|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#include "cbase.h"
#include "movevars_shared.h"
#include "ai_blended_movement.h"
#include "ai_route.h"
#include "ai_navigator.h"
#include "ai_moveprobe.h"
#include "KeyValues.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
//
// class CAI_BlendedMotor
//
BEGIN_SIMPLE_DATADESC( CAI_BlendedMotor ) // DEFINE_FIELD( m_bDeceleratingToGoal, FIELD_BOOLEAN ),
// DEFINE_FIELD( m_iPrimaryLayer, FIELD_INTEGER ),
// DEFINE_FIELD( m_iSecondaryLayer, FIELD_INTEGER ),
// DEFINE_FIELD( m_nPrimarySequence, FIELD_INTEGER ),
// DEFINE_FIELD( m_nSecondarySequence, FIELD_INTEGER ),
// DEFINE_FIELD( m_flSecondaryWeight, FIELD_FLOAT ),
// DEFINE_CUSTOM_FIELD( m_nSavedGoalActivity, ActivityDataOps() ),
// DEFINE_CUSTOM_FIELD( m_nSavedTranslatedGoalActivity, ActivityDataOps() ),
// DEFINE_FIELD( m_nGoalSequence, FIELD_INTEGER ),
// DEFINE_FIELD( m_nPrevMovementSequence, FIELD_INTEGER ),
// DEFINE_FIELD( m_nInteriorSequence, FIELD_INTEGER ),
// DEFINE_FIELD( m_flCurrRate, FIELD_FLOAT ),
// DEFINE_FIELD( m_flStartCycle, FIELD_FLOAT ),
// m_scriptMove
// m_scriptTurn
// DEFINE_FIELD( m_flNextTurnGesture, FIELD_TIME ),
// DEFINE_FIELD( m_prevYaw, FIELD_FLOAT ),
// DEFINE_FIELD( m_doTurn, FIELD_FLOAT ),
// DEFINE_FIELD( m_doLeft, FIELD_FLOAT ),
// DEFINE_FIELD( m_doRight, FIELD_FLOAT ),
// DEFINE_FIELD( m_flNextTurnAct, FIELD_TIME ),
// DEFINE_FIELD( m_flPredictiveSpeedAdjust, FIELD_FLOAT ),
// DEFINE_FIELD( m_flReactiveSpeedAdjust, FIELD_FLOAT ),
// DEFINE_FIELD( m_vecPrevOrigin1, FIELD_POSITION ),
// DEFINE_FIELD( m_vecPrevOrigin2, FIELD_POSITION ),
END_DATADESC()
//-------------------------------------
void CAI_BlendedMotor::ResetMoveCalculations() { BaseClass::ResetMoveCalculations(); m_scriptMove.RemoveAll(); m_scriptTurn.RemoveAll(); }
//-------------------------------------
void CAI_BlendedMotor::MoveStart() { AI_PROFILE_SCOPE(CAI_BlendedMotor_MoveStart);
if (m_nPrimarySequence == -1) { m_nPrimarySequence = GetSequence(); m_flStartCycle = GetCycle(); m_flCurrRate = 0.4;
// Assert( !GetOuter()->HasMovement( m_nStartSequence ) );
m_nSecondarySequence = -1;
m_iPrimaryLayer = AddLayeredSequence( m_nPrimarySequence, 0 ); SetLayerWeight( m_iPrimaryLayer, 0.0 ); SetLayerPlaybackRate( m_iPrimaryLayer, 0.0 ); SetLayerNoRestore( m_iPrimaryLayer, true ); SetLayerCycle( m_iPrimaryLayer, m_flStartCycle, m_flStartCycle );
m_flSecondaryWeight = 0.0; } else { // suspect that MoveStop() wasn't called when the previous route finished
// Assert( 0 );
}
if (m_nGoalSequence == ACT_INVALID) { ResetGoalSequence(); }
m_vecPrevOrigin2 = GetAbsOrigin(); m_vecPrevOrigin1 = GetAbsOrigin();
m_bDeceleratingToGoal = false; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAI_BlendedMotor::ResetGoalSequence( void ) {
m_nSavedGoalActivity = GetNavigator()->GetArrivalActivity( ); if (m_nSavedGoalActivity == ACT_INVALID) { m_nSavedGoalActivity = GetOuter()->GetStoppedActivity(); }
m_nSavedTranslatedGoalActivity = GetOuter()->NPC_TranslateActivity( m_nSavedGoalActivity );
m_nGoalSequence = GetNavigator()->GetArrivalSequence( m_nPrimarySequence ); // Msg("Start %s end %s\n", GetOuter()->GetSequenceName( m_nPrimarySequence ), GetOuter()->GetSequenceName( m_nGoalSequence ) );
m_nGoalSequence = GetInteriorSequence( m_nPrimarySequence );
Assert( m_nGoalSequence != ACT_INVALID ); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAI_BlendedMotor::MoveStop() { AI_PROFILE_SCOPE(CAI_BlendedMotor_MoveStop);
CAI_Motor::MoveStop();
if (m_iPrimaryLayer != -1) { RemoveLayer( m_iPrimaryLayer, 0.2, 0.1 ); m_iPrimaryLayer = -1; } if (m_iSecondaryLayer != -1) { RemoveLayer( m_iSecondaryLayer, 0.2, 0.1 ); m_iSecondaryLayer = -1; } m_nPrimarySequence = ACT_INVALID; m_nSecondarySequence = ACT_INVALID; m_nPrevMovementSequence = ACT_INVALID; m_nInteriorSequence = ACT_INVALID;
// int nNextSequence = FindTransitionSequence(GetSequence(), m_nIdealSequence, NULL);
}
void CAI_BlendedMotor::MovePaused() { CAI_Motor::MovePaused(); SetMoveScriptAnim( 0.0 ); }
void CAI_BlendedMotor::MoveContinue() { AI_PROFILE_SCOPE(CAI_BlendedMotor_MoveContinue);
m_nPrimarySequence = GetInteriorSequence( ACT_INVALID ); m_nGoalSequence = m_nPrimarySequence;
Assert( m_nPrimarySequence != ACT_INVALID );
if (m_nPrimarySequence == ACT_INVALID) return;
m_flStartCycle = 0.0;
m_iPrimaryLayer = AddLayeredSequence( m_nPrimarySequence, 0 ); SetLayerWeight( m_iPrimaryLayer, 0.0 ); SetLayerPlaybackRate( m_iPrimaryLayer, 0.0 ); SetLayerNoRestore( m_iPrimaryLayer, true ); SetLayerCycle( m_iPrimaryLayer, m_flStartCycle, m_flStartCycle );
m_bDeceleratingToGoal = false; }
//-----------------------------------------------------------------------------
// Purpose: for the MoveInterval, interpolate desired speed, calc actual distance traveled
//-----------------------------------------------------------------------------
float CAI_BlendedMotor::GetMoveScriptDist( float &flNewSpeed ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_GetMoveScriptDist);
int i; float flTotalDist = 0; float t = GetMoveInterval();
Assert( m_scriptMove.Count() > 1);
flNewSpeed = 0; for (i = 0; i < m_scriptMove.Count()-1; i++) { if (t < m_scriptMove[i].flTime) { // get new velocity
float a = t / m_scriptMove[i].flTime; flNewSpeed = m_scriptMove[i].flMaxVelocity * (1 - a) + m_scriptMove[i+1].flMaxVelocity * a; // get distance traveled over this entry
flTotalDist += (m_scriptMove[i].flMaxVelocity + flNewSpeed) * 0.5 * t; break; } else { // used all of entries time, get entries total movement
flNewSpeed = m_scriptMove[i+1].flMaxVelocity; flTotalDist += m_scriptMove[i].flDist; t -= m_scriptMove[i].flTime; } }
return flTotalDist; }
//-----------------------------------------------------------------------------
// Purpose: return the total time that the move script covers
//-----------------------------------------------------------------------------
float CAI_BlendedMotor::GetMoveScriptTotalTime() { float flDist = GetNavigator()->GetArrivalDistance();
int i = m_scriptMove.Count() - 1;
if (i < 0) return -1;
while (i > 0 && flDist > 1) { flDist -= m_scriptMove[i].flDist; i--; } return m_scriptMove[i].flElapsedTime; }
//-----------------------------------------------------------------------------
// Purpose: for the MoveInterval, interpolate desired angle
//-----------------------------------------------------------------------------
float CAI_BlendedMotor::GetMoveScriptYaw( void ) { int i;
// interpolate desired angle
float flNewYaw = GetAbsAngles().y; float t = GetMoveInterval(); for (i = 0; i < m_scriptTurn.Count()-1; i++) { if (t < m_scriptTurn[i].flTime) { // get new direction
float a = t / m_scriptTurn[i].flTime; float deltaYaw = UTIL_AngleDiff( m_scriptTurn[i+1].flYaw, m_scriptTurn[i].flYaw ); flNewYaw = UTIL_AngleMod( m_scriptTurn[i].flYaw + a * deltaYaw ); break; } else { t -= m_scriptTurn[i].flTime; } }
return flNewYaw; }
//-----------------------------------------------------------------------------
// Purpose: blend in the "idle" or "arrival" animation depending on speed
//-----------------------------------------------------------------------------
void CAI_BlendedMotor::SetMoveScriptAnim( float flNewSpeed ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_SetMoveScriptAnim);
// don't bother if the npc is dead
if (!GetOuter()->IsAlive()) return;
// insert ideal layers
// FIXME: needs full transitions, as well as starting vs stopping sequences, leaning, etc.
