|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=====================================================================================//
#ifdef PROTECTED_THINGS_ENABLE
#undef PROTECTED_THINGS_ENABLE
#endif
#include "platform.h"
// HACK: Need ShellExecute for PSD updates
#ifdef IS_WINDOWS_PC
#include <windows.h>
#include <shellapi.h>
#pragma comment ( lib, "shell32" )
#endif
#include "materialsystem_global.h"
#include "shaderapi/ishaderapi.h"
#include "itextureinternal.h"
#include "utlsymbol.h"
#include "time.h"
#include <sys/types.h>
#include <sys/stat.h>
#include "bitmap/imageformat.h"
#include "bitmap/tgaloader.h"
#include "bitmap/tgawriter.h"
#ifdef _WIN32
#include "direct.h"
#endif
#include "colorspace.h"
#include "string.h"
#include <malloc.h>
#include <stdlib.h>
#include "utlmemory.h"
#include "IHardwareConfigInternal.h"
#include "filesystem.h"
#include "tier1/strtools.h"
#include "vtf/vtf.h"
#include "materialsystem/materialsystem_config.h"
#include "mempool.h"
#include "texturemanager.h"
#include "utlbuffer.h"
#include "pixelwriter.h"
#include "tier1/callqueue.h"
#include "tier1/UtlStringMap.h"
#include "filesystem/IQueuedLoader.h"
#include "tier2/fileutils.h"
#include "filesystem.h"
#include "tier2/p4helpers.h"
#include "tier2/tier2.h"
#include "p4lib/ip4.h"
#include "ctype.h"
#include "ifilelist.h"
#include "tier0/icommandline.h"
#include "tier0/vprof.h"
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
// this allows the command line to force the "all mips" flag to on for all textures
bool g_bForceTextureAllMips = false;
#if defined(IS_WINDOWS_PC)
static void ConVarChanged_mat_managedtextures( IConVar *var, const char *pOldValue, float flOldValue ); static ConVar mat_managedtextures( "mat_managedtextures", "1", FCVAR_ARCHIVE, "If set, allows Direct3D to manage texture uploading at the cost of extra system memory", &ConVarChanged_mat_managedtextures ); static void ConVarChanged_mat_managedtextures( IConVar *var, const char *pOldValue, float flOldValue ) { if ( mat_managedtextures.GetBool() != (flOldValue != 0) ) { materials->ReleaseResources(); materials->ReacquireResources(); } } #endif
static ConVar mat_spew_on_texture_size( "mat_spew_on_texture_size", "0", 0, "Print warnings about vtf content that isn't of the expected size" ); static ConVar mat_lodin_time( "mat_lodin_time", "5.0", FCVAR_DEVELOPMENTONLY ); static ConVar mat_lodin_hidden_pop( "mat_lodin_hidden_pop", "1", FCVAR_DEVELOPMENTONLY );
#define TEXTURE_FNAME_EXTENSION ".vtf"
#define TEXTURE_FNAME_EXTENSION_LEN 4
#define TEXTURE_FNAME_EXTENSION_NORMAL "_normal.vtf"
#ifdef STAGING_ONLY
ConVar mat_spewalloc( "mat_spewalloc", "0" ); #else
ConVar mat_spewalloc( "mat_spewalloc", "0", FCVAR_ARCHIVE | FCVAR_DEVELOPMENTONLY ); #endif
struct TexDimensions_t { uint16 m_nWidth; uint16 m_nHeight; uint16 m_nMipCount; uint16 m_nDepth;
TexDimensions_t( uint16 nWidth = 0, uint nHeight = 0, uint nMipCount = 0, uint16 nDepth = 1 ) : m_nWidth( nWidth ) , m_nHeight( nHeight ) , m_nMipCount( nMipCount ) , m_nDepth( nDepth ) { } };
#ifdef STAGING_ONLY
struct TexInfo_t { CUtlString m_Name; unsigned short m_nWidth; unsigned short m_nHeight; unsigned short m_nDepth; unsigned short m_nMipCount; unsigned short m_nFrameCount; unsigned short m_nCopies; ImageFormat m_Format;
uint64 ComputeTexSize() const { uint64 total = 0; unsigned short width = m_nWidth; unsigned short height = m_nHeight; unsigned short depth = m_nDepth;
for ( int mip = 0; mip < m_nMipCount; ++mip ) { // Make sure that mip count lines up with the count
Assert( width > 1 || height > 1 || depth > 1 || ( mip == ( m_nMipCount - 1 ) ) );
total += ImageLoader::GetMemRequired( width, height, depth, m_Format, false );
width = Max( 1, width >> 1 ); height = Max( 1, height >> 1 ); depth = Max( 1, depth >> 1 ); }
return total * Min( (unsigned short) 1, m_nFrameCount ) * Min( (unsigned short) 1, m_nCopies ); }
TexInfo_t( const char* name = "", unsigned short w = 0, unsigned short h = 0, unsigned short d = 0, unsigned short mips = 0, unsigned short frames = 0, unsigned short copies = 0, ImageFormat fmt = IMAGE_FORMAT_UNKNOWN ) : m_nWidth( w ) , m_nHeight( h ) , m_nDepth( d ) , m_nMipCount( mips ) , m_nFrameCount( frames ) , m_nCopies( copies ) , m_Format( fmt ) { if ( name && name[0] ) m_Name = name; else m_Name = "<unnamed>"; } };
CUtlMap< ITexture*, TexInfo_t > g_currentTextures( DefLessFunc( ITexture* ) ); #endif
//-----------------------------------------------------------------------------
// Internal texture flags
//-----------------------------------------------------------------------------
enum InternalTextureFlags { TEXTUREFLAGSINTERNAL_ERROR = 0x00000001, TEXTUREFLAGSINTERNAL_ALLOCATED = 0x00000002, TEXTUREFLAGSINTERNAL_PRELOADED = 0x00000004, // 360: textures that went through the preload process
TEXTUREFLAGSINTERNAL_QUEUEDLOAD = 0x00000008, // 360: load using the queued loader
TEXTUREFLAGSINTERNAL_EXCLUDED = 0x00000020, // actual exclusion state
TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE = 0x00000040, // desired exclusion state
TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET = 0x00000080, // 360: should only allocate texture bits upon first resolve, destroy at level end
};
static int GetThreadId(); static bool SLoadTextureBitsFromFile( IVTFTexture **ppOutVtfTexture, FileHandle_t hFile, unsigned int nFlags, TextureLODControlSettings_t* pInOutCachedFileLodSettings, int nDesiredDimensionLimit, unsigned short* pOutStreamedMips, const char* pName, const char* pCacheFileName, TexDimensions_t* pOptOutMappingDims = NULL, TexDimensions_t* pOptOutActualDims = NULL, TexDimensions_t* pOptOutAllocatedDims = NULL, unsigned int* pOptOutStripFlags = NULL ); static int ComputeActualMipCount( const TexDimensions_t& actualDims, unsigned int nFlags ); static int ComputeMipSkipCount( const char* pName, const TexDimensions_t& mappingDims, bool bIgnorePicmip, IVTFTexture *pOptVTFTexture, unsigned int nFlags, int nDesiredDimensionLimit, unsigned short* pOutStreamedMips, TextureLODControlSettings_t* pInOutCachedFileLodSettings, TexDimensions_t* pOptOutActualDims, TexDimensions_t* pOptOutAllocatedDims, unsigned int* pOptOutStripFlags ); static int GetOptimalReadBuffer( CUtlBuffer *pOutOptimalBuffer, FileHandle_t hFile, int nFileSize ); static void FreeOptimalReadBuffer( int nMaxSize );
//-----------------------------------------------------------------------------
// Use Warning to show texture flags.
