { m_Filenames.String( hFilename, pBuff, nBuffSize ); return pBuff; }
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
FileNameHandle_t CQueuedLoader::FindFilename( const char *pFilename ) { return m_Filenames.FindFileName( pFilename ); }
//-----------------------------------------------------------------------------
// Sort function for resource names.
//-----------------------------------------------------------------------------
bool CQueuedLoader::CResourceNameLessFunc::Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx ) { switch ( (int)pCtx ) { case RESOURCEPRELOAD_MATERIAL: { // Cubemap materials are expected to be at top of list
char szNameLHS[MAX_PATH]; char szNameRHS[MAX_PATH];
const char *pNameLHS = g_QueuedLoader.GetFilename( hFilenameLHS, szNameLHS, sizeof( szNameLHS ) ); const char *pNameRHS = g_QueuedLoader.GetFilename( hFilenameRHS, szNameRHS, sizeof( szNameRHS ) );
bool bIsCubemapLHS = V_stristr( pNameLHS, "maps\\" ) != NULL; bool bIsCubemapRHS = V_stristr( pNameRHS, "maps\\" ) != NULL; if ( bIsCubemapLHS != bIsCubemapRHS ) { return ( bIsCubemapLHS == true && bIsCubemapRHS == false ); } return ( V_stricmp( pNameLHS, pNameRHS ) < 0 ); } break;
default: // sort not really needed, just use numeric handles
return ( hFilenameLHS < hFilenameRHS ); } }
//-----------------------------------------------------------------------------
// Resolve filenames to expected disc layout order as...
// bsp, graphs, platform, hl2, episodic, ep2, tf, portal, non-zip
// see XGD layout.
//-----------------------------------------------------------------------------
int CQueuedLoader::CFileJobsLessFunc::GetLayoutOrderForFilename( const char *pFilename ) { bool bIsLocalizedZip = false; if ( XBX_IsLocalized() ) { if ( V_stristr( pFilename, "\\zip" ) && V_stristr( pFilename, XBX_GetLanguageString() ) ) { bIsLocalizedZip = true; } }
int order; if ( V_stristr( pFilename, "\\maps\\" ) ) { // bsp's and graphs on the opposite layer, these must be topmost
// the queued loader is expecting to do these first, all at once
// this allows for a single layer switch
if ( V_stristr( pFilename, "\\graphs\\" ) ) { order = 1; } else { order = 0; } } else if ( V_stristr( pFilename, "\\platform\\zip" ) ) { order = 2; } else if ( V_stristr( pFilename, "\\hl2\\zip" ) ) { order = 3; } else if ( V_stristr( pFilename, "\\episodic\\zip" ) ) { order = 4; } else if ( V_stristr( pFilename, "\\ep2\\zip" ) ) { order = 5; } else if ( V_stristr( pFilename, "\\tf\\zip" ) ) { order = 6; } else if ( V_stristr( pFilename, "\\portal\\zip" ) ) { order = 7; } else { // other
order = 8; }
// localized zips have same relative sort order, but after all other zips
return bIsLocalizedZip ? 10*order : order; }
//-----------------------------------------------------------------------------
// Sort function, high priority jobs sort first, then offset, then zip
//-----------------------------------------------------------------------------
bool CQueuedLoader::CFileJobsLessFunc::Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx ) { if ( pFileJobLHS->m_Priority != pFileJobRHS->m_Priority ) { // higher priorities sort to top
return ( pFileJobLHS->m_Priority > pFileJobRHS->m_Priority ); }
if ( pFileJobLHS->m_hFilename == pFileJobRHS->m_hFilename ) { // same file (zip), sort by offset
return pFileJobLHS->m_nStartOffset < pFileJobRHS->m_nStartOffset; }
char szFilenameLHS[MAX_PATH]; char szFilenameRHS[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJobLHS->m_hFilename, szFilenameLHS, sizeof( szFilenameLHS ) ); g_QueuedLoader.GetFilename( pFileJobRHS->m_hFilename, szFilenameRHS, sizeof( szFilenameRHS ) );
// resolve filename to match disk layout of zips
int layoutLHS = GetLayoutOrderForFilename( szFilenameLHS ); int layoutRHS = GetLayoutOrderForFilename( szFilenameRHS ); if ( layoutLHS != layoutRHS ) { return layoutLHS < layoutRHS; }
return CaselessStringLessThan( szFilenameLHS, szFilenameRHS ); }
//-----------------------------------------------------------------------------
// Dump the queue contents to the file system.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitPendingJobs() { // prevents contention between I/O and main thread attempting to submit
if ( ThreadInMainThread() && g_nActiveJobs != 0 && m_bDynamic == false ) { // main thread can only kick start work if the I/O is idle
// once the I/O is kicked off, the I/O thread is responsible for continual draining
return; } else if ( !ThreadInMainThread() && g_nActiveJobs != 1 && m_bDynamic == false ) { // I/O thread requests more work, but will only fall through and get some when it expects to go idle
// I/O thread still has jobs and doesn't need any more yet
return; }
CTSList<FileJob_t *>::Node_t *pNode = m_PendingJobs.Detach(); if ( !pNode ) { return; }
// used by spew to indicate submission blocks
m_nSubmitCount++;
// sort entries
CUtlSortVector< FileJob_t*, CFileJobsLessFunc > sortedFiles( 0, 128 ); while ( pNode ) { FileJob_t *pFileJob = pNode->elem;