CAI_Navigator *pNavigator = GetNavigator();
SetPlaybackRate( m_flCurrRate ); // calc weight of idle animation layer that suppresses the run animation
float flWeight = 0.0f; if (GetIdealSpeed() > 0.0f) { flWeight = 1.0f - (flNewSpeed / (GetIdealSpeed() * GetPlaybackRate())); } if (flWeight < 0.0f) { m_flCurrRate = flNewSpeed / GetIdealSpeed(); m_flCurrRate = clamp( m_flCurrRate, 0.0f, 1.0f ); SetPlaybackRate( m_flCurrRate ); flWeight = 0.0; } // Msg("weight %.3f rate %.3f\n", flWeight, m_flCurrRate );
m_flCurrRate = MIN( m_flCurrRate + (1.0 - m_flCurrRate) * 0.8f, 1.0f );
if (m_nSavedGoalActivity == ACT_INVALID) { ResetGoalSequence(); }
// detect state change
Activity activity = GetOuter()->NPC_TranslateActivity( m_nSavedGoalActivity ); if ( activity != m_nSavedTranslatedGoalActivity ) { m_nSavedTranslatedGoalActivity = activity; m_nInteriorSequence = ACT_INVALID; m_nGoalSequence = pNavigator->GetArrivalSequence( m_nPrimarySequence ); }
if (m_bDeceleratingToGoal) { // find that sequence to play when at goal
m_nGoalSequence = pNavigator->GetArrivalSequence( m_nPrimarySequence );
if (m_nGoalSequence == ACT_INVALID) { m_nGoalSequence = GetInteriorSequence( m_nPrimarySequence ); }
Assert( m_nGoalSequence != ACT_INVALID ); }
if (m_flSecondaryWeight == 1.0 || (m_iSecondaryLayer != -1 && m_nPrimarySequence == m_nSecondarySequence)) { // secondary layer at full strength last time, delete the primary and shift down
RemoveLayer( m_iPrimaryLayer, 0.0, 0.0 );
m_iPrimaryLayer = m_iSecondaryLayer; m_nPrimarySequence = m_nSecondarySequence; m_iSecondaryLayer = -1; m_nSecondarySequence = ACT_INVALID; m_flSecondaryWeight = 0.0; }
// look for transition sequence if needed
if (m_nSecondarySequence == ACT_INVALID) { if (!m_bDeceleratingToGoal && m_nGoalSequence != GetInteriorSequence( m_nPrimarySequence )) { // strob interior sequence in case it changed
m_nGoalSequence = GetInteriorSequence( m_nPrimarySequence ); }
if (m_nGoalSequence != ACT_INVALID && m_nPrimarySequence != m_nGoalSequence) { // Msg("From %s to %s\n", GetOuter()->GetSequenceName( m_nPrimarySequence ), GetOuter()->GetSequenceName( m_nGoalSequence ) );
m_nSecondarySequence = GetOuter()->FindTransitionSequence(m_nPrimarySequence, m_nGoalSequence, NULL); if (m_nSecondarySequence == ACT_INVALID) m_nSecondarySequence = m_nGoalSequence; } }
// set blending for
if (m_nSecondarySequence != ACT_INVALID) { if (m_iSecondaryLayer == -1) { m_iSecondaryLayer = AddLayeredSequence( m_nSecondarySequence, 0 ); SetLayerWeight( m_iSecondaryLayer, 0.0 ); if (m_nSecondarySequence == m_nGoalSequence) { SetLayerPlaybackRate( m_iSecondaryLayer, 0.0 ); } else { SetLayerPlaybackRate( m_iSecondaryLayer, 1.0 ); } SetLayerNoRestore( m_iSecondaryLayer, true ); m_flSecondaryWeight = 0.0; }
m_flSecondaryWeight = MIN( m_flSecondaryWeight + 0.3, 1.0 );
if (m_flSecondaryWeight < 1.0) { SetLayerWeight( m_iPrimaryLayer, (flWeight - m_flSecondaryWeight * flWeight) / (1.0f - m_flSecondaryWeight * flWeight) ); SetLayerWeight( m_iSecondaryLayer, flWeight * m_flSecondaryWeight ); } else { SetLayerWeight( m_iPrimaryLayer, 0.0f ); SetLayerWeight( m_iSecondaryLayer, flWeight ); } } else { // recreate layer if missing
if (m_iPrimaryLayer == -1) { MoveContinue(); }
// try to catch a stale layer
if (m_iSecondaryLayer != -1) { // secondary layer at full strength last time, delete the primary and shift down
RemoveLayer( m_iSecondaryLayer, 0.0, 0.0 ); m_iSecondaryLayer = -1; m_nSecondarySequence = ACT_INVALID; m_flSecondaryWeight = 0.0; }
// debounce
// flWeight = flWeight * 0.5 + 0.5 * GetOuter()->GetLayerWeight( m_iPrimaryLayer );
SetLayerWeight( m_iPrimaryLayer, flWeight ); } }
//-----------------------------------------------------------------------------
// Purpose: get the "idle" animation to play as the compliment to the movement animation
//-----------------------------------------------------------------------------
int CAI_BlendedMotor::GetInteriorSequence( int fromSequence ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_GetInteriorSequence);
// FIXME: add interior activity to path, just like arrival activity.
int sequence = GetNavigator()->GetMovementSequence();
if (m_nInteriorSequence != ACT_INVALID && sequence == m_nPrevMovementSequence) { return m_nInteriorSequence; }
m_nPrevMovementSequence = sequence;
KeyValues *seqKeyValues = GetOuter()->GetSequenceKeyValues( sequence ); // Msg("sequence %d : %s (%d)\n", sequence, GetOuter()->GetSequenceName( sequence ), seqKeyValues != NULL );
if (seqKeyValues) { KeyValues *pkvInterior = seqKeyValues->FindKey("interior"); if (pkvInterior) { const char *szActivity = pkvInterior->GetString(); Activity activity = ( Activity )GetOuter()->LookupActivity( szActivity ); if ( activity != ACT_INVALID ) { m_nInteriorSequence = GetOuter()->SelectWeightedSequence( GetOuter()->TranslateActivity( activity ), fromSequence ); } else { activity = (Activity)GetOuter()->GetActivityID( szActivity ); if ( activity != ACT_INVALID ) { m_nInteriorSequence = GetOuter()->SelectWeightedSequence( GetOuter()->TranslateActivity( activity ), fromSequence ); } }
if (activity == ACT_INVALID || m_nInteriorSequence == ACT_INVALID) { m_nInteriorSequence = GetOuter()->LookupSequence( szActivity ); } } }
if (m_nInteriorSequence == ACT_INVALID) { Activity activity = GetNavigator()->GetMovementActivity(); if (activity == ACT_WALK_AIM || activity == ACT_RUN_AIM) { activity = ACT_IDLE_ANGRY; } else { activity = ACT_IDLE; } m_nInteriorSequence = GetOuter()->SelectWeightedSequence( GetOuter()->TranslateActivity( activity ), fromSequence );
Assert( m_nInteriorSequence != ACT_INVALID ); }
return m_nInteriorSequence; }
//-----------------------------------------------------------------------------
// Purpose: Move the npc to the next location on its route.