//-----------------------------------------------------------------------------
static void PrintFlags( unsigned int flags ) { if ( flags & TEXTUREFLAGS_NOMIP ) { Warning( "TEXTUREFLAGS_NOMIP|" ); } if ( flags & TEXTUREFLAGS_NOLOD ) { Warning( "TEXTUREFLAGS_NOLOD|" ); } if ( flags & TEXTUREFLAGS_SRGB ) { Warning( "TEXTUREFLAGS_SRGB|" ); } if ( flags & TEXTUREFLAGS_POINTSAMPLE ) { Warning( "TEXTUREFLAGS_POINTSAMPLE|" ); } if ( flags & TEXTUREFLAGS_TRILINEAR ) { Warning( "TEXTUREFLAGS_TRILINEAR|" ); } if ( flags & TEXTUREFLAGS_CLAMPS ) { Warning( "TEXTUREFLAGS_CLAMPS|" ); } if ( flags & TEXTUREFLAGS_CLAMPT ) { Warning( "TEXTUREFLAGS_CLAMPT|" ); } if ( flags & TEXTUREFLAGS_HINT_DXT5 ) { Warning( "TEXTUREFLAGS_HINT_DXT5|" ); } if ( flags & TEXTUREFLAGS_ANISOTROPIC ) { Warning( "TEXTUREFLAGS_ANISOTROPIC|" ); } if ( flags & TEXTUREFLAGS_PROCEDURAL ) { Warning( "TEXTUREFLAGS_PROCEDURAL|" ); } if ( flags & TEXTUREFLAGS_ALL_MIPS ) { Warning( "TEXTUREFLAGS_ALL_MIPS|" ); } if ( flags & TEXTUREFLAGS_SINGLECOPY ) { Warning( "TEXTUREFLAGS_SINGLECOPY|" ); } if ( flags & TEXTUREFLAGS_STAGING_MEMORY ) { Warning( "TEXTUREFLAGS_STAGING_MEMORY|" ); } if ( flags & TEXTUREFLAGS_IGNORE_PICMIP ) { Warning( "TEXTUREFLAGS_IGNORE_PICMIP|" ); } if ( flags & TEXTUREFLAGS_IMMEDIATE_CLEANUP ) { Warning( "TEXTUREFLAGS_IMMEDIATE_CLEANUP|" ); } }
namespace TextureLodOverride { struct OverrideInfo { OverrideInfo() : x( 0 ), y( 0 ) {} OverrideInfo( int8 x_, int8 y_ ) : x( x_ ), y( y_ ) {} int8 x, y; };
// Override map
typedef CUtlStringMap< OverrideInfo > OverrideMap_t; OverrideMap_t s_OverrideMap;
// Retrieves the override info adjustments
OverrideInfo Get( char const *szName ) { UtlSymId_t idx = s_OverrideMap.Find( szName ); if ( idx != s_OverrideMap.InvalidIndex() ) return s_OverrideMap[ idx ]; else return OverrideInfo(); }
// Combines the existing override info adjustments with the given one
void Add( char const *szName, OverrideInfo oi ) { OverrideInfo oiex = Get( szName ); oiex.x += oi.x; oiex.y += oi.y; s_OverrideMap[ szName ] = oiex; }
}; // end namespace TextureLodOverride
class CTextureStreamingJob;
//-----------------------------------------------------------------------------
// Base texture class
//-----------------------------------------------------------------------------
class CTexture : public ITextureInternal { public: CTexture(); virtual ~CTexture();
virtual const char *GetName( void ) const; const char *GetTextureGroupName( void ) const;
// Stats about the texture itself
virtual ImageFormat GetImageFormat() const; NormalDecodeMode_t GetNormalDecodeMode() const { return NORMAL_DECODE_NONE; } virtual int GetMappingWidth() const; virtual int GetMappingHeight() const; virtual int GetActualWidth() const; virtual int GetActualHeight() const; virtual int GetNumAnimationFrames() const; virtual bool IsTranslucent() const; virtual void GetReflectivity( Vector& reflectivity );
// Reference counting
virtual void IncrementReferenceCount( ); virtual void DecrementReferenceCount( ); virtual int GetReferenceCount( );
// Used to modify the texture bits (procedural textures only)
virtual void SetTextureRegenerator( ITextureRegenerator *pTextureRegen );
// Little helper polling methods
virtual bool IsNormalMap( ) const; virtual bool IsCubeMap( void ) const; virtual bool IsRenderTarget( ) const; virtual bool IsTempRenderTarget( void ) const; virtual bool IsProcedural() const; virtual bool IsMipmapped() const; virtual bool IsError() const;
// For volume textures
virtual bool IsVolumeTexture() const; virtual int GetMappingDepth() const; virtual int GetActualDepth() const;
// Various ways of initializing the texture
void InitFileTexture( const char *pTextureFile, const char *pTextureGroupName ); void InitProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags, ITextureRegenerator* generator = NULL );
// Releases the texture's hw memory
void ReleaseMemory();
virtual void OnRestore();
// Sets the filtering modes on the texture we're modifying
void SetFilteringAndClampingMode( bool bOnlyLodValues = false ); void Download( Rect_t *pRect = NULL, int nAdditionalCreationFlags = 0 );
// Loads up information about the texture
virtual void Precache();
// FIXME: Bogus methods... can we please delete these?
virtual void GetLowResColorSample( float s, float t, float *color ) const;
// Gets texture resource data of the specified type.
// Params:
// eDataType type of resource to retrieve.
// pnumBytes on return is the number of bytes available in the read-only data buffer or is undefined
// Returns:
// pointer to the resource data, or NULL. Note that the data from this pointer can disappear when
// the texture goes away - you want to copy this data!
virtual void *GetResourceData( uint32 eDataType, size_t *pNumBytes ) const;
virtual int GetApproximateVidMemBytes( void ) const;
// Stretch blit the framebuffer into this texture.
virtual void CopyFrameBufferToMe( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL ); virtual void CopyMeToFrameBuffer( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL );
virtual ITexture *GetEmbeddedTexture( int nIndex );
// Get the shaderapi texture handle associated w/ a particular frame
virtual ShaderAPITextureHandle_t GetTextureHandle( int nFrame, int nChannel = 0 );
// Sets the texture as the render target
virtual void Bind( Sampler_t sampler ); virtual void Bind( Sampler_t sampler1, int nFrame, Sampler_t sampler2 = (Sampler_t) -1 ); virtual void BindVertexTexture( VertexTextureSampler_t stage, int nFrame );
// Set this texture as a render target
bool SetRenderTarget( int nRenderTargetID );
// Set this texture as a render target (optionally set depth texture as depth buffer as well)
bool SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture);
virtual void MarkAsPreloaded( bool bSet ); virtual bool IsPreloaded() const;
virtual void MarkAsExcluded( bool bSet, int nDimensionsLimit ); virtual bool UpdateExcludedState( void );
// Retrieve the vtf flags mask
virtual unsigned int GetFlags( void ) const;
virtual void ForceLODOverride( int iNumLodsOverrideUpOrDown );
void GetFilename( char *pOut, int maxLen ) const; virtual void ReloadFilesInList( IFileList *pFilesToReload );
// Save texture to a file.
virtual bool SaveToFile( const char *fileName ); // Load the texture from a file.
bool AsyncReadTextureFromFile( IVTFTexture* pVTFTexture, unsigned int nAdditionalCreationFlags ); void AsyncCancelReadTexture( );
virtual void Map( void** pOutBits, int* pOutPitch ); virtual void Unmap();
virtual ResidencyType_t GetCurrentResidence() const { return m_residenceCurrent; } virtual ResidencyType_t GetTargetResidence() const { return m_residenceTarget; } virtual bool MakeResident( ResidencyType_t newResidence ); virtual void UpdateLodBias();
protected: bool IsDepthTextureFormat( ImageFormat fmt ); void ReconstructTexture( bool bCopyFromCurrent ); void GetCacheFilename( char* pOutBuffer, int bufferSize ) const; bool GetFileHandle( FileHandle_t *pOutFileHandle, char *pCacheFilename, char **ppResolvedFilename ) const;
void ReconstructPartialTexture( const Rect_t *pRect ); bool HasBeenAllocated() const; void WriteDataToShaderAPITexture( int nFrameCount, int nFaceCount, int nFirstFace, int nMipCount, IVTFTexture *pVTFTexture, ImageFormat fmt );
// Initializes/shuts down the texture
void Init( int w, int h, int d, ImageFormat fmt, int iFlags, int iFrameCount ); void Shutdown();
// Sets the texture name
void SetName( const char* pName );
// Assigns/releases texture IDs for our animation frames
void AllocateTextureHandles( ); void ReleaseTextureHandles( );
// Calculates info about whether we can make the texture smaller and by how much
// Returns the number of skipped mip levels
int ComputeActualSize( bool bIgnorePicmip = false, IVTFTexture *pVTFTexture = NULL, bool bTextureMigration = false );
// Computes the actual format of the texture given a desired src format
ImageFormat ComputeActualFormat( ImageFormat srcFormat );
// Creates/releases the shader api texture
bool AllocateShaderAPITextures(); void FreeShaderAPITextures(); void MigrateShaderAPITextures(); void NotifyUnloadedFile();
// Download bits
void DownloadTexture( Rect_t *pRect, bool bCopyFromCurrent = false ); void ReconstructTextureBits(Rect_t *pRect);
// Gets us modifying a particular frame of our texture
void Modify( int iFrame );
// Sets the texture clamping state on the currently modified frame
void SetWrapState( );
// Sets the texture filtering state on the currently modified frame
void SetFilterState();
// Sets the lod state on the currently modified frame
void SetLodState();
// Loads the texture bits from a file. Optionally provides absolute path
IVTFTexture *LoadTextureBitsFromFile( char *pCacheFileName, char **pResolvedFilename ); IVTFTexture *HandleFileLoadFailedTexture( IVTFTexture *pVTFTexture );
// Generates the procedural bits
IVTFTexture *ReconstructProceduralBits( ); IVTFTexture *ReconstructPartialProceduralBits( const Rect_t *pRect, Rect_t *pActualRect );
// Sets up debugging texture bits, if appropriate
bool SetupDebuggingTextures( IVTFTexture *pTexture );
// Generate a texture that shows the various mip levels
void GenerateShowMipLevelsTextures( IVTFTexture *pTexture );
void Cleanup( void );
// Converts a source image read from disk into its actual format
bool ConvertToActualFormat( IVTFTexture *pTexture );
// Builds the low-res image from the texture
void LoadLowResTexture( IVTFTexture *pTexture ); void CopyLowResImageToTexture( IVTFTexture *pTexture ); void GetDownloadFaceCount( int &nFirstFace, int &nFaceCount ); void ComputeMipLevelSubRect( const Rect_t* pSrcRect, int nMipLevel, Rect_t *pSubRect );
IVTFTexture *GetScratchVTFTexture( ); void ReleaseScratchVTFTexture( IVTFTexture* tex );
void ApplyRenderTargetSizeMode( int &width, int &height, ImageFormat fmt );
virtual void CopyToStagingTexture( ITexture* pDstTex );
virtual void SetErrorTexture( bool _isErrorTexture );
// Texture streaming
void MakeNonResident(); void MakePartiallyResident(); bool MakeFullyResident();
void CancelStreamingJob( bool bJobMustExist = true ); void OnStreamingJobComplete( ResidencyType_t newResidenceCurrent );
protected: #ifdef _DEBUG
char *m_pDebugName; #endif
// Reflectivity vector
Vector m_vecReflectivity;
CUtlSymbol m_Name;
// What texture group this texture is in (winds up setting counters based on the group name,
// then the budget panel views the counters).
CUtlSymbol m_TextureGroupName;
unsigned int m_nFlags; unsigned int m_nInternalFlags;
CInterlockedInt m_nRefCount;
// This is the *desired* image format, which may or may not represent reality
ImageFormat m_ImageFormat;
// mapping dimensions and actual dimensions can/will vary due to user settings, hardware support, etc.
// Allocated is what is physically allocated on the hardware at this instant, and considers texture streaming.