sortedFiles.InsertNoSort( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next; delete pNode; pNode = pNext; } sortedFiles.RedoSort();
FileAsyncRequest_t asyncRequest; asyncRequest.pfnCallback = IOAsyncCallback;
char szFilename[MAX_PATH]; for ( int i = 0; i<sortedFiles.Count(); i++ ) { FileJob_t *pFileJob = sortedFiles[i]; pFileJob->m_SubmitTag = m_nSubmitCount; pFileJob->m_SubmitTime = Plat_MSTime();
m_SubmittedJobs.AddToTail( pFileJob );
// build an async request
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD ) { // must finish during preload
asyncRequest.priority = PRIORITY_HIGH; g_nHighPriorityJobs++; } else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY ) { // must finish before gameplay
asyncRequest.priority = PRIORITY_NORMAL; g_nJobsToFinishBeforePlay++; } else { // can finish during gameplay, normal priority
asyncRequest.priority = PRIORITY_NORMAL; } // async will allocate unless caller provided a target
// loader always takes ownership of buffer
asyncRequest.pData = pFileJob->m_pTargetData; asyncRequest.flags = pFileJob->m_pTargetData ? 0 : FSASYNC_FLAGS_ALLOCNOFREE; asyncRequest.nOffset = pFileJob->m_nStartOffset; asyncRequest.nBytes = pFileJob->m_nBytesToRead; asyncRequest.pszFilename = GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); asyncRequest.pContext = (void *)pFileJob;
if ( pFileJob->m_bFileExists ) { // start the valid async request
g_nActiveJobs++; g_pFullFileSystem->AsyncRead( asyncRequest, &pFileJob->m_hAsyncControl ); } else { // prevent dragging the i/o system down for known failures
// still need to do callback so subsystems can do the right thing based on file absence
if ( IsDynamic() ) QueueDynamicLoadFunctor( CreateFunctor( IOComputationJob, pFileJob, pFileJob->m_pTargetData, 0, LOADERERROR_FILEOPEN ) ); else g_pThreadPool->QueueCall( IOComputationJob, pFileJob, pFileJob->m_pTargetData, 0, LOADERERROR_FILEOPEN )->Release(); } } }
//-----------------------------------------------------------------------------
// Add to queue
//-----------------------------------------------------------------------------
bool CQueuedLoader::AddJob( const LoaderJob_t *pLoaderJob ) { if ( !m_bActive ) { return false; }
Assert( pLoaderJob && pLoaderJob->m_pFilename ); if ( m_bCanBatch && !m_bBatching ) { // should have been part of pre-load batch
DevWarning( "QueuedLoader: Late Queued Job: %s\n", pLoaderJob->m_pFilename ); }
// anonymous jobs lack callbacks and are heavily restricted to ensure their stability
// the caller is expected to claim these before load ends (which auto-purges them)
if ( !pLoaderJob->m_pCallback && pLoaderJob->m_Priority == LOADERPRIORITY_ANYTIME ) { Assert( 0 ); DevWarning( "QueuedLoader: Ignoring Anonymous Job: %s\n", pLoaderJob->m_pFilename ); return false; }
MEM_ALLOC_CREDIT();
// all bsp based files get forced to a higher priority in order to achieve a clustered sort
// the bsp files are not going to be anywhere near the zips, thus we don't want head thrashing
bool bFileIsFromBSP; bool bExists = false;
char *pFullPath; char szFullPath[MAX_PATH]; if ( V_IsAbsolutePath( pLoaderJob->m_pFilename ) ) { // an absolute path is trusted, take as is
pFullPath = (char *)pLoaderJob->m_pFilename; bFileIsFromBSP = V_stristr( pFullPath, ".bsp" ) != NULL; bExists = true; } else { // must resolve now, all submitted paths must be absolute for proper sort which achieves seek linearization
// a resolved absolute file ensures its existence
PathTypeFilter_t pathFilter = FILTER_NONE; if ( IsX360() && ( g_pFullFileSystem->GetDVDMode() == DVDMODE_STRICT ) ) { if ( V_stristr( pLoaderJob->m_pFilename, ".bsp" ) || V_stristr( pLoaderJob->m_pFilename, ".ain" ) ) { // only the bsp/ain are allowed to be external
pathFilter = FILTER_CULLPACK; } else { // all files are expected to be in zip
pathFilter = FILTER_CULLNONPACK; } }
PathTypeQuery_t pathType; g_pFullFileSystem->RelativePathToFullPath( pLoaderJob->m_pFilename, pLoaderJob->m_pPathID, szFullPath, sizeof( szFullPath ), pathFilter, &pathType ); bExists = V_IsAbsolutePath( szFullPath ); pFullPath = szFullPath; bFileIsFromBSP = ( (pathType & PATH_IS_MAPPACKFILE) != 0 ); }
// create a file job
FileJob_t *pFileJob = new FileJob_t;
pFileJob->m_hFilename = m_Filenames.FindOrAddFileName( pFullPath ); pFileJob->m_bFileExists = bExists; pFileJob->m_pCallback = pLoaderJob->m_pCallback; pFileJob->m_pContext = pLoaderJob->m_pContext; pFileJob->m_pContext2 = pLoaderJob->m_pContext2; pFileJob->m_pTargetData = pLoaderJob->m_pTargetData; pFileJob->m_nBytesToRead = pLoaderJob->m_nBytesToRead; pFileJob->m_nStartOffset = pLoaderJob->m_nStartOffset; pFileJob->m_Priority = bFileIsFromBSP ? LOADERPRIORITY_DURINGPRELOAD : pLoaderJob->m_Priority;
if ( pLoaderJob->m_pTargetData ) { // never free caller's buffer, if they provide, they have to free it
pFileJob->m_bFreeTargetAfterIO = false; } else { // caller can take over ownership, otherwise it gets freed after I/O