//-----------------------------------------------------------------------------
AIMotorMoveResult_t CAI_BlendedMotor::MoveGroundExecute( const AILocalMoveGoal_t &move, AIMoveTrace_t *pTraceResult ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_MoveGroundExecute);
if ( move.curExpectedDist < 0.001 ) { AIMotorMoveResult_t result = BaseClass::MoveGroundExecute( move, pTraceResult ); // Msg(" BaseClass::MoveGroundExecute() - remaining %.2f\n", GetMoveInterval() );
SetMoveScriptAnim( 0.0 ); return result; }
BuildMoveScript( move, pTraceResult );
float flNewSpeed = GetCurSpeed(); float flTotalDist = GetMoveScriptDist( flNewSpeed );
Assert( move.maxDist < 0.01 || flTotalDist > 0.0 );
// --------------------------------------------
// turn in the direction of movement
// --------------------------------------------
float flNewYaw = GetMoveScriptYaw( );
// get facing based on movement yaw
AILocalMoveGoal_t move2 = move; move2.facing = UTIL_YawToVector( flNewYaw );
// turn in the direction needed
MoveFacing( move2 );
// reset actual "sequence" ground speed based current movement sequence, orientation
// FIXME: this should be based on
GetOuter()->m_flGroundSpeed = GetSequenceGroundSpeed( GetSequence());
/*
if (1 || flNewSpeed > GetIdealSpeed()) { // DevMsg( "%6.2f : Speed %.1f : %.1f (%.1f) : %d\n", gpGlobals->curtime, flNewSpeed, move.maxDist, move.transitionDist, GetOuter()->m_pHintNode != NULL );
// DevMsg( "%6.2f : Speed %.1f : %.1f\n", gpGlobals->curtime, flNewSpeed, GetIdealSpeed() );
} */
SetMoveScriptAnim( flNewSpeed );
/*
if ((GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT)) { DevMsg( "%6.2f : Speed %.1f : %.1f : %.2f\n", gpGlobals->curtime, flNewSpeed, GetIdealSpeed(), flNewSpeed / GetIdealSpeed() ); } */
AIMotorMoveResult_t result = MoveGroundExecuteWalk( move, flNewSpeed, flTotalDist, pTraceResult );
return result;
}
AIMotorMoveResult_t CAI_BlendedMotor::MoveFlyExecute( const AILocalMoveGoal_t &move, AIMoveTrace_t *pTraceResult ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_MoveFlyExecute);
if ( move.curExpectedDist < 0.001 ) return BaseClass::MoveFlyExecute( move, pTraceResult );
BuildMoveScript( move, pTraceResult );
float flNewSpeed = GetCurSpeed(); float flTotalDist = GetMoveScriptDist( flNewSpeed );
Assert( move.maxDist < 0.01 || flTotalDist > 0.0 );
// --------------------------------------------
// turn in the direction of movement
// --------------------------------------------
float flNewYaw = GetMoveScriptYaw( );
// get facing based on movement yaw
AILocalMoveGoal_t move2 = move; move2.facing = UTIL_YawToVector( flNewYaw );
// turn in the direction needed
MoveFacing( move2 );
GetOuter()->m_flGroundSpeed = GetSequenceGroundSpeed( GetSequence());
SetMoveScriptAnim( flNewSpeed );
// DevMsg( "%6.2f : Speed %.1f : %.1f\n", gpGlobals->curtime, flNewSpeed, GetIdealSpeed() );
// reset actual "sequence" ground speed based current movement sequence, orientation
// FIXME: the above is redundant with MoveGroundExecute, and the below is a mix of MoveGroundExecuteWalk and MoveFlyExecute
bool bReachingLocalGoal = ( flTotalDist > move.maxDist );
// can I move farther in this interval than I'm supposed to?
if ( bReachingLocalGoal ) { if ( !(move.flags & AILMG_CONSUME_INTERVAL) ) { // only use a portion of the time interval
SetMoveInterval( GetMoveInterval() * (1 - move.maxDist / flTotalDist) ); } else SetMoveInterval( 0 ); flTotalDist = move.maxDist; } else { // use all the time
SetMoveInterval( 0 ); }
SetMoveVel( move.dir * flNewSpeed );
// orig
Vector vecStart, vecEnd; vecStart = GetLocalOrigin(); VectorMA( vecStart, flTotalDist, move.dir, vecEnd );
AIMoveTrace_t moveTrace; GetMoveProbe()->MoveLimit( NAV_FLY, vecStart, vecEnd, MASK_NPCSOLID, NULL, &moveTrace ); if ( pTraceResult ) *pTraceResult = moveTrace; // Check for total blockage
if (fabs(moveTrace.flDistObstructed - flTotalDist) <= 1e-1) { // But if we bumped into our target, then we succeeded!
if ( move.pMoveTarget && (moveTrace.pObstruction == move.pMoveTarget) ) return AIM_PARTIAL_HIT_TARGET;
return AIM_FAILED; }
// The true argument here causes it to touch all triggers
// in the volume swept from the previous position to the current position
UTIL_SetOrigin(GetOuter(), moveTrace.vEndPosition, true);
return (IsMoveBlocked(moveTrace.fStatus)) ? AIM_PARTIAL_HIT_WORLD : AIM_SUCCESS; }
float CAI_BlendedMotor::OverrideMaxYawSpeed( Activity activity ) { // Don't do this is we're locked
if ( IsYawLocked() ) return 0.0f;
switch( activity ) { case ACT_TURN_LEFT: case ACT_TURN_RIGHT: return 45; break; default: if (GetOuter()->IsMoving()) { return 15; } return 45; // too fast?