TexDimensions_t m_dimsMapping; TexDimensions_t m_dimsActual; TexDimensions_t m_dimsAllocated;
// This is the iWidth/iHeight for whatever is downloaded to the card, ignoring current streaming settings
// Some callers want to know how big the texture is if all data was present, and that's this.
// TODO: Rename this before check in.
unsigned short m_nFrameCount;
// These are the values for what is truly allocated on the card, including streaming settings.
unsigned short m_nStreamingMips;
unsigned short m_nOriginalRTWidth; // The values they initially specified. We generated a different width
unsigned short m_nOriginalRTHeight; // and height based on screen size and the flags they specify.
unsigned char m_LowResImageWidth; unsigned char m_LowResImageHeight;
unsigned short m_nDesiredDimensionLimit; // part of texture exclusion
unsigned short m_nActualDimensionLimit; // value not necessarily accurate, but mismatch denotes dirty state
// m_pStreamingJob is refcounted, but it is not safe to call SafeRelease directly on it--you must call
// CancelStreamingJob to ensure that releasing it doesn't cause a crash.
CTextureStreamingJob* m_pStreamingJob; IVTFTexture* m_pStreamingVTF; ResidencyType_t m_residenceTarget; ResidencyType_t m_residenceCurrent; int m_lodClamp; int m_lastLodBiasAdjustFrame; float m_lodBiasInitial; float m_lodBiasCurrent; double m_lodBiasStartTime;
// If the read failed, this will be true. We can't just return from the function because the call may
// happen in the async thread.
bool m_bStreamingFileReadFailed;
// The set of texture ids for each animation frame
ShaderAPITextureHandle_t *m_pTextureHandles;
TextureLODControlSettings_t m_cachedFileLodSettings;
// lowresimage info - used for getting color data from a texture
// without having a huge system mem overhead.
// FIXME: We should keep this in compressed form. .is currently decompressed at load time.
unsigned char *m_pLowResImage;
ITextureRegenerator *m_pTextureRegenerator;
// Used to help decide whether or not to recreate the render target if AA changes.
RenderTargetType_t m_nOriginalRenderTargetType; RenderTargetSizeMode_t m_RenderTargetSizeMode;
// Fixed-size allocator
// DECLARE_FIXEDSIZE_ALLOCATOR( CTexture );
public: void InitRenderTarget( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, ImageFormat fmt, RenderTargetType_t type, unsigned int textureFlags, unsigned int renderTargetFlags ); virtual void DeleteIfUnreferenced();
void FixupTexture( const void *pData, int nSize, LoaderError_t loaderError );
void SwapContents( ITexture *pOther );
protected: // private data, generally from VTF resource extensions
struct DataChunk { void Allocate( unsigned int numBytes ) { m_pvData = new unsigned char[ numBytes ]; m_numBytes = numBytes; } void Deallocate() const { delete [] m_pvData; } unsigned int m_eType; unsigned int m_numBytes; unsigned char *m_pvData; }; CUtlVector< DataChunk > m_arrDataChunks;
struct ScratchVTF { ScratchVTF( CTexture* _tex ) : m_pParent( _tex ), m_pScratchVTF( _tex->GetScratchVTFTexture( ) ) { } ~ScratchVTF( ) { if ( m_pScratchVTF ) m_pParent->ReleaseScratchVTFTexture( m_pScratchVTF ); m_pScratchVTF = NULL; }
IVTFTexture* Get() const { return m_pScratchVTF; } void TakeOwnership() { m_pScratchVTF = NULL; }
CTexture* m_pParent; IVTFTexture* m_pScratchVTF; };
friend class CTextureStreamingJob; };
class CTextureStreamingJob : public IAsyncTextureOperationReceiver { public: CTextureStreamingJob( CTexture* pTex ) : m_referenceCount( 0 ), m_pOwner( pTex ) { Assert( m_pOwner != NULL ); m_pOwner->AddRef(); } virtual ~CTextureStreamingJob() { SafeRelease( &m_pOwner ); }
virtual int AddRef() OVERRIDE { return ++m_referenceCount; } virtual int Release() OVERRIDE { int retVal = --m_referenceCount; Assert( retVal >= 0 ); if ( retVal == 0 ) { delete this; } return retVal; } virtual int GetRefCount() const OVERRIDE { return m_referenceCount; }
virtual void OnAsyncCreateComplete( ITexture* pTex, void* pExtraArgs ) OVERRIDE { Assert( !"unimpl" ); } virtual void OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs ) OVERRIDE; virtual void OnAsyncMapComplete( ITexture* pTex, void* pExtraArgs, void* pMemory, int nPitch ) { Assert( !"unimpl" ); } virtual void OnAsyncReadbackBegin( ITexture* pDst, ITexture* pSrc, void* pExtraArgs ) OVERRIDE { Assert( !"unimpl" ); }
void ForgetOwner( ITextureInternal* pTex ) { Assert( pTex == m_pOwner ); SafeRelease( &m_pOwner ); }
private: CInterlockedInt m_referenceCount; CTexture* m_pOwner; };
//////////////////////////////////////////////////////////////////////////
//
// CReferenceToHandleTexture is a special implementation of ITexture
// to be used solely for binding the texture handle when rendering.
// It is used when a D3D texture handle is available, but should be used
// at a higher level of abstraction requiring an ITexture or ITextureInternal.
//
//////////////////////////////////////////////////////////////////////////
class CReferenceToHandleTexture : public ITextureInternal { public: CReferenceToHandleTexture(); virtual ~CReferenceToHandleTexture();
virtual const char *GetName( void ) const { return m_Name.String(); } const char *GetTextureGroupName( void ) const { return m_TextureGroupName.String(); }
// Stats about the texture itself
virtual ImageFormat GetImageFormat() const { return IMAGE_FORMAT_UNKNOWN; } virtual NormalDecodeMode_t GetNormalDecodeMode() const { return NORMAL_DECODE_NONE; } virtual int GetMappingWidth() const { return 1; } virtual int GetMappingHeight() const { return 1; } virtual int GetActualWidth() const { return 1; } virtual int GetActualHeight() const { return 1; } virtual int GetNumAnimationFrames() const { return 1; } virtual bool IsTranslucent() const { return false; } virtual void GetReflectivity( Vector& reflectivity ) { reflectivity.Zero(); }
// Reference counting
virtual void IncrementReferenceCount( ) { ++ m_nRefCount; } virtual void DecrementReferenceCount( ) { -- m_nRefCount; } virtual int GetReferenceCount( ) { return m_nRefCount; }
// Used to modify the texture bits (procedural textures only)
virtual void SetTextureRegenerator( ITextureRegenerator *pTextureRegen ) { NULL; }
// Little helper polling methods
virtual bool IsNormalMap( ) const { return false; } virtual bool IsCubeMap( void ) const { return false; } virtual bool IsRenderTarget( ) const { return false; } virtual bool IsTempRenderTarget( void ) const { return false; } virtual bool IsProcedural() const { return true; } virtual bool IsMipmapped() const { return false; } virtual bool IsError() const { return false; }
// For volume textures
virtual bool IsVolumeTexture() const { return false; } virtual int GetMappingDepth() const { return 1; } virtual int GetActualDepth() const { return 1; }
// Releases the texture's hw memory
void ReleaseMemory() { NULL; }
virtual void OnRestore() { NULL; }
// Sets the filtering modes on the texture we're modifying
void SetFilteringAndClampingMode( bool bOnlyLodValues = false ) { NULL; } void Download( Rect_t *pRect = NULL, int nAdditionalCreationFlags = 0 ) { NULL; }
// Loads up information about the texture
virtual void Precache() { NULL; }
// FIXME: Bogus methods... can we please delete these?
virtual void GetLowResColorSample( float s, float t, float *color ) const { NULL; }
// Gets texture resource data of the specified type.
// Params:
// eDataType type of resource to retrieve.
// pnumBytes on return is the number of bytes available in the read-only data buffer or is undefined
// Returns:
// pointer to the resource data, or NULL. Note that the data from this pointer can disappear when
// the texture goes away - you want to copy this data!
virtual void *GetResourceData( uint32 eDataType, size_t *pNumBytes ) const { return NULL; }
virtual int GetApproximateVidMemBytes( void ) const { return 32; }
// Stretch blit the framebuffer into this texture.
virtual void CopyFrameBufferToMe( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL ) { NULL; } virtual void CopyMeToFrameBuffer( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL ) { NULL; }
virtual ITexture *GetEmbeddedTexture( int nIndex ) { return ( nIndex == 0 ) ? this : NULL; }
// Get the shaderapi texture handle associated w/ a particular frame
virtual ShaderAPITextureHandle_t GetTextureHandle( int nFrame, int nTextureChannel = 0 ) { return m_hTexture; }
// Bind the texture
virtual void Bind( Sampler_t sampler ); virtual void Bind( Sampler_t sampler1, int nFrame, Sampler_t sampler2 = (Sampler_t) -1 ); virtual void BindVertexTexture( VertexTextureSampler_t stage, int nFrame );
// Set this texture as a render target
bool SetRenderTarget( int nRenderTargetID ) { return SetRenderTarget( nRenderTargetID, NULL ); }
// Set this texture as a render target (optionally set depth texture as depth buffer as well)
bool SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture) { return false; }
virtual void MarkAsPreloaded( bool bSet ) { NULL; } virtual bool IsPreloaded() const { return true; }
virtual void MarkAsExcluded( bool bSet, int nDimensionsLimit ) { NULL; } virtual bool UpdateExcludedState( void ) { return true; }
// Retrieve the vtf flags mask
virtual unsigned int GetFlags( void ) const { return 0; }
virtual void ForceLODOverride( int iNumLodsOverrideUpOrDown ) { NULL; }
virtual void ReloadFilesInList( IFileList *pFilesToReload ) {}
// Save texture to a file.
virtual bool SaveToFile( const char *fileName ) { return false; }
virtual bool AsyncReadTextureFromFile( IVTFTexture* pVTFTexture, unsigned int nAdditionalCreationFlags ) { Assert( !"Should never get here." ); return false; } virtual void AsyncCancelReadTexture() { Assert( !"Should never get here." ); }
virtual void CopyToStagingTexture( ITexture* pDstTex ) { Assert( !"Should never get here." ); };
// Map and unmap. These can fail. And can cause a very significant perf penalty. Be very careful with them.
virtual void Map( void** pOutBits, int* pOutPitch ) { } virtual void Unmap() { }
virtual ResidencyType_t GetCurrentResidence() const { return RESIDENT_FULL; } virtual ResidencyType_t GetTargetResidence() const { return RESIDENT_FULL; } virtual bool MakeResident( ResidencyType_t newResidence ) { Assert( !"Unimpl" ); return true; } virtual void UpdateLodBias() {}
virtual void SetErrorTexture( bool isErrorTexture ) { }
protected: #ifdef _DEBUG
char *m_pDebugName; #endif
CUtlSymbol m_Name;
// What texture group this texture is in (winds up setting counters based on the group name,
// then the budget panel views the counters).