pFileJob->m_bFreeTargetAfterIO = ( pLoaderJob->m_bPersistTargetData == false ); }
if ( !pLoaderJob->m_pCallback ) { // track anonymous jobs
AUTO_LOCK( m_Mutex ); char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pLoaderJob->m_pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); m_AnonymousJobs.Insert( szFixedName, pFileJob ); }
g_nQueuedJobs++;
if ( m_bBatching ) { m_BatchedJobs.PushItem( pFileJob ); } else { m_PendingJobs.PushItem( pFileJob ); SubmitPendingJobs(); }
return true; }
//-----------------------------------------------------------------------------
// Allows an external system to append to a map's reslist. The next map load
// will append these specified files. Unhandled resources will just get
// quietly discarded. An external system could use this to patch a hole
// or prevent a purge.
//-----------------------------------------------------------------------------
void CQueuedLoader::AddMapResource( const char *pFilename ) { if ( !pFilename || !pFilename[0] ) { // pointless
return; } // normalize the provided name as a filename
char szFilename[MAX_PATH]; V_strncpy( szFilename, pFilename, sizeof( szFilename ) ); V_FixSlashes( szFilename ); V_strlower( szFilename );
if ( m_AdditionalResources.Find( szFilename ) != UTL_INVAL_SYMBOL ) { // already added
return; }
m_AdditionalResources.AddString( szFilename ); }
//-----------------------------------------------------------------------------
// Asynchronous claim for an anonymous job.
// This allows loaders with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ) { Assert( ThreadInMainThread() ); Assert( pFilename && pCallback && !m_bBatching );
char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename ); if ( iIndex == m_AnonymousJobs.InvalidIndex() ) { // unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename ); return false; }
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( !pFileJob->m_bFinished ) { // unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 ); return false; }
m_AnonymousJobs.RemoveAt( iIndex ); g_pThreadPool->QueueCall( FinishAnonymousJob, pFileJob, pCallback, pContext, pContext2 )->Release();
return true; }
//-----------------------------------------------------------------------------
// Synchronous claim for an anonymous job. This allows loaders
// with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError ) { Assert( ThreadInMainThread() ); Assert( pFilename && !m_bBatching );
char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename ); if ( iIndex == m_AnonymousJobs.InvalidIndex() ) { // unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename ); return false; }
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( !pFileJob->m_bFinished ) { // unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 ); return false; }
pFileJob->m_bClaimed = true;
m_AnonymousJobs.RemoveAt( iIndex );
*pData = pFileJob->m_pTargetData; *pDataSize = pFileJob->m_LoaderError == LOADERERROR_NONE ? pFileJob->m_nActualBytesRead : 0; if ( pError ) { *pError = pFileJob->m_LoaderError; } // caller owns the data, regardless of how the job was setup
pFileJob->m_pTargetData = NULL;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
return true; }
//-----------------------------------------------------------------------------
// End of batching. Moves jobs into pending queue and submits but does not wait
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitBatchedJobs() { // end of batching
m_bBatching = false;
CTSList<FileJob_t *>::Node_t *pNode = m_BatchedJobs.Detach(); if ( !pNode ) { return; }
// must wait for any initial i/o to finish
// i/o thread must stop in order to submit all the batched jobs atomically
// and get an accurate accounting of high priority jobs
while ( g_nActiveJobs != 0 ) { g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); }
// dump batched jobs to pending jobs
while ( pNode ) { FileJob_t *pFileJob = pNode->elem;
m_PendingJobs.PushItem( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next; delete pNode; pNode = pNext; }
SubmitPendingJobs();
if ( GetSpewDetail() ) { Msg( "QueuedLoader: High Priority Jobs: %d\n", (int)g_nHighPriorityJobs ); } }
//-----------------------------------------------------------------------------
// End of batching. High priority jobs are guaranteed completed before function returns.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitBatchedJobsAndWait() { SubmitBatchedJobs(); // finish only the high priority jobs
// high priority jobs are expected to be complete at the conclusion of batching
int total = g_nHighPriorityJobs; while ( g_nHighPriorityJobs != 0 ) { float t = (float)( total - g_nHighPriorityJobs ) / (float)total; m_pProgress->UpdateProgress( PROGRESS_IO + t * ( 1.0f - PROGRESS_IO ) );
// yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); } }
//-----------------------------------------------------------------------------
// Clean queue of stale entries. Active entries are skipped.