break; } return -1; }
void CAI_BlendedMotor::UpdateYaw( int speed ) { // Don't do this is we're locked
if ( IsYawLocked() ) return;
GetOuter()->UpdateTurnGesture( ); BaseClass::UpdateYaw( speed ); }
void CAI_BlendedMotor::RecalculateYawSpeed() { // Don't do this is we're locked
if ( IsYawLocked() ) { SetYawSpeed( 0.0f ); return; }
if (GetOuter()->HasMemory( bits_MEMORY_TURNING )) return;
SetYawSpeed( CalcYawSpeed() ); }
//-------------------------------------
void CAI_BlendedMotor::MoveClimbStart( const Vector &climbDest, const Vector &climbDir, float climbDist, float yaw ) { // TODO: merge transitions with movement script
if (m_iPrimaryLayer != -1) { SetLayerWeight( m_iPrimaryLayer, 0 ); } if (m_iSecondaryLayer != -1) { SetLayerWeight( m_iSecondaryLayer, 0 ); }
BaseClass::MoveClimbStart( climbDest, climbDir, climbDist, yaw ); }
//-------------------------------------
void CAI_BlendedMotor::MoveJumpStart( const Vector &velocity ) { // TODO: merge transitions with movement script
if (m_iPrimaryLayer != -1) { SetLayerWeight( m_iPrimaryLayer, 0 ); } if (m_iSecondaryLayer != -1) { SetLayerWeight( m_iSecondaryLayer, 0 ); }
BaseClass::MoveJumpStart( velocity ); }
//-------------------------------------
void CAI_BlendedMotor::BuildMoveScript( const AILocalMoveGoal_t &move, AIMoveTrace_t *pTraceResult ) { m_scriptMove.RemoveAll(); m_scriptTurn.RemoveAll();
BuildVelocityScript( move ); BuildTurnScript( move );
/*
if (GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT) { int i; #if 1
for (i = 1; i < m_scriptMove.Count(); i++) { NDebugOverlay::Line( m_scriptMove[i-1].vecLocation, m_scriptMove[i].vecLocation, 255,255,255, true, 0.1 );
NDebugOverlay::Box( m_scriptMove[i].vecLocation, Vector( -2, -2, -2 ), Vector( 2, 2, 2 ), 0,255,255, 0, 0.1 );
//NDebugOverlay::Line( m_scriptMove[i].vecLocation, m_scriptMove[i].vecLocation + Vector( 0,0,m_scriptMove[i].flMaxVelocity), 0,255,255, true, 0.1 );
Vector vecMidway = m_scriptMove[i].vecLocation + ((m_scriptMove[i-1].vecLocation - m_scriptMove[i].vecLocation) * 0.5); NDebugOverlay::Text( vecMidway, UTIL_VarArgs( "%d", i ), false, 0.1 ); } #endif
#if 0
for (i = 1; i < m_scriptTurn.Count(); i++) { NDebugOverlay::Line( m_scriptTurn[i-1].vecLocation, m_scriptTurn[i].vecLocation, 255,255,255, true, 0.1 );
NDebugOverlay::Box( m_scriptTurn[i].vecLocation, Vector( -2, -2, -2 ), Vector( 2, 2, 2 ), 255,0,0, 0, 0.1 );
NDebugOverlay::Line( m_scriptTurn[i].vecLocation + Vector( 0,0,1), m_scriptTurn[i].vecLocation + Vector( 0,0,1) + UTIL_YawToVector( m_scriptTurn[i].flYaw ) * 32, 255,0,0, true, 0.1 ); } #endif
} */ }
#define YAWSPEED 150
void CAI_BlendedMotor::BuildTurnScript( const AILocalMoveGoal_t &move ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_BuildTurnScript);
int i;
AI_Movementscript_t script; script.Init();
// current location
script.vecLocation = GetAbsOrigin(); script.flYaw = GetAbsAngles().y; m_scriptTurn.AddToTail( script );
//-------------------------
// insert default turn parameters, try to turn 80% to goal at all corners before getting there
int prev = 0; for (i = 0; i < m_scriptMove.Count(); i++) { AI_Waypoint_t *pCurWaypoint = m_scriptMove[i].pWaypoint; if (pCurWaypoint) { script.Init(); script.vecLocation = pCurWaypoint->vecLocation; script.pWaypoint = pCurWaypoint; script.flElapsedTime = m_scriptMove[i].flElapsedTime;
m_scriptTurn[prev].flTime = script.flElapsedTime - m_scriptTurn[prev].flElapsedTime;
if (pCurWaypoint->GetNext()) { Vector d1 = pCurWaypoint->GetNext()->vecLocation - script.vecLocation; Vector d2 = script.vecLocation - m_scriptTurn[prev].vecLocation; d1.z = 0; VectorNormalize( d1 ); d2.z = 0; VectorNormalize( d2 );
float y1 = UTIL_VecToYaw( d1 ); float y2 = UTIL_VecToYaw( d2 );
float deltaYaw = fabs( UTIL_AngleDiff( y1, y2 ) );
if (deltaYaw > 0.1) { // turn to 80% of goal
script.flYaw = UTIL_ApproachAngle( y1, y2, deltaYaw * 0.8 ); m_scriptTurn.AddToTail( script ); // DevMsg("turn waypoint %.1f %.1f %.1f\n", script.vecLocation.x, script.vecLocation.y, script.vecLocation.z );
prev++; } } else { Vector vecDir = GetNavigator()->GetArrivalDirection(); script.flYaw = UTIL_VecToYaw( vecDir ); m_scriptTurn.AddToTail( script ); // DevMsg("turn waypoint %.1f %.1f %.1f\n", script.vecLocation.x, script.vecLocation.y, script.vecLocation.z );
prev++; } } }
// propagate ending facing back over any nearby nodes
// FIXME: this needs to minimize total turning, not just local/end turning.
// depending on waypoint spacing, complexity, it may turn the wrong way!
for (i = m_scriptTurn.Count()-1; i > 1; i--) { float deltaYaw = UTIL_AngleDiff( m_scriptTurn[i-1].flYaw, m_scriptTurn[i].flYaw ); float maxYaw = YAWSPEED * m_scriptTurn[i-1].flTime;
if (fabs(deltaYaw) > maxYaw) { m_scriptTurn[i-1].flYaw = UTIL_ApproachAngle( m_scriptTurn[i-1].flYaw, m_scriptTurn[i].flYaw, maxYaw ); } }
for (i = 0; i < m_scriptTurn.Count() - 1; ) { i = i + BuildTurnScript( i, i + 1 ) + 1; } //-------------------------
}
int CAI_BlendedMotor::BuildTurnScript( int i, int j ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_BuildTurnScript2);
int k;
Vector vecDir = m_scriptTurn[j].vecLocation - m_scriptTurn[i].vecLocation; float interiorYaw = UTIL_VecToYaw( vecDir );
float deltaYaw;
deltaYaw = fabs( UTIL_AngleDiff( interiorYaw, m_scriptTurn[i].flYaw ) ); float t1 = deltaYaw / YAWSPEED;
deltaYaw = fabs( UTIL_AngleDiff( m_scriptTurn[j].flYaw, interiorYaw ) ); float t2 = deltaYaw / YAWSPEED;
float totalTime = m_scriptTurn[j].flElapsedTime - m_scriptTurn[i].flElapsedTime;
Assert( totalTime > 0 );
if (t1 < 0.01) { if (t2 > totalTime * 0.8) { // too close, nothing to do
return 0; }
// go ahead and force yaw
m_scriptTurn[i].flYaw = interiorYaw;
// we're already aiming close enough to the interior yaw, set the point where we need to blend out
k = BuildInsertNode( i, totalTime - t2 ); m_scriptTurn[k].flYaw = interiorYaw;
return 1; } else if (t2 < 0.01) { if (t1 > totalTime * 0.8) { // too close, nothing to do
return 0; }
// we'll finish up aiming close enough to the interior yaw, set the point where we need to blend in
k = BuildInsertNode( i, t1 ); m_scriptTurn[k].flYaw = interiorYaw; return 1; } else if (t1 + t2 > totalTime) { // don't bother with interior node
return 0; // waypoints need to much turning, ignore interior yaw
