|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Client's energy wave
//
// $Workfile: $
// $Date: $
//
//-----------------------------------------------------------------------------
// $Log: $
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "materialsystem/imaterialsystem.h"
#include "materialsystem/imesh.h"
#include "energy_wave_effect.h"
#include "mathlib/vmatrix.h"
#include "clienteffectprecachesystem.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
CLIENTEFFECT_REGISTER_BEGIN( PrecacheEnergyWave ) CLIENTEFFECT_MATERIAL( "effects/energywave/energywave" ) CLIENTEFFECT_REGISTER_END()
//-----------------------------------------------------------------------------
// Energy Wave:
//-----------------------------------------------------------------------------
class C_EnergyWave : public C_BaseEntity { public: DECLARE_CLASS( C_EnergyWave, C_BaseEntity ); DECLARE_CLIENTCLASS();
C_EnergyWave(); ~C_EnergyWave();
void PostDataUpdate( DataUpdateType_t updateType ); int DrawModel( int flags ); void ComputePoint( float s, float t, Vector& pt, Vector& normal, float& opacity ); void DrawWireframeModel( );
CEnergyWaveEffect m_EWaveEffect;
IMaterial* m_pWireframe; IMaterial* m_pEWaveMat;
private: C_EnergyWave( const C_EnergyWave & ); // not defined, not accessible
void ComputeEWavePoints( Vector* pt, Vector* normal, float* opacity ); void DrawEWavePoints(Vector* pt, Vector* normal, float* opacity);
};
EXTERN_RECV_TABLE(DT_BaseEntity);
IMPLEMENT_CLIENTCLASS_DT(C_EnergyWave, DT_EWaveEffect, CEnergyWave) END_RECV_TABLE()
// ----------------------------------------------------------------------------
// Functions.
// ----------------------------------------------------------------------------
C_EnergyWave::C_EnergyWave() : m_EWaveEffect(NULL, NULL) { m_pWireframe = materials->FindMaterial("shadertest/wireframevertexcolor", TEXTURE_GROUP_OTHER); m_pEWaveMat = materials->FindMaterial("effects/energywave/energywave", TEXTURE_GROUP_CLIENT_EFFECTS); m_EWaveEffect.Spawn(); }
C_EnergyWave::~C_EnergyWave() { }
void C_EnergyWave::PostDataUpdate( DataUpdateType_t updateType ) { MarkMessageReceived();
// Make sure that origin points to current origin, at least
MoveToLastReceivedPosition(); }
enum { NUM_SUBDIVISIONS = 21, };
static void ComputeIndices( int is, int it, int* idx ) { int is0 = (is > 0) ? (is - 1) : is; int it0 = (it > 0) ? (it - 1) : it; int is1 = (is < EWAVE_NUM_HORIZONTAL_POINTS - 1) ? is + 1 : is; int it1 = (it < EWAVE_NUM_HORIZONTAL_POINTS - 1) ? it + 1 : it; int is2 = is + 2; int it2 = it + 2; if (is2 >= EWAVE_NUM_HORIZONTAL_POINTS) is2 = EWAVE_NUM_HORIZONTAL_POINTS - 1; if (it2 >= EWAVE_NUM_HORIZONTAL_POINTS) it2 = EWAVE_NUM_HORIZONTAL_POINTS - 1;
idx[0] = is0 + it0 * EWAVE_NUM_HORIZONTAL_POINTS; idx[1] = is + it0 * EWAVE_NUM_HORIZONTAL_POINTS; idx[2] = is1 + it0 * EWAVE_NUM_HORIZONTAL_POINTS; idx[3] = is2 + it0 * EWAVE_NUM_HORIZONTAL_POINTS;
idx[4] = is0 + it * EWAVE_NUM_HORIZONTAL_POINTS; idx[5] = is + it * EWAVE_NUM_HORIZONTAL_POINTS; idx[6] = is1 + it * EWAVE_NUM_HORIZONTAL_POINTS; idx[7] = is2 + it * EWAVE_NUM_HORIZONTAL_POINTS;
idx[8] = is0 + it1 * EWAVE_NUM_HORIZONTAL_POINTS; idx[9] = is + it1 * EWAVE_NUM_HORIZONTAL_POINTS; idx[10] = is1 + it1 * EWAVE_NUM_HORIZONTAL_POINTS; idx[11] = is2 + it1 * EWAVE_NUM_HORIZONTAL_POINTS;
idx[12] = is0 + it2 * EWAVE_NUM_HORIZONTAL_POINTS; idx[13] = is + it2 * EWAVE_NUM_HORIZONTAL_POINTS; idx[14] = is1 + it2 * EWAVE_NUM_HORIZONTAL_POINTS; idx[15] = is2 + it2 * EWAVE_NUM_HORIZONTAL_POINTS; }
void C_EnergyWave::ComputePoint( float s, float t, Vector& pt, Vector& normal, float& opacity ) { int is = (int)s; int it = (int)t; if( is >= EWAVE_NUM_HORIZONTAL_POINTS ) is -= 1;
if( it >= EWAVE_NUM_VERTICAL_POINTS ) it -= 1;
int idx[16]; ComputeIndices( is, it, idx );