//-----------------------------------------------------------------------------
void CQueuedLoader::CleanQueue() { for ( int i = 0; i<RESOURCEPRELOAD_COUNT; i++ ) { m_ResourceNames[i].Purge(); }
m_BatchedJobs.Purge();
int iIndex = m_SubmittedJobs.Head(); while ( iIndex != m_SubmittedJobs.InvalidIndex() ) { int iNext = m_SubmittedJobs.Next( iIndex );
FileJob_t *pFileJob = m_SubmittedJobs[iIndex]; if ( pFileJob->m_bFinished ) { // job is complete, safe to free
m_SubmittedJobs.Free( iIndex ); g_pFullFileSystem->AsyncRelease( pFileJob->m_hAsyncControl ); delete pFileJob; } iIndex = iNext; }
m_Filenames.RemoveAll(); }
//-----------------------------------------------------------------------------
// Abandon queue
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeQueue() { }
//-----------------------------------------------------------------------------
// Spew info abut queued load
//-----------------------------------------------------------------------------
void CQueuedLoader::SpewInfo() { Msg( "Queued Loader:\n\n" );
int totalClaimed = 0; int totalUnclaimed = 0;
if ( IsFinished() || m_bDynamic == true ) { // can only access submitted jobs safely when io thread complete
int lastPriority = -1; int iIndex = m_SubmittedJobs.Head(); while ( iIndex != m_SubmittedJobs.InvalidIndex() ) { FileJob_t *pFileJob = m_SubmittedJobs[iIndex];
int asyncDuration = -1; if ( pFileJob->m_FinishTime ) { asyncDuration = pFileJob->m_FinishTime - pFileJob->m_SubmitTime; }
if ( pFileJob->m_Priority != lastPriority ) { switch ( pFileJob->m_Priority ) { case LOADERPRIORITY_DURINGPRELOAD: Msg( "---- FINISH DURING PRELOAD ( HIGH PRIORITY )----\n" ); break; case LOADERPRIORITY_BEFOREPLAY: Msg( "---- FINISH BEFORE GAMEPLAY ( NORMAL PRIORITY )----\n" ); break; case LOADERPRIORITY_ANYTIME: Msg( "---- FINISH ANYTIME ( NORMAL PRIORITY )----\n" ); break; } lastPriority = pFileJob->m_Priority; }
char szAnonymousString[MAX_PATH]; const char *pAnonymousStatus = ""; if ( !pFileJob->m_pCallback ) { V_snprintf( szAnonymousString, sizeof( szAnonymousString ), "(%s) ", pFileJob->m_bClaimed ? "Claimed" : "Unclaimed" ); pAnonymousStatus = szAnonymousString; if ( pFileJob->m_bClaimed ) { totalClaimed += pFileJob->m_nActualBytesRead; } else { totalUnclaimed += pFileJob->m_nActualBytesRead; } }
char szFilename[MAX_PATH]; Msg( "Submit:%5dms AsyncDuration:%5dms Tag:%d Thread:%8.8x Size:%7d %s%s\n", pFileJob->m_SubmitTime - m_StartTime, asyncDuration, pFileJob->m_SubmitTag, pFileJob->m_ThreadId, pFileJob->m_nActualBytesRead, pAnonymousStatus, GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ) );
iIndex = m_SubmittedJobs.Next( iIndex ); }
Msg( "%d Total Jobs\n", m_SubmittedJobs.Count() ); }
Msg( "%d Queued Jobs\n", (int)g_nQueuedJobs ); Msg( "%d Active Jobs\n", (int)g_nActiveJobs ); Msg( "Peak IO Memory: %.2f MB\n", (float)g_nIOMemoryPeak / ( 1024.0f * 1024.0f ) ); Msg( "Peak Anonymous IO Memory: %.2f MB\n", (float)g_nAnonymousIOMemoryPeak / ( 1024.0f * 1024.0f ) ); Msg( " Total Anonymous Claimed: %d\n", totalClaimed ); Msg( " Total Anonymous Unclaimed: %d\n", totalUnclaimed ); if ( m_EndTime ) { Msg( "Queuing Duration: %dms\n", m_EndTime - m_StartTime ); } }
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
InitReturnVal_t CQueuedLoader::Init() { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) { return nRetVal; }
return INIT_OK; }
//-----------------------------------------------------------------------------
// Shutdown
//-----------------------------------------------------------------------------
void CQueuedLoader::Shutdown() { BaseClass::Shutdown(); }
//-----------------------------------------------------------------------------
// Install a type specific interface from managing system.