float a = (t1 / (t1 + t2)); t1 = a * totalTime;
k = BuildInsertNode( i, t1 );
deltaYaw = UTIL_AngleDiff( m_scriptTurn[j].flYaw, m_scriptTurn[i].flYaw ); m_scriptTurn[k].flYaw = UTIL_ApproachAngle( m_scriptTurn[j].flYaw, m_scriptTurn[i].flYaw, deltaYaw * (1 - a) );
return 1; } else if (t1 + t2 < totalTime * 0.8) { // turn to face interior, run a ways, then turn away
k = BuildInsertNode( i, t1 ); m_scriptTurn[k].flYaw = interiorYaw;
k = BuildInsertNode( i, t2 ); m_scriptTurn[k].flYaw = interiorYaw;
return 2; } return 0; }
int CAI_BlendedMotor::BuildInsertNode( int i, float flTime ) { AI_Movementscript_t script; script.Init();
Assert( flTime > 0.0 );
for (i; i < m_scriptTurn.Count() - 1; i++) { if (m_scriptTurn[i].flTime < flTime) { flTime -= m_scriptTurn[i].flTime; } else { float a = flTime / m_scriptTurn[i].flTime;
script.flTime = (m_scriptTurn[i].flTime - flTime);
m_scriptTurn[i].flTime = flTime;
script.flElapsedTime = m_scriptTurn[i].flElapsedTime * (1 - a) + m_scriptTurn[i+1].flElapsedTime * a;
script.vecLocation = m_scriptTurn[i].vecLocation * (1 - a) + m_scriptTurn[i+1].vecLocation * a;
m_scriptTurn.InsertAfter( i, script );
return i + 1; } } Assert( 0 ); return 0; }
ConVar ai_path_insert_pause_at_obstruction( "ai_path_insert_pause_at_obstruction", "1" ); ConVar ai_path_adjust_speed_on_immediate_turns( "ai_path_adjust_speed_on_immediate_turns", "1" ); ConVar ai_path_insert_pause_at_est_end( "ai_path_insert_pause_at_est_end", "1" );
#define MIN_VELOCITY 0.0f
#define MIN_STEER_DOT 0.0f
void CAI_BlendedMotor::BuildVelocityScript( const AILocalMoveGoal_t &move ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_BuildVelocityScript);
int i; float a;
float idealVelocity = GetIdealSpeed(); if (idealVelocity == 0) { idealVelocity = 50; }
float idealAccel = GetIdealAccel(); if (idealAccel == 0) { idealAccel = 100; }
AI_Movementscript_t script;
// set current location as start of script
script.vecLocation = GetAbsOrigin(); script.flMaxVelocity = GetCurSpeed(); m_scriptMove.AddToTail( script );
//-------------------------
extern ConVar npc_height_adjust; if (npc_height_adjust.GetBool() && move.bHasTraced && move.directTrace.flTotalDist != move.thinkTrace.flTotalDist) { float flDist = (move.directTrace.vEndPosition - m_scriptMove[0].vecLocation).Length2D(); float flHeight = move.directTrace.vEndPosition.z - m_scriptMove[0].vecLocation.z; float flDelta;
if (flDist > 0) { flDelta = flHeight / flDist; } else { flDelta = 0; }
m_flPredictiveSpeedAdjust = 1.1 - fabs( flDelta ); m_flPredictiveSpeedAdjust = clamp( m_flPredictiveSpeedAdjust, (flHeight > 0.0f) ? 0.5f : 0.8f, 1.0f );
/*
if ((GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT)) { Msg("m_flPredictiveSpeedAdjust %.3f %.1f %.1f\n", m_flPredictiveSpeedAdjust, flHeight, flDist ); NDebugOverlay::Box( move.directTrace.vEndPosition, Vector( -2, -2, -2 ), Vector( 2, 2, 2 ), 0,255,255, 0, 0.12 ); } */ } if (npc_height_adjust.GetBool()) { float flDist = (move.thinkTrace.vEndPosition - m_vecPrevOrigin2).Length2D(); float flHeight = move.thinkTrace.vEndPosition.z - m_vecPrevOrigin2.z; float flDelta;
if (flDist > 0) { flDelta = flHeight / flDist; } else { flDelta = 0; }
float newSpeedAdjust = 1.1 - fabs( flDelta ); newSpeedAdjust = clamp( newSpeedAdjust, (flHeight > 0.0f) ? 0.5f : 0.8f, 1.0f );
// debounce speed adjust
if (newSpeedAdjust < m_flReactiveSpeedAdjust) { m_flReactiveSpeedAdjust = m_flReactiveSpeedAdjust * 0.2f + newSpeedAdjust * 0.8f; } else { m_flReactiveSpeedAdjust = m_flReactiveSpeedAdjust * 0.5f + newSpeedAdjust * 0.5f; }
// filter through origins
m_vecPrevOrigin2 = m_vecPrevOrigin1; m_vecPrevOrigin1 = GetAbsOrigin();
/*
if ((GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT)) { NDebugOverlay::Box( m_vecPrevOrigin2, Vector( -2, -2, -2 ), Vector( 2, 2, 2 ), 255,0,255, 0, 0.12 ); NDebugOverlay::Box( move.thinkTrace.vEndPosition, Vector( -2, -2, -2 ), Vector( 2, 2, 2 ), 255,0,255, 0, 0.12 ); Msg("m_flReactiveSpeedAdjust %.3f %.1f %.1f\n", m_flReactiveSpeedAdjust, flHeight, flDist ); } */ }
idealVelocity = idealVelocity * MIN( m_flReactiveSpeedAdjust, m_flPredictiveSpeedAdjust );
//-------------------------
bool bAddedExpected = false;
// add all waypoint locations and velocities
AI_Waypoint_t *pCurWaypoint = GetNavigator()->GetPath()->GetCurWaypoint();
// there has to be at least one waypoint
Assert( pCurWaypoint );
while (pCurWaypoint && (pCurWaypoint->NavType() == NAV_GROUND || pCurWaypoint->NavType() == NAV_FLY) /*&& flTotalDist / idealVelocity < 3.0*/) // limit lookahead to 3 seconds
{ script.Init(); AI_Waypoint_t *pNext = pCurWaypoint->GetNext();
if (ai_path_adjust_speed_on_immediate_turns.GetBool() && !bAddedExpected) { // hack in next expected immediate location for move
script.vecLocation = GetAbsOrigin() + move.dir * move.curExpectedDist; bAddedExpected = true; pNext = pCurWaypoint; } else { script.vecLocation = pCurWaypoint->vecLocation; script.pWaypoint = pCurWaypoint; }
//DevMsg("waypoint %.1f %.1f %.1f\n", script.vecLocation.x, script.vecLocation.y, script.vecLocation.z );
if (pNext) { switch( pNext->NavType()) { case NAV_GROUND: case NAV_FLY: { Vector d1 = pNext->vecLocation - script.vecLocation; Vector d2 = script.vecLocation - m_scriptMove[m_scriptMove.Count()-1].vecLocation; // remove very short, non terminal ground links
// FIXME: is this safe? Maybe just check for co-located ground points?
if (d1.Length2D() < 1.0) { /*
if (m_scriptMove.Count() > 1) { int i = m_scriptMove.Count() - 1; m_scriptMove[i].vecLocation = pCurWaypoint->vecLocation; m_scriptMove[i].pWaypoint = pCurWaypoint; } */ pCurWaypoint = pNext; continue; }
d1.z = 0; VectorNormalize( d1 ); d2.z = 0; VectorNormalize( d2 );
// figure velocity
float dot = (DotProduct( d1, d2 ) + 0.2); if (dot > 0) { dot = clamp( dot, 0.0f, 1.0f ); script.flMaxVelocity = idealVelocity * dot; } else { script.flMaxVelocity = 0; } } break; case NAV_JUMP:
// FIXME: information about what the jump should look like isn't stored in the waypoints
// this'll need to call
// GetMoveProbe()->MoveLimit( NAV_JUMP, GetLocalOrigin(), GetPath()->CurWaypointPos(), MASK_NPCSOLID, GetNavTargetEntity(), &moveTrace );
// to get how far/fast the jump will be, but this is also stateless, so it'd call it per frame.
// So far it's not clear that the moveprobe doesn't also call this.....