CUtlSymbol m_TextureGroupName;
// The set of texture ids for each animation frame
ShaderAPITextureHandle_t m_hTexture;
// Refcount
int m_nRefCount;
public: virtual void DeleteIfUnreferenced();
void FixupTexture( const void *pData, int nSize, LoaderError_t loaderError ) { NULL; }
void SwapContents( ITexture *pOther ) { NULL; }
public: void SetName( char const *szName ); void InitFromHandle( const char *pTextureName, const char *pTextureGroupName, ShaderAPITextureHandle_t hTexture ); };
CReferenceToHandleTexture::CReferenceToHandleTexture() : m_hTexture( INVALID_SHADERAPI_TEXTURE_HANDLE ), #ifdef _DEBUG
m_pDebugName( NULL ), #endif
m_nRefCount( 0 ) { NULL; }
CReferenceToHandleTexture::~CReferenceToHandleTexture() { #ifdef _DEBUG
if ( m_nRefCount != 0 ) { Warning( "Reference Count(%d) != 0 in ~CReferenceToHandleTexture for texture \"%s\"\n", m_nRefCount, m_Name.String() ); } if ( m_pDebugName ) { delete [] m_pDebugName; } #endif
}
void CReferenceToHandleTexture::SetName( char const *szName ) { // normalize and convert to a symbol
char szCleanName[MAX_PATH]; m_Name = NormalizeTextureName( szName, szCleanName, sizeof( szCleanName ) );
#ifdef _DEBUG
if ( m_pDebugName ) { delete [] m_pDebugName; } int nLen = V_strlen( szCleanName ) + 1; m_pDebugName = new char[nLen]; V_memcpy( m_pDebugName, szCleanName, nLen ); #endif
}
void CReferenceToHandleTexture::InitFromHandle( const char *pTextureName, const char *pTextureGroupName, ShaderAPITextureHandle_t hTexture ) { SetName( pTextureName ); m_TextureGroupName = pTextureGroupName; m_hTexture = hTexture; }
void CReferenceToHandleTexture::Bind( Sampler_t sampler ) { if ( g_pShaderDevice->IsUsingGraphics() ) { g_pShaderAPI->BindTexture( sampler, m_hTexture ); } }
// TODO: make paired textures work with mat_texture_list
void CReferenceToHandleTexture::Bind( Sampler_t sampler1, int nFrame, Sampler_t sampler2 /* = -1 */ ) { if ( g_pShaderDevice->IsUsingGraphics() ) { g_pShaderAPI->BindTexture( sampler1, m_hTexture ); } }
void CReferenceToHandleTexture::BindVertexTexture( VertexTextureSampler_t sampler, int nFrame ) { if ( g_pShaderDevice->IsUsingGraphics() ) { g_pShaderAPI->BindVertexTexture( sampler, m_hTexture ); } }
void CReferenceToHandleTexture::DeleteIfUnreferenced() { if ( m_nRefCount > 0 ) return;
TextureManager()->RemoveTexture( this ); }
//-----------------------------------------------------------------------------
// Fixed-size allocator
//-----------------------------------------------------------------------------
//DEFINE_FIXEDSIZE_ALLOCATOR( CTexture, 1024, true );
//-----------------------------------------------------------------------------
// Static instance of VTF texture
//-----------------------------------------------------------------------------
#define MAX_RENDER_THREADS 4
// For safety's sake, we allow any of the threads that intersect with rendering
// to have their own state vars. In practice, we expect only the matqueue thread
// and the main thread to ever hit s_pVTFTexture.
static IVTFTexture *s_pVTFTexture[ MAX_RENDER_THREADS ] = { NULL };
// We only expect that the main thread or the matqueue thread to actually touch
// these, but we still need a NULL and size of 0 for the other threads.
static void *s_pOptimalReadBuffer[ MAX_RENDER_THREADS ] = { NULL }; static int s_nOptimalReadBufferSize[ MAX_RENDER_THREADS ] = { 0 };
//-----------------------------------------------------------------------------
// Class factory methods
//-----------------------------------------------------------------------------
ITextureInternal *ITextureInternal::CreateFileTexture( const char *pFileName, const char *pTextureGroupName ) { CTexture *pTex = new CTexture; pTex->InitFileTexture( pFileName, pTextureGroupName ); return pTex; }
ITextureInternal *ITextureInternal::CreateReferenceTextureFromHandle( const char *pTextureName, const char *pTextureGroupName, ShaderAPITextureHandle_t hTexture ) { CReferenceToHandleTexture *pTex = new CReferenceToHandleTexture; pTex->InitFromHandle( pTextureName, pTextureGroupName, hTexture ); return pTex; }
ITextureInternal *ITextureInternal::CreateProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags, ITextureRegenerator *generator) { CTexture *pTex = new CTexture; pTex->InitProceduralTexture( pTextureName, pTextureGroupName, w, h, d, fmt, nFlags, generator ); pTex->IncrementReferenceCount(); return pTex; }
// GR - named RT
ITextureInternal *ITextureInternal::CreateRenderTarget( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, ImageFormat fmt, RenderTargetType_t type, unsigned int textureFlags, unsigned int renderTargetFlags ) { CTexture *pTex = new CTexture; pTex->InitRenderTarget( pRTName, w, h, sizeMode, fmt, type, textureFlags, renderTargetFlags );
return pTex; }
//-----------------------------------------------------------------------------
// Rebuild and exisiting render target in place.
//-----------------------------------------------------------------------------
void ITextureInternal::ChangeRenderTarget( ITextureInternal *pTex, int w, int h, RenderTargetSizeMode_t sizeMode, ImageFormat fmt, RenderTargetType_t type, unsigned int textureFlags, unsigned int renderTargetFlags ) { pTex->ReleaseMemory(); dynamic_cast< CTexture * >(pTex)->InitRenderTarget( pTex->GetName(), w, h, sizeMode, fmt, type, textureFlags, renderTargetFlags ); }
void ITextureInternal::Destroy( ITextureInternal *pTex, bool bSkipTexMgrCheck ) { #ifdef STAGING_ONLY
if ( !bSkipTexMgrCheck && TextureManager()->HasPendingTextureDestroys() ) { // Multithreading badness. This will cause a crash later! Grab JohnS or McJohn know!
DebuggerBreakIfDebugging_StagingOnly(); } #endif
int iIndex = g_pTextureRefList->Find( static_cast<ITexture*>( pTex ) ); if ( iIndex != g_pTextureRefList->InvalidIndex () ) { if ( g_pTextureRefList->Element(iIndex) != 0 ) { int currentCount = g_pTextureRefList->Element( iIndex ); Warning( "Destroying a texture that is in the queue: %s (%p): %d!\n", pTex->GetName(), pTex, currentCount ); } }
delete pTex; }
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CTexture::CTexture() : m_ImageFormat( IMAGE_FORMAT_UNKNOWN ) { m_dimsActual.m_nMipCount = 0; m_dimsMapping.m_nWidth = 0; m_dimsMapping.m_nHeight = 0; m_dimsMapping.m_nDepth = 1; m_dimsActual.m_nWidth = 0; m_dimsActual.m_nHeight = 0; m_dimsActual.m_nDepth = 1; m_dimsAllocated.m_nWidth = 0; m_dimsAllocated.m_nHeight = 0; m_dimsAllocated.m_nDepth = 0; m_dimsAllocated.m_nMipCount = 0; m_nStreamingMips = 0; m_nRefCount = 0; m_nFlags = 0; m_nInternalFlags = 0; m_pTextureHandles = NULL; m_nFrameCount = 0; VectorClear( m_vecReflectivity ); m_pTextureRegenerator = NULL; m_nOriginalRenderTargetType = NO_RENDER_TARGET; m_RenderTargetSizeMode = RT_SIZE_NO_CHANGE; m_nOriginalRTWidth = m_nOriginalRTHeight = 1;
m_LowResImageWidth = 0; m_LowResImageHeight = 0; m_pLowResImage = NULL;
m_pStreamingJob = NULL; m_residenceTarget = RESIDENT_NONE; m_residenceCurrent = RESIDENT_NONE; m_lodClamp = 0; m_lodBiasInitial = 0; m_lodBiasCurrent = 0;
m_nDesiredDimensionLimit = 0; m_nActualDimensionLimit = 0;
memset( &m_cachedFileLodSettings, 0, sizeof( m_cachedFileLodSettings ) );
#ifdef _DEBUG
m_pDebugName = NULL; #endif
m_pStreamingVTF = NULL; m_bStreamingFileReadFailed = false; }
CTexture::~CTexture() { #ifdef _DEBUG
if ( m_nRefCount != 0 ) { Warning( "Reference Count(%d) != 0 in ~CTexture for texture \"%s\"\n", (int)m_nRefCount, m_Name.String() ); } #endif
Shutdown();
#ifdef _DEBUG
if ( m_pDebugName ) { // delete[] m_pDebugName;
} #endif
// Deliberately stomp our VTable so that we can detect cases where code tries to access freed materials.
int *p = (int *)this; *p = 0xdeadbeef; }
//-----------------------------------------------------------------------------
// Initializes the texture
//-----------------------------------------------------------------------------
void CTexture::Init( int w, int h, int d, ImageFormat fmt, int iFlags, int iFrameCount ) { Assert( iFrameCount > 0 );
// This is necessary to prevent blowing away the allocated state,
// which is necessary for the ReleaseTextureHandles call below to work.