//-----------------------------------------------------------------------------
void CQueuedLoader::InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader ) { m_pLoaders[type] = pLoader; }
void CQueuedLoader::InstallProgress( ILoaderProgress *pProgress ) { m_pProgress = pProgress; }
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge dead resources
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeUnreferencedResources() { ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT]; // the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0; purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND; purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING; purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL; purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP; purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL; // iterate according to order
for ( int i = 0; i < numPurges; i++ ) { ResourcePreload_t loader = purgeOrder[i]; if ( m_pLoaders[loader] ) { m_pLoaders[loader]->PurgeUnreferencedResources(); } }
m_pProgress->UpdateProgress( PROGRESS_PREPURGE ); }
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge all resources, if possible
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeAll() { ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT];
// the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0; purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND; purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING; purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL; purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP; purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL;
// iterate according to order
for ( int i = 0; i < numPurges; i++ ) { ResourcePreload_t loader = purgeOrder[i]; if ( m_pLoaders[loader] ) { m_pLoaders[loader]->PurgeAll(); } } *m_szMapNameToCompareSame = 0; }
//-----------------------------------------------------------------------------
// Invoke the loader systems to request i/o jobs, which are batched.
//-----------------------------------------------------------------------------
void CQueuedLoader::GetJobRequests() { COM_TimestampedLog( "CQueuedLoader::GetJobRequests - Start" );
// causes the batch queue to fill with i/o requests
m_bCanBatch = true; m_bBatching = true;
float t0 = Plat_FloatTime();
if ( !IsPC() && !m_bDynamic ) { // cubemap textures must be first to install correctly before their cubemap materials are built (and precache the cubmeap textures)
// cannot be overlapped, must run serially
BuildResources( m_pLoaders[RESOURCEPRELOAD_CUBEMAP], &m_ResourceNames[RESOURCEPRELOAD_CUBEMAP], &m_LoaderTimes[RESOURCEPRELOAD_CUBEMAP] );
// Overlapping these is not critical in any way, total time is currently < 2 seconds.
// These operations flood calls (AddJob) back into the queued loader (which has to mutex its lists),
// so in fact it's slightly slower to queue these at this stage. As these routines age they may become more heavyweight.
CJob *jobs[5]; jobs[0] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_SOUND], &m_ResourceNames[RESOURCEPRELOAD_SOUND], &m_LoaderTimes[RESOURCEPRELOAD_SOUND] ); jobs[1] = g_pThreadPool->QueueCall( BuildMaterialResources, m_pLoaders[RESOURCEPRELOAD_MATERIAL], &m_ResourceNames[RESOURCEPRELOAD_MATERIAL], &m_LoaderTimes[RESOURCEPRELOAD_MATERIAL] ); jobs[2] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_ResourceNames[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_LoaderTimes[RESOURCEPRELOAD_STATICPROPLIGHTING] ); jobs[3] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_MODEL], &m_ResourceNames[RESOURCEPRELOAD_MODEL], &m_LoaderTimes[RESOURCEPRELOAD_MODEL] ); jobs[4] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_ANONYMOUS], &m_ResourceNames[RESOURCEPRELOAD_ANONYMOUS], &m_LoaderTimes[RESOURCEPRELOAD_ANONYMOUS] );
// all jobs must finish
float flLastUpdateT = -1000.0f; // Update as if this takes 2 seconds
float flDelta = ( PROGRESS_CREATEDRESOURCES - PROGRESS_PARSEDRESLIST ) * 0.03 / 2.0f; float flProgress = PROGRESS_PARSEDRESLIST; while( true ) { bool bIsDone = true; for ( int i=0; i<ARRAYSIZE( jobs ); i++ ) { if ( !jobs[i]->IsFinished() ) { bIsDone = false; break; } } if ( bIsDone ) break;
// Can't sleep; that will allow this thread to be used by the thread pool
float newt = Plat_FloatTime(); if ( newt - flLastUpdateT > .03 ) { m_pProgress->UpdateProgress( flProgress ); flProgress = clamp( flProgress + flDelta, PROGRESS_PARSEDRESLIST, PROGRESS_CREATEDRESOURCES );