{ float minJumpHeight = 0; float maxHorzVel = MAX( GetCurSpeed(), 100 ); float gravity = GetCurrentGravity() * GetOuter()->GetGravity(); Vector vecApex; Vector rawJumpVel = GetMoveProbe()->CalcJumpLaunchVelocity(script.vecLocation, pNext->vecLocation, gravity, &minJumpHeight, maxHorzVel, &vecApex );
script.flMaxVelocity = rawJumpVel.Length2D(); // Msg("%.1f\n", script.flMaxVelocity );
} break; case NAV_CLIMB: { /*
CAI_Node *pClimbNode = GetNavigator()->GetNetwork()->GetNode(pNext->iNodeID);
check: pClimbNode->m_eNodeInfo bits_NODE_CLIMB_BOTTOM, bits_NODE_CLIMB_ON, bits_NODE_CLIMB_OFF_FORWARD, bits_NODE_CLIMB_OFF_LEFT, bits_NODE_CLIMB_OFF_RIGHT */
script.flMaxVelocity = 0; } break; /*
case NAV_FLY: // FIXME: can there be a NAV_GROUND -> NAV_FLY transition?
script.flMaxVelocity = 0; break; */ } } else { script.flMaxVelocity = GetNavigator()->GetArrivalSpeed(); // Assert( script.flMaxVelocity == 0 );
}
m_scriptMove.AddToTail( script ); pCurWaypoint = pNext; }
//-------------------------
// update distances
float flTotalDist = 0; for (i = 0; i < m_scriptMove.Count() - 1; i++ ) { flTotalDist += m_scriptMove[i].flDist = (m_scriptMove[i+1].vecLocation - m_scriptMove[i].vecLocation).Length2D(); }
//-------------------------
if ( !m_bDeceleratingToGoal && m_scriptMove.Count() && flTotalDist > 0 ) { float flNeededAccel = DeltaV( m_scriptMove[0].flMaxVelocity, m_scriptMove[m_scriptMove.Count() - 1].flMaxVelocity, flTotalDist ); m_bDeceleratingToGoal = (flNeededAccel < -idealAccel); //Assert( flNeededAccel != idealAccel);
}
//-------------------------
// insert slowdown points due to blocking
if (ai_path_insert_pause_at_obstruction.GetBool() && move.directTrace.pObstruction) { float distToObstruction = (move.directTrace.vEndPosition - m_scriptMove[0].vecLocation).Length2D();
// HACK move obstruction out "stepsize" to account for it being based on stand position and not a trace
distToObstruction = distToObstruction + 16;
InsertSlowdown( distToObstruction, idealAccel, false ); }
if (ai_path_insert_pause_at_est_end.GetBool() && GetNavigator()->GetArrivalDistance() > 0.0) { InsertSlowdown( flTotalDist - GetNavigator()->GetArrivalDistance(), idealAccel, true ); }
// calc initial velocity based on immediate direction changes
if ( ai_path_adjust_speed_on_immediate_turns.GetBool() && m_scriptMove.Count() > 1) { /*
if ((GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT)) { Vector tmp = m_scriptMove[1].vecLocation - m_scriptMove[0].vecLocation; VectorNormalize( tmp ); NDebugOverlay::Line( m_scriptMove[0].vecLocation + Vector( 0, 0, 10 ), m_scriptMove[0].vecLocation + tmp * 32 + Vector( 0, 0, 10 ), 255,255,255, true, 0.1 ); NDebugOverlay::Line( m_scriptMove[0].vecLocation + Vector( 0, 0, 10 ), m_scriptMove[1].vecLocation + Vector( 0, 0, 10 ), 255,0,0, true, 0.1 );
tmp = GetCurVel(); VectorNormalize( tmp ); NDebugOverlay::Line( m_scriptMove[0].vecLocation + Vector( 0, 0, 10 ), m_scriptMove[0].vecLocation + tmp * 32 + Vector( 0, 0, 10 ), 0,0,255, true, 0.1 ); } */
Vector d1 = m_scriptMove[1].vecLocation - m_scriptMove[0].vecLocation; d1.z = 0; VectorNormalize( d1 );
Vector d2 = GetCurVel(); d2.z = 0; VectorNormalize( d2 );
float dot = (DotProduct( d1, d2 ) + MIN_STEER_DOT); dot = clamp( dot, 0.0f, 1.0f ); m_scriptMove[0].flMaxVelocity = m_scriptMove[0].flMaxVelocity * dot; }
// clamp forward velocities
for (i = 0; i < m_scriptMove.Count() - 1; i++ ) { // find needed acceleration
float dv = m_scriptMove[i+1].flMaxVelocity - m_scriptMove[i].flMaxVelocity;
if (dv > 0.0) { // find time, distance to accel to next max vel
float t1 = dv / idealAccel; float d1 = m_scriptMove[i].flMaxVelocity * t1 + 0.5 * (idealAccel) * t1 * t1;
// is there enough distance
if (d1 > m_scriptMove[i].flDist) { float r1, r2;
// clamp the next velocity to the possible accel in the given distance
if (SolveQuadratic( 0.5 * idealAccel, m_scriptMove[i].flMaxVelocity, -m_scriptMove[i].flDist, r1, r2 )) { m_scriptMove[i+1].flMaxVelocity = m_scriptMove[i].flMaxVelocity + idealAccel * r1; } } } }
// clamp decel velocities
for (i = m_scriptMove.Count() - 1; i > 0; i-- ) { // find needed deceleration
float dv = m_scriptMove[i].flMaxVelocity - m_scriptMove[i-1].flMaxVelocity;
if (dv < 0.0) { // find time, distance to decal to next max vel
float t1 = -dv / idealAccel; float d1 = m_scriptMove[i].flMaxVelocity * t1 + 0.5 * (idealAccel) * t1 * t1;
// is there enough distance
if (d1 > m_scriptMove[i-1].flDist) { float r1, r2; // clamp the next velocity to the possible decal in the given distance
if (SolveQuadratic( 0.5 * idealAccel, m_scriptMove[i].flMaxVelocity, -m_scriptMove[i-1].flDist, r1, r2 )) { m_scriptMove[i-1].flMaxVelocity = m_scriptMove[i].flMaxVelocity + idealAccel * r1; } } } }
/*
for (i = 0; i < m_scriptMove.Count(); i++) { NDebugOverlay::Text( m_scriptMove[i].vecLocation, (const char *)CFmtStr( "%.2f ", m_scriptMove[i].flMaxVelocity ), false, 0.1 ); // DevMsg("%.2f ", m_scriptMove[i].flMaxVelocity );
} // DevMsg("\n");
*/
// insert intermediate ideal velocities
for (i = 0; i < m_scriptMove.Count() - 1;) { // accel to ideal
float t1 = (idealVelocity - m_scriptMove[i].flMaxVelocity) / idealAccel; float d1 = m_scriptMove[i].flMaxVelocity * t1 + 0.5 * (idealAccel) * t1 * t1;
// decel from ideal
float t2 = (idealVelocity - m_scriptMove[i+1].flMaxVelocity) / idealAccel; float d2 = m_scriptMove[i+1].flMaxVelocity * t2 + 0.5 * (idealAccel) * t2 * t2;
m_scriptMove[i].flDist = (m_scriptMove[i+1].vecLocation - m_scriptMove[i].vecLocation).Length2D();
// is it possible to accel and decal to idealVelocity between next two nodes
if (d1 + d2 < m_scriptMove[i].flDist) { Vector start = m_scriptMove[i].vecLocation; Vector end = m_scriptMove[i+1].vecLocation; float dist = m_scriptMove[i].flDist;
// insert the two points needed to end accel and start decel
if (d1 > 1.0 && t1 > 0.1) { a = d1 / dist;
script.Init(); script.vecLocation = end * a + start * (1 - a); script.flMaxVelocity = idealVelocity; m_scriptMove.InsertAfter( i, script ); i++; }
if (dist - d2 > 1.0 && t2 > 0.1) { // DevMsg("%.2f : ", a );
a = (dist - d2) / dist;
script.Init(); script.vecLocation = end * a + start * (1 - a); script.flMaxVelocity = idealVelocity; m_scriptMove.InsertAfter( i, script ); i++; }
i++; } else { // check to see if the amount of change needed to reach target is less than the ideal acceleration
float flNeededAccel = fabs( DeltaV( m_scriptMove[i].flMaxVelocity, m_scriptMove[i+1].flMaxVelocity, m_scriptMove[i].flDist ) ); if (flNeededAccel < idealAccel) { // if so, they it's possible to get a bit towards the ideal velocity
float v1 = m_scriptMove[i].flMaxVelocity; float v2 = m_scriptMove[i+1].flMaxVelocity; float dist = m_scriptMove[i].flDist;
// based on solving:
// v1+A*t1-v2-A*t2=0
// v1*t1+0.5*A*t1*t1+v2*t2+0.5*A*t2*t2-D=0
float tmp = idealAccel*dist+0.5*v1*v1+0.5*v2*v2; Assert( tmp >= 0 ); t1 = (-v1+sqrt( tmp )) / idealAccel; t2 = (v1+idealAccel*t1-v2)/idealAccel;
// if this assert hits, write down the v1, v2, dist, and idealAccel numbers and send them to me (Ken).