SetErrorTexture( false );
// free and release previous data
// cannot change to new intialization parameters yet
FreeShaderAPITextures(); ReleaseTextureHandles();
// update to new initialization parameters
// these are the *desired* new values
m_dimsMapping.m_nWidth = w; m_dimsMapping.m_nHeight = h; m_dimsMapping.m_nDepth = d; m_ImageFormat = fmt; m_nFrameCount = iFrameCount; // We don't know the actual width and height until we get it ready to render
m_dimsActual.m_nWidth = m_dimsActual.m_nHeight = 0; m_dimsActual.m_nDepth = 1; m_dimsActual.m_nMipCount = 0;
m_dimsAllocated.m_nWidth = 0; m_dimsAllocated.m_nHeight = 0; m_dimsAllocated.m_nDepth = 0; m_dimsAllocated.m_nMipCount = 0; m_nStreamingMips = 0;
// Clear the m_nFlags bit. If we don't, then m_nFrameCount may end up being 1, and
// TEXTUREFLAGS_DEPTHRENDERTARGET could be set.
m_nFlags &= ~TEXTUREFLAGS_DEPTHRENDERTARGET; m_nFlags |= iFlags;
CancelStreamingJob( false ); m_residenceTarget = RESIDENT_NONE; m_residenceCurrent = RESIDENT_NONE; m_lodClamp = 0; m_lodBiasInitial = 0; m_lodBiasCurrent = 0;
AllocateTextureHandles(); }
//-----------------------------------------------------------------------------
// Shuts down the texture
//-----------------------------------------------------------------------------
void CTexture::Shutdown() { Assert( m_pStreamingVTF == NULL ); // Clean up the low-res texture
delete[] m_pLowResImage; m_pLowResImage = 0;
// Clean up the resources data
for ( DataChunk const *pDataChunk = m_arrDataChunks.Base(), *pDataChunkEnd = pDataChunk + m_arrDataChunks.Count(); pDataChunk < pDataChunkEnd; ++pDataChunk ) { pDataChunk->Deallocate(); } m_arrDataChunks.RemoveAll();
// Frees the texture regen class
if ( m_pTextureRegenerator ) { m_pTextureRegenerator->Release(); m_pTextureRegenerator = NULL; }
CancelStreamingJob( false );
m_residenceTarget = RESIDENT_NONE; m_residenceCurrent = RESIDENT_NONE; m_lodClamp = 0; m_lodBiasInitial = 0; m_lodBiasCurrent = 0;
// This deletes the textures
FreeShaderAPITextures(); ReleaseTextureHandles(); NotifyUnloadedFile(); }
void CTexture::ReleaseMemory() { FreeShaderAPITextures(); NotifyUnloadedFile(); }
IVTFTexture *CTexture::GetScratchVTFTexture( ) { const bool cbThreadInMatQueue = ( MaterialSystem()->GetRenderThreadId() == ThreadGetCurrentId() ); cbThreadInMatQueue; Assert( cbThreadInMatQueue || ThreadInMainThread() );
const int ti = GetThreadId();
if ( !s_pVTFTexture[ ti ] ) s_pVTFTexture[ ti ] = CreateVTFTexture(); return s_pVTFTexture[ ti ]; }
void CTexture::ReleaseScratchVTFTexture( IVTFTexture* tex ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
const bool cbThreadInMatQueue = ( MaterialSystem()->GetRenderThreadId() == ThreadGetCurrentId() ); cbThreadInMatQueue; Assert( cbThreadInMatQueue || ThreadInMainThread() ); Assert( m_pStreamingVTF == NULL || ThreadInMainThread() ); // Can only manipulate m_pStreamingVTF to release safely in main thread.
if ( m_pStreamingVTF ) { Assert( tex == m_pStreamingVTF ); TextureManager()->ReleaseAsyncScratchVTF( m_pStreamingVTF ); m_pStreamingVTF = NULL; return; }
// Normal scratch main-thread vtf doesn't need to do anything.
}
//-----------------------------------------------------------------------------
//
// Various initialization methods
//
//-----------------------------------------------------------------------------
void CTexture::ApplyRenderTargetSizeMode( int &width, int &height, ImageFormat fmt ) { width = m_nOriginalRTWidth; height = m_nOriginalRTHeight;
switch ( m_RenderTargetSizeMode ) { case RT_SIZE_FULL_FRAME_BUFFER: { MaterialSystem()->GetRenderTargetFrameBufferDimensions( width, height ); if( !HardwareConfig()->SupportsNonPow2Textures() ) { width = FloorPow2( width + 1 ); height = FloorPow2( height + 1 ); } } break;
case RT_SIZE_FULL_FRAME_BUFFER_ROUNDED_UP: { MaterialSystem()->GetRenderTargetFrameBufferDimensions( width, height ); if( !HardwareConfig()->SupportsNonPow2Textures() ) { width = CeilPow2( width ); height = CeilPow2( height ); } } break;
case RT_SIZE_PICMIP: { int fbWidth, fbHeight; MaterialSystem()->GetRenderTargetFrameBufferDimensions( fbWidth, fbHeight ); int picmip = g_config.skipMipLevels; while( picmip > 0 ) { width >>= 1; height >>= 1; picmip--; }
while( width > fbWidth ) { width >>= 1; } while( height > fbHeight ) { height >>= 1; } } break;
case RT_SIZE_DEFAULT: { // Assume that the input is pow2.
Assert( ( width & ( width - 1 ) ) == 0 ); Assert( ( height & ( height - 1 ) ) == 0 ); int fbWidth, fbHeight; MaterialSystem()->GetRenderTargetFrameBufferDimensions( fbWidth, fbHeight ); while( width > fbWidth ) { width >>= 1; } while( height > fbHeight ) { height >>= 1; } } break;
case RT_SIZE_HDR: { MaterialSystem()->GetRenderTargetFrameBufferDimensions( width, height ); width = width / 4; height = height / 4; } break;
case RT_SIZE_OFFSCREEN: { int fbWidth, fbHeight; MaterialSystem()->GetRenderTargetFrameBufferDimensions( fbWidth, fbHeight );
// Shrink the buffer if it's bigger than back buffer. Otherwise, don't mess with it.
while( (width > fbWidth) || (height > fbHeight) ) { width >>= 1; height >>= 1; } } break;
case RT_SIZE_LITERAL: { // Literal means literally don't mess with the dimensions. Unlike what OFFSCREEN does,
// which is totally to mess with the dimensions.
} break;
case RT_SIZE_LITERAL_PICMIP: { // Don't do anything here, like literal. Later, we will pay attention to picmip settings s.t.
// these render targets look like other textures wrt Mapping Dimensions vs Actual Dimensions.
} break;
case RT_SIZE_REPLAY_SCREENSHOT: { // Compute all possible resolutions if first time we're running this function
static bool bReplayInit = false; static int m_aScreenshotWidths[ 3 ][ 2 ]; static ConVarRef replay_screenshotresolution( "replay_screenshotresolution" );
if ( !bReplayInit ) { bReplayInit = true; for ( int iAspect = 0; iAspect < 3; ++iAspect ) { for ( int iRes = 0; iRes < 2; ++iRes ) { int nWidth = (int)FastPow2( 9 + iRes ); m_aScreenshotWidths[ iAspect ][ iRes ] = nWidth; } } }
// Get dimensions for unpadded image
int nUnpaddedWidth, nUnpaddedHeight;
// Figure out the proper screenshot size to use based on the aspect ratio
int nScreenWidth, nScreenHeight; MaterialSystem()->GetRenderTargetFrameBufferDimensions( nScreenWidth, nScreenHeight ); float flAspectRatio = (float)nScreenWidth / nScreenHeight;
// Get the screenshot res
int iRes = clamp( replay_screenshotresolution.GetInt(), 0, 1 );
int iAspect; if ( flAspectRatio == 16.0f/9 ) { iAspect = 0; } else if ( flAspectRatio == 16.0f/10 ) { iAspect = 1; } else { iAspect = 2; // 4:3
}
static float s_flInvAspectRatios[3] = { 9.0f/16.0f, 10.0f/16, 3.0f/4 }; nUnpaddedWidth = min( nScreenWidth, m_aScreenshotWidths[ iAspect ][ iRes ] ); nUnpaddedHeight = m_aScreenshotWidths[ iAspect ][ iRes ] * s_flInvAspectRatios[ iAspect ];
// Get dimensions for padded image based on unpadded size - must be power of 2 for a material/texture
width = SmallestPowerOfTwoGreaterOrEqual( nUnpaddedWidth ); height = SmallestPowerOfTwoGreaterOrEqual( nUnpaddedHeight ); } break;
default: { if ( !HushAsserts() ) { Assert( m_RenderTargetSizeMode == RT_SIZE_NO_CHANGE ); Assert( m_nOriginalRenderTargetType == RENDER_TARGET_NO_DEPTH ); // Only can use NO_CHANGE if we don't have a depth buffer.
} } break; } }
void CTexture::CopyToStagingTexture( ITexture* pDstTex ) { Assert( pDstTex );
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// Need to flush any commands in flight on our side of things
materials->Flush( false );
CTexture* pDstTexActual = assert_cast< CTexture* >( pDstTex );
// Then do the copy if everything is on the up and up.
if ( ( m_pTextureHandles == NULL || m_nFrameCount == 0 ) || ( pDstTexActual->m_pTextureHandles == NULL || pDstTexActual->m_nFrameCount == 0 ) ) { Assert( !"Can't copy to a non-existent texture, may need to generate or something." ); return; }
// Make sure we've actually got the right surface types.