// Necessary to take into account any waits for vsync
flLastUpdateT = Plat_FloatTime(); } }
for ( int i=0; i<ARRAYSIZE( jobs ); i++ ) { jobs[i]->Release(); } } else { BuildResources( m_pLoaders[RESOURCEPRELOAD_CUBEMAP], &m_ResourceNames[RESOURCEPRELOAD_CUBEMAP], &m_LoaderTimes[RESOURCEPRELOAD_CUBEMAP] ); BuildResources( m_pLoaders[RESOURCEPRELOAD_SOUND], &m_ResourceNames[RESOURCEPRELOAD_SOUND], &m_LoaderTimes[RESOURCEPRELOAD_SOUND] ); BuildMaterialResources( m_pLoaders[RESOURCEPRELOAD_MATERIAL], &m_ResourceNames[RESOURCEPRELOAD_MATERIAL], &m_LoaderTimes[RESOURCEPRELOAD_MATERIAL] ); BuildResources( m_pLoaders[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_ResourceNames[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_LoaderTimes[RESOURCEPRELOAD_STATICPROPLIGHTING] ); BuildResources( m_pLoaders[RESOURCEPRELOAD_MODEL], &m_ResourceNames[RESOURCEPRELOAD_MODEL], &m_LoaderTimes[RESOURCEPRELOAD_MODEL] ); BuildResources( m_pLoaders[RESOURCEPRELOAD_ANONYMOUS], &m_ResourceNames[RESOURCEPRELOAD_ANONYMOUS], &m_LoaderTimes[RESOURCEPRELOAD_ANONYMOUS] ); }
if ( g_QueuedLoader.GetSpewDetail() & LOADER_DETAIL_TIMING ) { for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i<RESOURCEPRELOAD_COUNT; i++ ) { Msg( "QueuedLoader: %s Creating: %.2f seconds\n", g_ResourceLoaderNames[i], m_LoaderTimes[i] ); } Msg( "QueuedLoader: Total Creating: %.2f seconds\n", Plat_FloatTime() - t0 ); }
m_pProgress->UpdateProgress( PROGRESS_CREATEDRESOURCES );
COM_TimestampedLog( "CQueuedLoader::GetJobRequests - End" ); }
void CQueuedLoader::AddResourceToTable( const char *pFilename ) { const char *pExt = V_GetFileExtension( pFilename ); if ( !pExt ) { // unknown
// all resources are identified by their extension
return; }
const char *pTypeDir = NULL; const char *pName = pFilename; ResourcePreload_t type = RESOURCEPRELOAD_UNKNOWN;
if ( !V_stricmp( pExt, "wav" ) ) { type = RESOURCEPRELOAD_SOUND; pTypeDir = "sound\\"; } else if ( !V_stricmp( pExt, "vmt" ) ) { type = RESOURCEPRELOAD_MATERIAL; pTypeDir = "materials\\"; } else if ( !V_stricmp( pExt, "vtf" ) ) { if ( V_stristr( pFilename, "maps\\" ) ) { // only want cubemap textures
if ( !m_bLoadForHDR && V_stristr( pFilename, ".hdr." ) ) { return; } else if ( m_bLoadForHDR && !V_stristr( pFilename, ".hdr." ) ) { return; } type = RESOURCEPRELOAD_CUBEMAP; pTypeDir = "materials\\"; } else { return; } } else if ( !V_stricmp( pExt, "mdl" ) ) { type = RESOURCEPRELOAD_MODEL; pTypeDir = "models\\"; } else if ( !V_stricmp( pExt, "vhv" ) ) { // want static props only
pName = V_stristr( pFilename, "sp_" ); if ( !pName ) { return; }
if ( !m_bLoadForHDR && V_stristr( pFilename, "_hdr_" ) ) { return; } else if ( m_bLoadForHDR && !V_stristr( pFilename, "_hdr_" ) ) { return; } type = RESOURCEPRELOAD_STATICPROPLIGHTING; } else { // unknown, ignored
return; }
if ( pTypeDir ) { // want object name only
// skip past game/type directory prefixing
const char *pDir = V_stristr( pName, pTypeDir ); if ( pDir ) { pName = pDir + strlen( pTypeDir ); } }
FileNameHandle_t hFilename = m_Filenames.FindOrAddFileName( pName ); m_ResourceNames[type].InsertNoSort( hFilename ); }
//-----------------------------------------------------------------------------
// Parse the raw resource list into resource dictionaries
//-----------------------------------------------------------------------------
void CQueuedLoader::ParseResourceList( CUtlBuffer &resourceList ) { // parse resource list into known types
characterset_t breakSet; CharacterSetBuild( &breakSet, "" ); char szToken[MAX_PATH]; for ( ;; ) { int nTokenSize = resourceList.ParseToken( &breakSet, szToken, sizeof( szToken ) ); if ( nTokenSize <= 0 ) { break; }
AddResourceToTable( szToken ); }
// add any additional resources
// duplicates don't need to be culled, loaders are supposed to handle resources that already exist
for ( int i = 0; i < m_AdditionalResources.GetNumStrings(); i++ ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Appending: %s\n", m_AdditionalResources.String( i ) ); } AddResourceToTable( m_AdditionalResources.String( i ) ); }
if ( g_QueuedLoader.GetSpewDetail() ) { for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ ) { Msg( "QueuedLoader: %s: %d Entries\n", g_ResourceLoaderNames[i], m_ResourceNames[i].Count() ); } }
m_pProgress->UpdateProgress( PROGRESS_PARSEDRESLIST ); }
//-----------------------------------------------------------------------------
// Mark the start of the queued loading process.