// The patch equation is:
// px = S * M * Gx * M^T * T^T
// py = S * M * Gy * M^T * T^T
// pz = S * M * Gz * M^T * T^T
// where S = [s^3 s^2 s 1], T = [t^3 t^2 t 1]
// M is the patch type matrix, in my case I'm using a catmull-rom
// G is the array of control points. rows have constant t
static VMatrix catmullRom( -0.5, 1.5, -1.5, 0.5, 1, -2.5, 2, -0.5, -0.5, 0, 0.5, 0, 0, 1, 0, 0 );
VMatrix controlPointsX, controlPointsY, controlPointsZ, controlPointsO;
Vector pos; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { const Vector& v = m_EWaveEffect.GetPoint( idx[i * 4 + j] );
controlPointsX[j][i] = v.x; controlPointsY[j][i] = v.y; controlPointsZ[j][i] = v.z;
controlPointsO[j][i] = m_EWaveEffect.ComputeOpacity( v, GetAbsOrigin() ); } }
float fs = s - is; float ft = t - it;
VMatrix temp, mgm[4]; MatrixTranspose( catmullRom, temp ); MatrixMultiply( controlPointsX, temp, mgm[0] ); MatrixMultiply( controlPointsY, temp, mgm[1] ); MatrixMultiply( controlPointsZ, temp, mgm[2] ); MatrixMultiply( controlPointsO, temp, mgm[3] );
MatrixMultiply( catmullRom, mgm[0], mgm[0] ); MatrixMultiply( catmullRom, mgm[1], mgm[1] ); MatrixMultiply( catmullRom, mgm[2], mgm[2] ); MatrixMultiply( catmullRom, mgm[3], mgm[3] );
Vector4D svec, tvec; float ft2 = ft * ft; tvec[0] = ft2 * ft; tvec[1] = ft2; tvec[2] = ft; tvec[3] = 1.0f;
float fs2 = fs * fs; svec[0] = fs2 * fs; svec[1] = fs2; svec[2] = fs; svec[3] = 1.0f;
Vector4D tmp; Vector4DMultiply( mgm[0], tvec, tmp ); pt[0] = DotProduct4D( tmp, svec ); Vector4DMultiply( mgm[1], tvec, tmp ); pt[1] = DotProduct4D( tmp, svec ); Vector4DMultiply( mgm[2], tvec, tmp ); pt[2] = DotProduct4D( tmp, svec );
Vector4DMultiply( mgm[3], tvec, tmp ); opacity = DotProduct4D( tmp, svec );
if ((s == 0.0f) || (t == 0.0f) || (s == (EWAVE_NUM_HORIZONTAL_POINTS-1.0f)) || (t == (EWAVE_NUM_VERTICAL_POINTS-1.0f)) ) { opacity = 0.0f; }
if ((s <= 0.3) || (t < 0.3)) { opacity *= 0.35f; } if ((s == (EWAVE_NUM_HORIZONTAL_POINTS-0.7f)) || (t == (EWAVE_NUM_VERTICAL_POINTS-0.7f)) ) { opacity *= 0.35f; }
if (opacity < 0.0f) opacity = 0.0f; else if (opacity > 255.0f) opacity = 255.0f;
// Normal computation
Vector4D dsvec, dtvec; dsvec[0] = 3.0f * fs2; dsvec[1] = 2.0f * fs; dsvec[2] = 1.0f; dsvec[3] = 0.0f; dtvec[0] = 3.0f * ft2; dtvec[1] = 2.0f * ft; dtvec[2] = 1.0f; dtvec[3] = 0.0f;
Vector ds, dt; Vector4DMultiply( mgm[0], tvec, tmp ); ds[0] = DotProduct4D( tmp, dsvec ); Vector4DMultiply( mgm[1], tvec, tmp ); ds[1] = DotProduct4D( tmp, dsvec ); Vector4DMultiply( mgm[2], tvec, tmp ); ds[2] = DotProduct4D( tmp, dsvec );
Vector4DMultiply( mgm[0], dtvec, tmp ); dt[0] = DotProduct4D( tmp, svec ); Vector4DMultiply( mgm[1], dtvec, tmp ); dt[1] = DotProduct4D( tmp, svec ); Vector4DMultiply( mgm[2], dtvec, tmp ); dt[2] = DotProduct4D( tmp, svec );
CrossProduct( ds, dt, normal ); VectorNormalize( normal ); }
void C_EnergyWave::DrawWireframeModel( ) { IMesh* pMesh = materials->GetDynamicMesh( true, NULL, NULL, m_pWireframe );
int numLines = (EWAVE_NUM_VERTICAL_POINTS - 1) * EWAVE_NUM_HORIZONTAL_POINTS + EWAVE_NUM_VERTICAL_POINTS * (EWAVE_NUM_HORIZONTAL_POINTS - 1);
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_LINES, numLines );
Vector tmp; for (int i = 0; i < EWAVE_NUM_VERTICAL_POINTS; ++i) { for (int j = 0; j < EWAVE_NUM_HORIZONTAL_POINTS; ++j) { if ( i > 0 ) { meshBuilder.Position3fv( m_EWaveEffect.GetPoint( j, i ).Base() ); meshBuilder.Color4ub( 255, 255, 255, 128 ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( m_EWaveEffect.GetPoint( j, i - 1 ).Base() ); meshBuilder.Color4ub( 255, 255, 255, 128 ); meshBuilder.AdvanceVertex(); }
if (j > 0) { meshBuilder.Position3fv( m_EWaveEffect.GetPoint( j, i ).Base() ); meshBuilder.Color4ub( 255, 255, 255, 128 ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( m_EWaveEffect.GetPoint( j - 1, i ).Base() ); meshBuilder.Color4ub( 255, 255, 255, 128 ); meshBuilder.AdvanceVertex(); } } }
meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
// Compute the ewave points using catmull-rom
//-----------------------------------------------------------------------------
void C_EnergyWave::ComputeEWavePoints( Vector* pt, Vector* normal, float* opacity ) { int i; for ( i = 0; i < NUM_SUBDIVISIONS; ++i) { float t = (EWAVE_NUM_VERTICAL_POINTS -1 ) * (float)i / (float)(NUM_SUBDIVISIONS - 1); for (int j = 0; j < NUM_SUBDIVISIONS; ++j) { float s = (EWAVE_NUM_HORIZONTAL_POINTS-1) * (float)j / (float)(NUM_SUBDIVISIONS - 1); int idx = i * NUM_SUBDIVISIONS + j;
ComputePoint( s, t, pt[idx], normal[idx], opacity[idx] ); } } }
//-----------------------------------------------------------------------------
// Draws the base ewave
//-----------------------------------------------------------------------------
#define TRANSITION_REGION_WIDTH 0.5f
void C_EnergyWave::DrawEWavePoints(Vector* pt, Vector* normal, float* opacity) { IMesh* pMesh = materials->GetDynamicMesh( true, NULL, NULL, m_pEWaveMat );
int numTriangles = (NUM_SUBDIVISIONS - 1) * (NUM_SUBDIVISIONS - 1) * 2;
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, numTriangles );
float du = 1.0f / (float)(NUM_SUBDIVISIONS - 1); float dv = du;
unsigned char color[3]; color[0] = 255; color[1] = 255; color[2] = 255;
for ( int i = 0; i < NUM_SUBDIVISIONS - 1; ++i) { float v = i * dv; for (int j = 0; j < NUM_SUBDIVISIONS - 1; ++j) { int idx = i * NUM_SUBDIVISIONS + j; float u = j * du;
meshBuilder.Position3fv( pt[idx].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx] ); meshBuilder.Normal3fv( normal[idx].Base() ); meshBuilder.TexCoord2f( 0, u, v ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pt[idx + NUM_SUBDIVISIONS].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx+NUM_SUBDIVISIONS] ); meshBuilder.Normal3fv( normal[idx + NUM_SUBDIVISIONS].Base() ); meshBuilder.TexCoord2f( 0, u, v + dv ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pt[idx + 1].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx+1] ); meshBuilder.Normal3fv( normal[idx+1].Base() ); meshBuilder.TexCoord2f( 0, u + du, v ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pt[idx + 1].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx+1] ); meshBuilder.Normal3fv( normal[idx+1].Base() ); meshBuilder.TexCoord2f( 0, u + du, v ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pt[idx + NUM_SUBDIVISIONS].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx+NUM_SUBDIVISIONS] ); meshBuilder.Normal3fv( normal[idx + NUM_SUBDIVISIONS].Base() ); meshBuilder.TexCoord2f( 0, u, v + dv ); meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pt[idx + NUM_SUBDIVISIONS + 1].Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], opacity[idx+NUM_SUBDIVISIONS+1] ); meshBuilder.Normal3fv( normal[idx + NUM_SUBDIVISIONS + 1].Base() ); meshBuilder.TexCoord2f( 0, u + du, v + dv ); meshBuilder.AdvanceVertex(); } }
meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
// Main draw entry point
//-----------------------------------------------------------------------------
int C_EnergyWave::DrawModel( int flags ) { if ( !m_bReadyToDraw ) return 0;
// NOTE: We've got a stiff spring case here, we need to simulate at
// a fairly fast timestep. A better solution would be to use an
// implicit method, which I'm going to not implement for the moment
float dt = gpGlobals->frametime; m_EWaveEffect.SetPosition( GetAbsOrigin(), GetAbsAngles() ); m_EWaveEffect.Simulate(dt);
Vector pt[NUM_SUBDIVISIONS * NUM_SUBDIVISIONS]; Vector normal[NUM_SUBDIVISIONS * NUM_SUBDIVISIONS]; float opacity[NUM_SUBDIVISIONS * NUM_SUBDIVISIONS];
ComputeEWavePoints( pt, normal, opacity );
DrawEWavePoints( pt, normal, opacity );
return 1; }
|