Assert( m_nFlags & TEXTUREFLAGS_RENDERTARGET ); Assert( pDstTex->GetFlags() & TEXTUREFLAGS_STAGING_MEMORY );
g_pShaderAPI->CopyRenderTargetToScratchTexture( m_pTextureHandles[0], pDstTexActual->m_pTextureHandles[0] ); }
void CTexture::Map( void** pOutBits, int* pOutPitch ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// Must be a staging texture to avoid catastrophic perf fail.
Assert( m_nFlags & TEXTUREFLAGS_STAGING_MEMORY );
if ( m_pTextureHandles == NULL || m_nFrameCount == 0 ) { Assert( !"Can't map a non-existent texture, may need to generate or something." ); return; }
g_pShaderAPI->LockRect( pOutBits, pOutPitch, m_pTextureHandles[ 0 ], 0, 0, 0, GetActualWidth(), GetActualHeight(), false, true ); }
void CTexture::Unmap() { if ( m_pTextureHandles == NULL || m_nFrameCount == 0 ) { Assert( !"Can't unmap a non-existent texture, may need to generate or something." ); return; }
g_pShaderAPI->UnlockRect( m_pTextureHandles[ 0 ], 0 ); }
bool CTexture::MakeResident( ResidencyType_t newResidence ) { Assert( ( GetFlags() & TEXTUREFLAGS_STREAMABLE ) != 0 );
// If we already think we're supposed to go here, nothing to do and we should report success.
if ( m_residenceTarget == newResidence ) return true;
TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
// What are we moving towards?
switch ( newResidence ) { case RESIDENT_NONE: MakeNonResident(); return true;
case RESIDENT_PARTIAL: MakePartiallyResident(); return true;
case RESIDENT_FULL: return MakeFullyResident();
default: Assert( !"Missing switch statement" ); };
return false; }
void CTexture::UpdateLodBias() { if ( m_lodBiasInitial == 0.0f ) return;
// Only perform adjustment once per frame.
if ( m_lastLodBiasAdjustFrame == g_FrameNum ) return;
bool bPopIn = mat_lodin_time.GetFloat() == 0;
if ( bPopIn && m_lodBiasInitial == 0.0f ) return;
if ( !bPopIn ) m_lodBiasCurrent = m_lodBiasInitial - ( Plat_FloatTime() - m_lodBiasStartTime ) / mat_lodin_time.GetFloat() * m_lodBiasInitial; else m_lodBiasCurrent = m_lodBiasInitial = 0.0f;
// If we're supposed to pop in when the object isn't visible and we have the opportunity...
if ( mat_lodin_hidden_pop.GetBool() && m_lastLodBiasAdjustFrame != g_FrameNum - 1 ) m_lodBiasCurrent = m_lodBiasInitial = 0.0f;
if ( m_lodBiasCurrent <= 0.0f ) { m_lodBiasCurrent = m_lodBiasInitial = 0.0f; m_lodBiasStartTime = 0; }
m_lastLodBiasAdjustFrame = g_FrameNum; SetFilteringAndClampingMode( true ); }
void CTexture::MakeNonResident() { if ( m_residenceCurrent != RESIDENT_NONE ) Shutdown();
m_residenceCurrent = m_residenceTarget = RESIDENT_NONE;
// Clear our the streamable fine flag to ensure we reload properly.
m_nFlags &= ~TEXTUREFLAGS_STREAMABLE_FINE; }
void CTexture::MakePartiallyResident() { TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
ResidencyType_t oldCurrentResidence = m_residenceCurrent; ResidencyType_t oldTargetResidence = m_residenceTarget;
m_residenceCurrent = m_residenceTarget = RESIDENT_PARTIAL;
if ( oldCurrentResidence == RESIDENT_PARTIAL ) { Assert( oldTargetResidence == RESIDENT_FULL ); oldTargetResidence; // If we are already partially resident, then just cancel our job to stream in,
// cause we don't need that data anymore.
CancelStreamingJob();
return; }
Assert( oldCurrentResidence == RESIDENT_FULL );
// Clear the fine bit.
m_nFlags &= ~TEXTUREFLAGS_STREAMABLE_FINE;
if ( HardwareConfig()->CanStretchRectFromTextures() ) { m_lodClamp = 0; m_lodBiasInitial = m_lodBiasCurrent = 0; m_lastLodBiasAdjustFrame = g_FrameNum; DownloadTexture( NULL, true ); } else { // Oops. We were overzealous above--restore the residency to what it was.
m_residenceCurrent = oldCurrentResidence;
// Immediately display it as lower res (for consistency) but if we can't (efficiently)
// copy we just have to re-read everything from disk. Lame!
m_lodClamp = 3; m_lodBiasInitial = m_lodBiasCurrent = 0; m_lastLodBiasAdjustFrame = g_FrameNum; SetFilteringAndClampingMode( true );
SafeAssign( &m_pStreamingJob, new CTextureStreamingJob( this ) ); MaterialSystem()->AsyncFindTexture( GetName(), GetTextureGroupName(), m_pStreamingJob, (void*) RESIDENT_PARTIAL, false, TEXTUREFLAGS_STREAMABLE_COARSE ); } }
bool CTexture::MakeFullyResident() { TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
ResidencyType_t oldCurrentResidence = m_residenceCurrent; ResidencyType_t oldTargetResidence = m_residenceTarget;
if ( oldCurrentResidence == RESIDENT_FULL ) { // This isn't a requirement, but right now it would be a mistake
Assert( !HardwareConfig()->CanStretchRectFromTextures() ); Assert( oldTargetResidence == RESIDENT_PARTIAL ); oldTargetResidence; m_residenceCurrent = m_residenceTarget = RESIDENT_FULL; m_lodClamp = 0; m_lodBiasInitial = m_lodBiasCurrent = 0; m_lastLodBiasAdjustFrame = g_FrameNum; SetFilteringAndClampingMode( true );
CancelStreamingJob(); return true; }
Assert( m_residenceTarget == RESIDENT_PARTIAL && m_residenceCurrent == RESIDENT_PARTIAL ); Assert( m_pStreamingJob == NULL );
SafeAssign( &m_pStreamingJob, new CTextureStreamingJob( this ) ); MaterialSystem()->AsyncFindTexture( GetName(), GetTextureGroupName(), m_pStreamingJob, (void*) RESIDENT_FULL, false, TEXTUREFLAGS_STREAMABLE_FINE );
m_residenceTarget = RESIDENT_FULL;
return true; }
void CTexture::CancelStreamingJob( bool bJobMustExist ) { bJobMustExist; // Only used by asserts ensuring correctness, so reference it for release builds.
// Most callers should be aware of whether the job exists, but for cleanup we don't know and we
// should be safe in that case.
Assert( !bJobMustExist || m_pStreamingJob ); if ( !m_pStreamingJob ) return;
// The streaming job and this (this texture) have a circular reference count--each one holds one for the other.
// As a result, this means that having the streaming job forget about the texture may cause the texture to go
// away completely! So we need to ensure that after we call "ForgetOwner" that we don't touch any instance
// variables.
CTextureStreamingJob* pJob = m_pStreamingJob; m_pStreamingJob = NULL;
pJob->ForgetOwner( this ); SafeRelease( &pJob ); }
void CTexture::OnStreamingJobComplete( ResidencyType_t newResidenceCurrent ) { Assert( m_pStreamingJob );
// It's probable that if this assert fires, we should just do nothing in here and return--but I'd
// like to see that happen to be sure.
Assert( newResidenceCurrent == m_residenceTarget );
m_residenceCurrent = newResidenceCurrent;
// Only do lod biasing for stream in. For stream out, just dump to lowest quality right away.
if ( m_residenceCurrent == RESIDENT_FULL ) { if ( mat_lodin_time.GetFloat() > 0 ) { m_lodBiasCurrent = m_lodBiasInitial = 1.0 * m_nStreamingMips; m_lodBiasStartTime = Plat_FloatTime(); } else m_lodBiasCurrent = m_lodBiasInitial = 0.0f;
m_lastLodBiasAdjustFrame = g_FrameNum; } m_lodClamp = 0; m_nStreamingMips = 0;
SetFilteringAndClampingMode( true );
// The job is complete, Cancel handles cleanup correctly.
CancelStreamingJob(); }
void CTexture::SetErrorTexture( bool bIsErrorTexture ) { if ( bIsErrorTexture ) m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ERROR; else m_nInternalFlags &= ( ~TEXTUREFLAGSINTERNAL_ERROR ); }
//-----------------------------------------------------------------------------
// Creates named render target texture
//-----------------------------------------------------------------------------
void CTexture::InitRenderTarget( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, ImageFormat fmt, RenderTargetType_t type, unsigned int textureFlags, unsigned int renderTargetFlags ) { if ( pRTName ) { SetName( pRTName ); } else { static int id = 0; char pName[128]; Q_snprintf( pName, sizeof( pName ), "__render_target_%d", id ); ++id; SetName( pName ); }
if ( renderTargetFlags & CREATERENDERTARGETFLAGS_HDR ) { if ( HardwareConfig()->GetHDRType() == HDR_TYPE_FLOAT ) { // slam the format
fmt = IMAGE_FORMAT_RGBA16161616F; } }
int nFrameCount = 1;
int nFlags = TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_RENDERTARGET; nFlags |= textureFlags;
if ( type == RENDER_TARGET_NO_DEPTH ) { nFlags |= TEXTUREFLAGS_NODEPTHBUFFER; } else if ( type == RENDER_TARGET_WITH_DEPTH || type == RENDER_TARGET_ONLY_DEPTH || g_pShaderAPI->DoRenderTargetsNeedSeparateDepthBuffer() ) { nFlags |= TEXTUREFLAGS_DEPTHRENDERTARGET; ++nFrameCount; }
if ( renderTargetFlags & CREATERENDERTARGETFLAGS_TEMP ) { m_nInternalFlags |= TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET; }
m_nOriginalRenderTargetType = type; m_RenderTargetSizeMode = sizeMode; m_nOriginalRTWidth = w; m_nOriginalRTHeight = h;
if ( ImageLoader::ImageFormatInfo(fmt).m_NumAlphaBits > 1 ) { nFlags |= TEXTUREFLAGS_EIGHTBITALPHA; } else if ( ImageLoader::ImageFormatInfo(fmt).m_NumAlphaBits == 1 ) { nFlags |= TEXTUREFLAGS_ONEBITALPHA; }
ApplyRenderTargetSizeMode( w, h, fmt );
Init( w, h, 1, fmt, nFlags, nFrameCount ); m_TextureGroupName = TEXTURE_GROUP_RENDER_TARGET; }
void CTexture::OnRestore() { // May have to change whether or not we have a depth buffer.