//-----------------------------------------------------------------------------
bool CQueuedLoader::BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload ) { if ( IsPC() ) { return false; }
if ( CommandLine()->FindParm( "-noqueuedload" ) || ( g_pFullFileSystem->GetDVDMode() != DVDMODE_STRICT ) ) { return false; }
if ( m_bStarted ) { // already started, shouldn't be started more than once
Assert( 0 ); return true; }
COM_TimestampedLog( "CQueuedLoader::BeginMapLoading" );
// set the IO throttle markers based on available memory
// these safety watermarks throttle the i/o from flooding memory, when the cores cannot keep up
// the delta must be larger than any single operation, otherwise deadlock
// markers that are too close will cause excessive suspension
size_t usedMemory, freeMemory; MemAlloc_GlobalMemoryStatus( &usedMemory, &freeMemory ); if ( freeMemory >= 64*1024*1024 ) { // lots of available memory, can afford to have let the i/o get ahead
g_nHighIOSuspensionMark = 10*1024*1024; g_nLowIOSuspensionMark = 2*1024*1024; } else { // low memory, suspend the i/o more frequently
g_nHighIOSuspensionMark = 5*1024*1024; g_nLowIOSuspensionMark = 1*1024*1024; }
if ( GetSpewDetail() ) { Msg( "QueuedLoader: Suspend I/O at [%.2f,%.2f] MB\n", (float)g_nLowIOSuspensionMark/(1024.0f*1024.0f), (float)g_nHighIOSuspensionMark/(1024.0f*1024.0f) ); }
m_bStarted = true; m_bDynamic = false; m_bLoadForHDR = bLoadForHDR;
// map pak will be accessed asynchronously throughout loading and into game frame
g_pFullFileSystem->BeginMapAccess();
// remove any prior stale entries
CleanQueue(); Assert( m_SubmittedJobs.Count() == 0 && g_nActiveJobs == 0 && g_nQueuedJobs == 0 );
m_bActive = true; m_nSubmitCount = 0; m_StartTime = Plat_MSTime(); m_EndTime = 0; m_bCanBatch = false; m_bBatching = false; m_bDoProgress = false;
g_nIOMemory = 0; g_nAnonymousIOMemory = 0; g_nIOMemoryPeak = 0; g_nAnonymousIOMemoryPeak = 0;
m_bSameMap = bOptimizeMapReload && ( V_stricmp( pMapName, m_szMapNameToCompareSame ) == 0 ); if ( m_bSameMap ) { // Data will persist (so reloading a map is v. fast)
} else { // Full load of the new map's data
V_strncpy( m_szMapNameToCompareSame, pMapName, sizeof( m_szMapNameToCompareSame ) ); }
m_pProgress->BeginProgress(); m_pProgress->UpdateProgress( PROGRESS_START );
// load this map's resource list before any other i/o
char szBaseName[MAX_PATH]; char szFilename[MAX_PATH]; V_FileBase( pMapName, szBaseName, sizeof( szBaseName ) ); V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", szBaseName, GetPlatformExt() );
MEM_ALLOC_CREDIT();
CUtlBuffer resListBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); if ( !g_pFullFileSystem->ReadFile( szFilename, "GAME", resListBuffer, 0, 0 ) ) { // very bad, a valid reslist is critical
DevWarning( "QueuedLoader: Failed to get reslist '%s', Non-Optimal Loading.\n", szFilename ); m_bActive = false; return false; }
if ( XBX_IsLocalized() ) { // find optional localized reslist fixup
V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", XBX_GetLanguageString(), GetPlatformExt() ); CUtlBuffer localizedBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); if ( g_pFullFileSystem->ReadFile( szFilename, "GAME", localizedBuffer, 0, 0 ) ) { // append it
resListBuffer.EnsureCapacity( resListBuffer.TellPut() + localizedBuffer.TellPut() ); resListBuffer.Put( localizedBuffer.PeekGet(), localizedBuffer.TellPut() ); } }
m_pProgress->UpdateProgress( PROGRESS_GOTRESLIST );
// due to its size, the bsp load is a lengthy i/o operation
// this causes a non-batched async i/o operation to commence immediately
if ( !m_pLoaders[RESOURCEPRELOAD_MODEL]->CreateResource( pMapName ) ) { // very bad, a valid bsp is critical
DevWarning( "QueuedLoader: Failed to mount BSP '%s', Non-Optimal Loading.\n", pMapName ); m_bActive = false; return false; }
// parse the raw resource list into loader specific dictionaries
ParseResourceList( resListBuffer ); // run the distributed precache loaders, generating a batch of i/o requests
GetJobRequests();
// event each loader to discard dead resources
PurgeUnreferencedResources();
// sort and start async fulfilling the i/o requests
// waits for all "must complete" jobs to finish
SubmitBatchedJobsAndWait();
// progress is only relevant during preload
// normal load process takes over any progress bar
// disable progress tracking to prevent any late queued operation from updating
m_pProgress->EndProgress();
return m_bActive; }
//-----------------------------------------------------------------------------
// Signal the end of the queued loading process, i/o will still be in progress.