// go ahead the comment it out, it's safe, but I'd like to know a test case where it's happening
//Assert( t1 > 0 && t2 > 0 );
// check to make sure it's really worth it
if (t1 > 0.0 && t2 > 0.0) { d1 = v1 * t1 + 0.5 * idealAccel * t1 * t1; /*
d2 = v2 * t2 + 0.5 * idealAccel * t2 * t2; Assert( fabs( d1 + d2 - dist ) < 0.001 ); */
float a = d1 / m_scriptMove[i].flDist; script.Init(); script.vecLocation = m_scriptMove[i+1].vecLocation * a + m_scriptMove[i].vecLocation * (1 - a); script.flMaxVelocity = m_scriptMove[i].flMaxVelocity + idealAccel * t1;
if (script.flMaxVelocity < idealVelocity) { // DevMsg("insert %.2f %.2f %.2f\n", m_scriptMove[i].flMaxVelocity, script.flMaxVelocity, m_scriptMove[i+1].flMaxVelocity );
m_scriptMove.InsertAfter( i, script ); i += 1; } } } i += 1; } }
// clamp min velocities
for (i = 0; i < m_scriptMove.Count(); i++) { m_scriptMove[i].flMaxVelocity = MAX( m_scriptMove[i].flMaxVelocity, MIN_VELOCITY ); }
// rebuild fields
m_scriptMove[0].flElapsedTime = 0; for (i = 0; i < m_scriptMove.Count() - 1; ) { m_scriptMove[i].flDist = (m_scriptMove[i+1].vecLocation - m_scriptMove[i].vecLocation).Length2D();
if (m_scriptMove[i].flMaxVelocity == 0 && m_scriptMove[i+1].flMaxVelocity == 0) { // force a minimum velocity
Assert( 0 ); m_scriptMove[i+1].flMaxVelocity = 1.0; }
float t = m_scriptMove[i].flDist / (0.5 * (m_scriptMove[i].flMaxVelocity + m_scriptMove[i+1].flMaxVelocity)); m_scriptMove[i].flTime = t;
/*
if (m_scriptMove[i].flDist < 0.01) { // Assert( m_scriptMove[i+1].pWaypoint == NULL );
m_scriptMove.Remove( i + 1 ); continue; } */
m_scriptMove[i+1].flElapsedTime = m_scriptMove[i].flElapsedTime + m_scriptMove[i].flTime;
i++; }
/*
for (i = 0; i < m_scriptMove.Count(); i++) { DevMsg("(%.2f : %.2f : %.2f)", m_scriptMove[i].flMaxVelocity, m_scriptMove[i].flDist, m_scriptMove[i].flTime ); // DevMsg("(%.2f:%.2f)", m_scriptMove[i].flTime, m_scriptMove[i].flElapsedTime );
} DevMsg("\n"); */ }
void CAI_BlendedMotor::InsertSlowdown( float distToObstruction, float idealAccel, bool bAlwaysSlowdown ) { int i; AI_Movementscript_t script;
if (distToObstruction <= 0.0) return;
for (i = 0; i < m_scriptMove.Count() - 1; i++) { if (m_scriptMove[i].flDist > 0 && distToObstruction - m_scriptMove[i].flDist < 0) { float a = distToObstruction / m_scriptMove[i].flDist; Assert( a >= 0 && a <= 1); script.vecLocation = (1 - a) * m_scriptMove[i].vecLocation + a * m_scriptMove[i+1].vecLocation;
//NDebugOverlay::Line( m_scriptMove[i].vecLocation + Vector( 0, 0, 5 ), script.vecLocation + Vector( 0, 0, 5 ), 0,255,0, true, 0.1 );
//NDebugOverlay::Line( script.vecLocation + Vector( 0, 0, 5 ), m_scriptMove[i+1].vecLocation + Vector( 0, 0, 5 ), 0,0,255, true, 0.1 );
float r1, r2;
// clamp the next velocity to the possible accel in the given distance
if (!bAlwaysSlowdown && SolveQuadratic( -0.5 * idealAccel, m_scriptMove[0].flMaxVelocity, -distToObstruction, r1, r2 )) { script.flMaxVelocity = MAX( 10, m_scriptMove[0].flMaxVelocity - idealAccel * r1 ); } else { script.flMaxVelocity = 10.0; }
script.flMaxVelocity = 1.0; // as much as reasonable
script.pWaypoint = NULL; script.flDist = m_scriptMove[i].flDist - distToObstruction; m_scriptMove[i].flDist = distToObstruction; m_scriptMove.InsertAfter( i, script ); break; } else { distToObstruction -= m_scriptMove[i].flDist; } } }
//-----------------------------------------------------------------------------
// Purpose: issues turn gestures when it detects that the body has turned but the feet haven't compensated
//-----------------------------------------------------------------------------
void CAI_BlendedMotor::MaintainTurnActivity( void ) { AI_PROFILE_SCOPE(CAI_BlendedMotor_MaintainTurnActivity);
if (m_flNextTurnGesture > gpGlobals->curtime || m_flNextTurnAct > gpGlobals->curtime || GetOuter()->IsMoving() ) { // clear out turn detection if currently turing or moving
m_doTurn = m_doRight = m_doLeft = 0; if ( GetOuter()->IsMoving()) { m_flNextTurnAct = gpGlobals->curtime + 0.3; } } else { // detect undirected turns
if (m_prevYaw != GetAbsAngles().y) { float diff = UTIL_AngleDiff( m_prevYaw, GetAbsAngles().y ); if (diff < 0.0) { m_doLeft += -diff; } else { m_doRight += diff; } m_prevYaw = GetAbsAngles().y; } // accumulate turn angle, delay response for short turns
m_doTurn += m_doRight + m_doLeft; // accumulate random foot stick clearing
m_doTurn += random->RandomFloat( 0.4, 0.6 ); }
if (m_doTurn > 15.0f) { // mostly a foot stick clear
int iSeq = ACT_INVALID; if (m_doLeft > m_doRight) { iSeq = SelectWeightedSequence( ACT_GESTURE_TURN_LEFT ); } else { iSeq = SelectWeightedSequence( ACT_GESTURE_TURN_RIGHT ); } m_doLeft = 0; m_doRight = 0;
if (iSeq != ACT_INVALID) { int iLayer = GetOuter()->AddGestureSequence( iSeq ); if (iLayer != -1) { GetOuter()->SetLayerPriority( iLayer, 100 ); // increase speed if we're getting behind or they're turning quickly
float rate = random->RandomFloat( 0.8, 1.2 ); if (m_doTurn > 90.0) { rate *= 1.5; } GetOuter()->SetLayerPlaybackRate( iLayer, rate ); // disable turing for the duration of the gesture
m_flNextTurnAct = gpGlobals->curtime + GetOuter()->GetLayerDuration( iLayer ); } else { // too many active gestures, try again in half a second
m_flNextTurnAct = gpGlobals->curtime + 0.3; } } m_doTurn = m_doRight = m_doLeft = 0; } }
ConVar scene_flatturn( "scene_flatturn", "1" );
bool CAI_BlendedMotor::AddTurnGesture( float flYD ) {
// some funky bug with human turn gestures, disable for now
return false;
// try using a turn gesture
Activity activity = ACT_INVALID; float weight = 1.0; float turnCompletion = 1.0;
if (m_flNextTurnGesture > gpGlobals->curtime) { /*
if ( GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT ) { Msg( "%.1f : [ %.2f ]\n", flYD, m_flNextTurnAct - gpGlobals->curtime ); } */ return false; }
if ( GetOuter()->IsMoving() || GetOuter()->IsCrouching() ) { return false; }
if (fabs( flYD ) < 15) { return false; } else if (flYD < -45) { activity = ACT_GESTURE_TURN_RIGHT90; weight = flYD / -90; turnCompletion = 0.36; } else if (flYD < 0) { activity = ACT_GESTURE_TURN_RIGHT45; weight = flYD / -45; turnCompletion = 0.4; } else if (flYD <= 45) { activity = ACT_GESTURE_TURN_LEFT45; weight = flYD / 45; turnCompletion = 0.4; } else { activity = ACT_GESTURE_TURN_LEFT90; weight = flYD / 90; turnCompletion = 0.36; }
int seq = SelectWeightedSequence( activity );
if (scene_flatturn.GetBool() && GetOuter()->IsCurSchedule( SCHED_SCENE_GENERIC )) { Activity flatactivity = activity;
if (activity == ACT_GESTURE_TURN_RIGHT90) { flatactivity = ACT_GESTURE_TURN_RIGHT90_FLAT; } else if (activity == ACT_GESTURE_TURN_RIGHT45) { flatactivity = ACT_GESTURE_TURN_RIGHT45_FLAT; } else if (activity == ACT_GESTURE_TURN_LEFT90) { flatactivity = ACT_GESTURE_TURN_LEFT90_FLAT; } else if (activity == ACT_GESTURE_TURN_LEFT45) { flatactivity = ACT_GESTURE_TURN_LEFT45_FLAT; }
if (flatactivity != activity) { int newseq = SelectWeightedSequence( flatactivity ); if (newseq != ACTIVITY_NOT_AVAILABLE) { seq = newseq; } } }
if (seq != ACTIVITY_NOT_AVAILABLE) { int iLayer = GetOuter()->AddGestureSequence( seq ); if (iLayer != -1) { GetOuter()->SetLayerPriority( iLayer, 100 ); // vary the playback a bit
SetLayerPlaybackRate( iLayer, 1.0 ); float actualDuration = GetOuter()->GetLayerDuration( iLayer );
float rate = random->RandomFloat( 0.5f, 1.1f ); float diff = fabs( flYD ); float speed = (diff / (turnCompletion * actualDuration / rate)) * 0.1f;
speed = clamp( speed, 15.f, 35.f ); speed = MIN( speed, diff );
actualDuration = (diff / (turnCompletion * speed)) * 0.1 ;
GetOuter()->SetLayerDuration( iLayer, actualDuration );
SetLayerWeight( iLayer, weight );
SetYawSpeed( speed );
Remember( bits_MEMORY_TURNING );
// don't overlap the turn portion of the gestures, and don't play them too often
m_flNextTurnGesture = gpGlobals->curtime + MAX( turnCompletion * actualDuration, 0.3 );
/*
if ( GetOuter()->m_debugOverlays & OVERLAY_NPC_SELECTED_BIT ) { Msg( "%.1f : %.2f %.2f : %.2f (%.2f)\n", flYD, weight, speed, actualDuration, turnCompletion * actualDuration ); } */ return true; } else { return false; } } return false; }
//-------------------------------------
#if 0
Activity CAI_BlendedMotor::GetTransitionActivity( ) { AI_Waypoint_t *waypoint = GetNavigator()->GetPath()->GetTransitionWaypoint();
if ( waypoint->Flags() & bits_WP_TO_GOAL ) { if ( waypoint->activity != ACT_INVALID) { return waypoint->activity; }
return GetStoppedActivity( ); }
if (waypoint) waypoint = waypoint->GetNext();
switch(waypoint->NavType() ) { case NAV_JUMP: return ACT_JUMP; // are jumps going to get a movement track added to them?
case NAV_GROUND: return GetNavigator()->GetMovementActivity(); // yuck
case NAV_CLIMB: return ACT_CLIMB_UP; // depends on specifics of climb node
default: return ACT_IDLE; } } #endif
//-------------------------------------
// Purpose: return a velocity that should be hit at the end of the interval to match goal
// Input : flInterval - time interval to consider
// : flGoalDistance - distance to goal
// : flGoalVelocity - desired velocity at goal
// : flCurVelocity - current velocity
// : flIdealVelocity - velocity to go at if goal is too far away
// : flAccelRate - maximum acceleration/deceleration rate
// Output : target velocity at time t+flInterval
//-------------------------------------
float ChangeDistance( float flInterval, float flGoalDistance, float flGoalVelocity, float flCurVelocity, float flIdealVelocity, float flAccelRate, float &flNewDistance, float &flNewVelocity ) { float scale = 1.0; if (flGoalDistance < 0) { flGoalDistance = - flGoalDistance; flCurVelocity = -flCurVelocity; scale = -1.0; }
flNewVelocity = flCurVelocity; flNewDistance = 0.0;
// if I'm too close, just go ahead and set the velocity
if (flGoalDistance < 0.01) { return flGoalVelocity * scale; }
float flGoalAccel = DeltaV( flCurVelocity, flGoalVelocity, flGoalDistance );
flNewVelocity = flCurVelocity;
// --------------------------------------------
// if goal is close enough try to match the goal velocity, else try to go ideal velocity
// --------------------------------------------
if (flGoalAccel < 0 && flGoalAccel < -flAccelRate) { // I need to slow down;
flNewVelocity = flCurVelocity + flGoalAccel * flInterval; if (flNewVelocity < 0) flNewVelocity = 0; } else if (flGoalAccel > 0 && flGoalAccel >= flAccelRate) { // I need to speed up
flNewVelocity = flCurVelocity + flGoalAccel * flInterval; if (flNewVelocity > flGoalVelocity) flNewVelocity = flGoalVelocity; } else if (flNewVelocity < flIdealVelocity) { // speed up to ideal velocity;
flNewVelocity = flCurVelocity + flAccelRate * flInterval; if (flNewVelocity > flIdealVelocity) flNewVelocity = flIdealVelocity; // don't overshoot
if (0.5*(flNewVelocity + flCurVelocity) * flInterval > flGoalDistance) { flNewVelocity = 0.5 * (2 * flGoalDistance / flInterval - flCurVelocity); } } else if (flNewVelocity > flIdealVelocity) { // slow down to ideal velocity;
flNewVelocity = flCurVelocity - flAccelRate * flInterval; if (flNewVelocity < flIdealVelocity) flNewVelocity = flIdealVelocity; }
float flDist = 0.5*(flNewVelocity + flCurVelocity) * flInterval;
if (flDist > flGoalDistance) { flDist = flGoalDistance; flNewVelocity = flGoalVelocity; }
flNewVelocity = flNewVelocity * scale;
flNewDistance = (flGoalDistance - flDist) * scale; return 0.0; }
//-----------------------------------------------------------------------------
|