// Are we a render target?
if ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) { // Did they not ask for a depth buffer?
if ( m_nOriginalRenderTargetType == RENDER_TARGET ) { // But, did we force them to have one, or should we force them to have one this time around?
bool bShouldForce = g_pShaderAPI->DoRenderTargetsNeedSeparateDepthBuffer(); bool bDidForce = ((m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET) != 0); if ( bShouldForce != bDidForce ) { int nFlags = m_nFlags; int iFrameCount = m_nFrameCount; if ( bShouldForce ) { Assert( !( nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) ); iFrameCount = 2; nFlags |= TEXTUREFLAGS_DEPTHRENDERTARGET; } else { Assert( ( nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) ); iFrameCount = 1; nFlags &= ~TEXTUREFLAGS_DEPTHRENDERTARGET; }
Shutdown(); int newWidth, newHeight; ApplyRenderTargetSizeMode( newWidth, newHeight, m_ImageFormat ); Init( newWidth, newHeight, 1, m_ImageFormat, nFlags, iFrameCount ); return; } }
// If we didn't recreate it up above, then we may need to resize it anyway if the framebuffer
// got smaller than we are.
int newWidth, newHeight; ApplyRenderTargetSizeMode( newWidth, newHeight, m_ImageFormat ); if ( newWidth != m_dimsMapping.m_nWidth || newHeight != m_dimsMapping.m_nHeight ) { Shutdown(); Init( newWidth, newHeight, 1, m_ImageFormat, m_nFlags, m_nFrameCount ); return; } } else { if ( m_nFlags & TEXTUREFLAGS_STREAMABLE_FINE ) { MakeResident( RESIDENT_NONE ); } } }
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
void CTexture::InitProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags, ITextureRegenerator* generator ) { // We shouldn't be asking for render targets here
Assert( (nFlags & (TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET)) == 0 );
SetName( pTextureName );
// Eliminate flags that are inappropriate...
nFlags &= ~TEXTUREFLAGS_HINT_DXT5 | TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA | TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET;
// Insert required flags
nFlags |= TEXTUREFLAGS_PROCEDURAL; int nAlphaBits = ImageLoader::ImageFormatInfo(fmt).m_NumAlphaBits; if (nAlphaBits > 1) { nFlags |= TEXTUREFLAGS_EIGHTBITALPHA; } else if (nAlphaBits == 1) { nFlags |= TEXTUREFLAGS_ONEBITALPHA; } // Procedural textures are always one frame only
Init( w, h, d, fmt, nFlags, 1 );
SetTextureRegenerator(generator);
m_TextureGroupName = pTextureGroupName; }
//-----------------------------------------------------------------------------
// Creates a file texture
//-----------------------------------------------------------------------------
void CTexture::InitFileTexture( const char *pTextureFile, const char *pTextureGroupName ) { // For files, we only really know about the file name
// At any time, the file contents could change, and we could have
// a different size, number of frames, etc.
SetName( pTextureFile ); m_TextureGroupName = pTextureGroupName; }
//-----------------------------------------------------------------------------
// Assigns/releases texture IDs for our animation frames
//-----------------------------------------------------------------------------
void CTexture::AllocateTextureHandles() { Assert( !m_pTextureHandles ); Assert( m_nFrameCount > 0 ); #ifdef DBGFLAG_ASSERT
if( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) { Assert( m_nFrameCount >= 2 ); } #endif
m_pTextureHandles = new ShaderAPITextureHandle_t[m_nFrameCount]; for( int i = 0; i != m_nFrameCount; ++i ) m_pTextureHandles[i] = INVALID_SHADERAPI_TEXTURE_HANDLE; }
void CTexture::ReleaseTextureHandles() { if ( m_pTextureHandles ) { delete[] m_pTextureHandles; m_pTextureHandles = NULL; } }
//-----------------------------------------------------------------------------
// Creates the texture
//-----------------------------------------------------------------------------
bool CTexture::AllocateShaderAPITextures() { Assert( !HasBeenAllocated() ); TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
int nCount = m_nFrameCount;
int nCreateFlags = 0; if ( ( m_nFlags & TEXTUREFLAGS_ENVMAP ) && HardwareConfig()->SupportsCubeMaps() ) { nCreateFlags |= TEXTURE_CREATE_CUBEMAP; } bool bIsFloat = ( m_ImageFormat == IMAGE_FORMAT_RGBA16161616F ) || ( m_ImageFormat == IMAGE_FORMAT_R32F ) || ( m_ImageFormat == IMAGE_FORMAT_RGB323232F ) || ( m_ImageFormat == IMAGE_FORMAT_RGBA32323232F ); // Don't do sRGB on floating point textures
if ( ( m_nFlags & TEXTUREFLAGS_SRGB ) && !bIsFloat ) { nCreateFlags |= TEXTURE_CREATE_SRGB; // for Posix/GL only
}
if ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) { nCreateFlags |= TEXTURE_CREATE_RENDERTARGET;
// This here is simply so we can use a different call to
// create the depth texture below
if ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) && ( nCount == 2 ) ) //nCount must be 2 on pc
{ --nCount; } } else { // If it's not a render target, use the texture manager in dx
if ( m_nFlags & TEXTUREFLAGS_STAGING_MEMORY ) nCreateFlags |= TEXTURE_CREATE_SYSMEM; else { #if defined(IS_WINDOWS_PC)
static ConVarRef mat_dxlevel("mat_dxlevel"); if ( mat_dxlevel.GetInt() < 90 || mat_managedtextures.GetBool() ) #endif
{ nCreateFlags |= TEXTURE_CREATE_MANAGED; } } }
if ( m_nFlags & TEXTUREFLAGS_POINTSAMPLE ) { nCreateFlags |= TEXTURE_CREATE_UNFILTERABLE_OK; }
if ( m_nFlags & TEXTUREFLAGS_VERTEXTEXTURE ) { nCreateFlags |= TEXTURE_CREATE_VERTEXTEXTURE; }
int nCopies = 1; if ( IsProcedural() ) { // This is sort of hacky... should we store the # of copies in the VTF?
if ( !( m_nFlags & TEXTUREFLAGS_SINGLECOPY ) ) { // FIXME: That 6 there is heuristically what I came up with what I
// need to get eyes not to stall on map alyx3. We need a better way
// of determining how many copies of the texture we should store.
nCopies = 6; } }
// For depth only render target: adjust texture width/height
// Currently we just leave it the same size, will update with further testing
int nShaderApiCreateTextureDepth = ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) && ( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) ) ? 1 : m_dimsAllocated.m_nDepth;
// Create all animated texture frames in a single call
g_pShaderAPI->CreateTextures( m_pTextureHandles, nCount, m_dimsAllocated.m_nWidth, m_dimsAllocated.m_nHeight, nShaderApiCreateTextureDepth, m_ImageFormat, m_dimsAllocated.m_nMipCount, nCopies, nCreateFlags, GetName(), GetTextureGroupName() );
int accountingCount = nCount;
// Create the depth render target buffer
if ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) { MEM_ALLOC_CREDIT(); Assert( nCount == 1 );
char debugName[128]; Q_snprintf( debugName, ARRAYSIZE( debugName ), "%s_ZBuffer", GetName() ); Assert( m_nFrameCount >= 2 ); m_pTextureHandles[1] = g_pShaderAPI->CreateDepthTexture( m_ImageFormat, m_dimsAllocated.m_nWidth, m_dimsAllocated.m_nHeight, debugName, ( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) ); accountingCount += 1; }
STAGING_ONLY_EXEC( g_currentTextures.InsertOrReplace( this, TexInfo_t( GetName(), m_dimsAllocated.m_nWidth, m_dimsAllocated.m_nHeight, m_dimsAllocated.m_nDepth, m_dimsAllocated.m_nMipCount, accountingCount, nCopies, m_ImageFormat ) ) );
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ALLOCATED;
return true; }
//-----------------------------------------------------------------------------
// Releases the texture's hardware memory
//-----------------------------------------------------------------------------
void CTexture::FreeShaderAPITextures() { if ( m_pTextureHandles && HasBeenAllocated() ) { #ifdef STAGING_ONLY
// If this hits, there's a leak because we're not deallocating enough textures. Yikes!
Assert( g_currentTextures[ g_currentTextures.Find( this ) ].m_nFrameCount == m_nFrameCount ); // Remove ourselves from the list.
g_currentTextures.Remove( this ); #endif
// Release the frames
for ( int i = m_nFrameCount; --i >= 0; ) { if ( g_pShaderAPI->IsTexture( m_pTextureHandles[i] ) ) { #ifdef WIN32
Assert( _heapchk() == _HEAPOK ); #endif
g_pShaderAPI->DeleteTexture( m_pTextureHandles[i] ); m_pTextureHandles[i] = INVALID_SHADERAPI_TEXTURE_HANDLE; } } } m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_ALLOCATED;
// Clear texture streaming stuff, too.
if ( ( m_nFlags & TEXTUREFLAGS_STREAMABLE ) != 0 ) { m_nFlags &= ~TEXTUREFLAGS_STREAMABLE_FINE; m_residenceCurrent = m_residenceTarget = RESIDENT_NONE; m_lodClamp = 0; m_lodBiasCurrent = m_lodBiasInitial = 0; m_lodBiasStartTime = 0; } }
void CTexture::MigrateShaderAPITextures() { TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
const int cBytes = m_nFrameCount * sizeof ( ShaderAPITextureHandle_t );
ShaderAPITextureHandle_t *pTextureHandles = ( ShaderAPITextureHandle_t * ) stackalloc( cBytes );
Assert( pTextureHandles ); if ( !pTextureHandles ) return;
V_memcpy( pTextureHandles, m_pTextureHandles, cBytes );
// Pretend we haven't been allocated yet.