//-----------------------------------------------------------------------------
void CQueuedLoader::EndMapLoading( bool bAbort ) { if ( !m_bStarted ) { // already stopped or never started
return; }
/////////////////////////////////////////////////////
// TBD: Cannot abort!!!! feature has not been done //
/////////////////////////////////////////////////////
bAbort = false;
if ( m_bActive ) { if ( bAbort ) { PurgeQueue(); } else { // finish all outstanding priority jobs
SubmitPendingJobs(); while ( g_nHighPriorityJobs != 0 || g_nJobsToFinishBeforePlay != 0 ) { // yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); } }
m_EndTime = Plat_MSTime(); m_bActive = false;
// transmit the end map event
for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ ) { if ( m_pLoaders[i] ) { m_pLoaders[i]->OnEndMapLoading( bAbort ); } }
// free any unclaimed anonymous buffers
int iIndex = m_AnonymousJobs.First(); while ( iIndex != m_AnonymousJobs.InvalidIndex() ) { FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData ) { g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData ); pFileJob->m_pTargetData = NULL; } g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead; iIndex = m_AnonymousJobs.Next( iIndex ); } m_AnonymousJobs.Purge();
if ( g_nIOMemory || g_nAnonymousIOMemory ) { // expected to be zero, otherwise logic flaw
DevWarning( "CQueuedLoader: Unclaimed I/O memory: total:%d anonymous:%d\n", (int)g_nIOMemory, (int)g_nAnonymousIOMemory ); g_nIOMemory = 0; g_nAnonymousIOMemory = 0; }
// no longer needed
m_AdditionalResources.RemoveAll(); }
g_pFullFileSystem->EndMapAccess(); m_bStarted = false; }
//-----------------------------------------------------------------------------
// Returns true if loader is accepting queue requests.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsMapLoading() const { return m_bActive; }
//-----------------------------------------------------------------------------
// Returns true if loader is working on same map as last load
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsSameMapLoading() const { return m_bActive && m_bSameMap; }
//-----------------------------------------------------------------------------
// Returns true if the loader is idle, indicates all i/o and work has completed.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsFinished() const { return ( m_bActive == false && g_nActiveJobs == 0 && g_nQueuedJobs == 0 ); }
//-----------------------------------------------------------------------------
// Returns true if loader is batching
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsBatching() const { return m_bBatching; }
//-----------------------------------------------------------------------------
// Returns true if loader is batching
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsDynamic() const { return m_bDynamic; }
int CQueuedLoader::GetSpewDetail() const { int spewDetail = loader_spew_info.GetInt(); if ( spewDetail <= 0 ) { return spewDetail; }
return 1 << ( spewDetail - 1 ); }
void CQueuedLoader::DynamicLoadMapResource( const char *pFilename, DynamicResourceCallback_t pCallback, void *pContext, void *pContext2 ) { Assert( m_bActive == false );
m_bActive = true; m_bDynamic = true; m_DynamicFileName = pFilename; m_pfnDynamicCallback = pCallback; m_pDynamicContext = pContext; m_pDynamicContext2 = pContext2;
CleanQueue(); AddResourceToTable( m_DynamicFileName );
// run the distributed precache loaders, generating a batch of i/o requests
GetJobRequests();
// sort and start async fulfilling the i/o requests
Assert( m_bBatching && g_nActiveJobs == 0 ); SubmitBatchedJobs(); Assert( !m_bBatching ); }
void CQueuedLoader::QueueDynamicLoadFunctor( CFunctor* pFunctor ) { AUTO_LOCK( m_FunctorQueueMutex ); m_FunctorQueue.AddToTail( pFunctor ); }
bool CQueuedLoader::CompleteDynamicLoad() { Assert( m_bActive && m_bDynamic && !m_bBatching ); bool bDone = true; if ( m_bDynamic ) { CUtlVector< CFunctor* > functors; { AUTO_LOCK( m_FunctorQueueMutex ); functors.Swap( m_FunctorQueue ); } FOR_EACH_VEC( functors, i ) { ( *functors[i] )(); functors[i]->Release(); }
{ AUTO_LOCK( m_FunctorQueueMutex ); bDone = m_FunctorQueue.Count() == 0 && g_nQueuedJobs == 0 && g_nActiveJobs == 0; }
if ( bDone ) { if ( m_pfnDynamicCallback ) { ( *m_pfnDynamicCallback )( m_DynamicFileName, m_pDynamicContext, m_pDynamicContext2 ); } m_DynamicFileName.Clear(); m_bActive = false; m_bDynamic = false; } } return bDone; }
void CQueuedLoader::QueueCleanupDynamicLoadFunctor( CFunctor* pFunctor ) { Assert( ThreadInMainThread() );
m_CleanupFunctorQueue.AddToTail( pFunctor ); }
bool CQueuedLoader::CleanupDynamicLoad() { Assert( ThreadInMainThread() );
FOR_EACH_VEC( m_CleanupFunctorQueue, i ) { ( *m_CleanupFunctorQueue[i] )(); m_CleanupFunctorQueue[i]->Release(); } m_CleanupFunctorQueue.Purge();
return true; }
|