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_ALLOCATED;
AllocateShaderAPITextures();
for ( int i = 0; i < m_nFrameCount; ++i ) { Assert( g_pShaderAPI->IsTexture( pTextureHandles[ i ] ) == g_pShaderAPI->IsTexture( m_pTextureHandles[ i ] ) ); if ( !g_pShaderAPI->IsTexture( pTextureHandles[ i ] ) ) continue;
g_pShaderAPI->CopyTextureToTexture( pTextureHandles[ i ], m_pTextureHandles[ i ] ); }
for ( int i = 0; i < m_nFrameCount; ++i ) { if ( !g_pShaderAPI->IsTexture( pTextureHandles[ i ] ) ) continue;
g_pShaderAPI->DeleteTexture( pTextureHandles[ i ] ); } }
//-----------------------------------------------------------------------------
// Computes the actual format of the texture
//-----------------------------------------------------------------------------
ImageFormat CTexture::ComputeActualFormat( ImageFormat srcFormat ) { ImageFormat dstFormat; bool bIsCompressed = ImageLoader::IsCompressed( srcFormat ); if ( g_config.bCompressedTextures && HardwareConfig()->SupportsCompressedTextures() && bIsCompressed ) { // for the runtime compressed formats the srcFormat won't equal the dstFormat, and we need to return srcFormat here
if ( ImageLoader::IsRuntimeCompressed( srcFormat ) ) { return srcFormat; }
// don't do anything since we are already in a compressed format.
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat ); Assert( dstFormat == srcFormat ); return dstFormat; }
// NOTE: Below this piece of code is only called when compressed textures are
// turned off, or if the source texture is not compressed.
#ifdef DX_TO_GL_ABSTRACTION
if ( ( srcFormat == IMAGE_FORMAT_UVWQ8888 ) || ( srcFormat == IMAGE_FORMAT_UV88 ) || ( srcFormat == IMAGE_FORMAT_UVLX8888 ) ) { // Danger, this is going to blow up on the Mac. You better know what you're
// doing with these exotic formats...which were introduced in 1999
Assert( 0 ); } #endif
// We use the TEXTUREFLAGS_EIGHTBITALPHA and TEXTUREFLAGS_ONEBITALPHA flags
// to decide how many bits of alpha we need; vtex checks the alpha channel
// for all white, etc.
if( ( srcFormat == IMAGE_FORMAT_UVWQ8888 ) || ( srcFormat == IMAGE_FORMAT_UV88 ) || ( srcFormat == IMAGE_FORMAT_UVLX8888 ) || ( srcFormat == IMAGE_FORMAT_RGBA16161616 ) || ( srcFormat == IMAGE_FORMAT_RGBA16161616F ) ) { #ifdef DX_TO_GL_ABSTRACTION
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat, false ); // Stupid HACK!
#else
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat, true ); // Stupid HACK!
#endif
} else if ( m_nFlags & ( TEXTUREFLAGS_EIGHTBITALPHA | TEXTUREFLAGS_ONEBITALPHA ) ) { dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_BGRA8888 ); } else if ( srcFormat == IMAGE_FORMAT_I8 ) { dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_I8 ); } else { dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_BGR888 ); } return dstFormat; }
//-----------------------------------------------------------------------------
// Calculates info about whether we can make the texture smaller and by how much
//-----------------------------------------------------------------------------
int CTexture::ComputeActualSize( bool bIgnorePicmip, IVTFTexture *pVTFTexture, bool bTextureMigration ) { unsigned int stripFlags = 0; return ComputeMipSkipCount( GetName(), m_dimsMapping, bIgnorePicmip, pVTFTexture, m_nFlags, m_nDesiredDimensionLimit, &m_nStreamingMips, &m_cachedFileLodSettings, &m_dimsActual, &m_dimsAllocated, &stripFlags ); Assert( stripFlags == 0 ); // Not necessarily illegal, just needs investigating.
}
//-----------------------------------------------------------------------------
// Used to modify the texture bits (procedural textures only)
//-----------------------------------------------------------------------------
void CTexture::SetTextureRegenerator( ITextureRegenerator *pTextureRegen ) { // NOTE: These can only be used by procedural textures
Assert( IsProcedural() );
if (m_pTextureRegenerator) { m_pTextureRegenerator->Release(); } m_pTextureRegenerator = pTextureRegen; }
//-----------------------------------------------------------------------------
// Gets us modifying a particular frame of our texture
//-----------------------------------------------------------------------------
void CTexture::Modify( int iFrame ) { Assert( iFrame >= 0 && iFrame < m_nFrameCount ); Assert( HasBeenAllocated() ); g_pShaderAPI->ModifyTexture( m_pTextureHandles[iFrame] ); }
//-----------------------------------------------------------------------------
// Sets the texture clamping state on the currently modified frame
//-----------------------------------------------------------------------------
void CTexture::SetWrapState( ) { // Border clamp applies to all texture coordinates
if ( m_nFlags & TEXTUREFLAGS_BORDER ) { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_BORDER ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_BORDER ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_BORDER ); return; }
// Clamp mode in S
if ( m_nFlags & TEXTUREFLAGS_CLAMPS ) { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); } else { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_REPEAT ); }
// Clamp mode in T
if ( m_nFlags & TEXTUREFLAGS_CLAMPT ) { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); } else { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_REPEAT ); }
// Clamp mode in U
if ( m_nFlags & TEXTUREFLAGS_CLAMPU ) { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP ); } else { g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_REPEAT ); } }
//-----------------------------------------------------------------------------
// Sets the texture filtering state on the currently modified frame
//-----------------------------------------------------------------------------
void CTexture::SetFilterState() { // Turns off filtering when we're point sampling
if( m_nFlags & TEXTUREFLAGS_POINTSAMPLE ) { g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_NEAREST ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_NEAREST ); return; }
// NOTE: config.bMipMapTextures and config.bFilterTextures is handled in ShaderAPIDX8
bool bEnableMipmapping = ( m_nFlags & TEXTUREFLAGS_NOMIP ) ? false : true; if( !bEnableMipmapping ) { g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); return; }
// Determing the filtering mode
bool bIsAnisotropic = false, bIsTrilinear = false; if ( HardwareConfig()->GetDXSupportLevel() >= 80 && (g_config.m_nForceAnisotropicLevel > 1) && (HardwareConfig()->MaximumAnisotropicLevel() > 1) ) { bIsAnisotropic = true; } else if ( g_config.ForceTrilinear() ) { bIsAnisotropic = (( m_nFlags & TEXTUREFLAGS_ANISOTROPIC ) != 0) && (HardwareConfig()->MaximumAnisotropicLevel() > 1); bIsTrilinear = true; } else { bIsAnisotropic = (( m_nFlags & TEXTUREFLAGS_ANISOTROPIC ) != 0) && (HardwareConfig()->MaximumAnisotropicLevel() > 1); bIsTrilinear = ( m_nFlags & TEXTUREFLAGS_TRILINEAR ) != 0; }
if ( bIsAnisotropic ) { g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_ANISOTROPIC ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_ANISOTROPIC ); } else { // force trilinear if we are on a dx8 card or above
if ( bIsTrilinear ) { g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR_MIPMAP_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); } else { g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR_MIPMAP_NEAREST ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); } }
SetLodState(); }
//-----------------------------------------------------------------------------
// Sets the lod state on the currently modified frame
//-----------------------------------------------------------------------------
void CTexture::SetLodState() { // Set the lod clamping value to ensure we don't see anything we're not supposed to.
g_pShaderAPI->TexLodClamp( m_lodClamp ); g_pShaderAPI->TexLodBias( m_lodBiasCurrent ); }
//-----------------------------------------------------------------------------
// Download bits main entry point!!
//-----------------------------------------------------------------------------
void CTexture::DownloadTexture( Rect_t *pRect, bool bCopyFromCurrent ) { // No downloading necessary if there's no graphics
if ( !g_pShaderDevice->IsUsingGraphics() ) return;
// We don't know the actual size of the texture at this stage...
if ( !pRect ) { ReconstructTexture( bCopyFromCurrent ); } else { // Not implemented yet.
Assert( bCopyFromCurrent == false ); ReconstructPartialTexture( pRect ); }
// Iterate over all the frames and set the appropriate wrapping + filtering state
SetFilteringAndClampingMode();
// texture bits have been updated, update the exclusion state
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE ) { m_nInternalFlags |= TEXTUREFLAGSINTERNAL_EXCLUDED; } else { m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_EXCLUDED; }
// texture bits have been picmipped, update the picmip state
m_nActualDimensionLimit = m_nDesiredDimensionLimit; }
void CTexture::Download( Rect_t *pRect, int nAdditionalCreationFlags /* = 0 */ ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// Only download the bits if we can...
if ( g_pShaderAPI->CanDownloadTextures() ) { MaterialLock_t hLock = MaterialSystem()->Lock(); m_nFlags |= nAdditionalCreationFlags; // Path to let stdshaders drive settings like sRGB-ness at creation time
DownloadTexture( pRect ); MaterialSystem()->Unlock( hLock ); } }
// Save texture to a file.
bool CTexture::SaveToFile( const char *fileName ) { bool bRet = false; ITexture *pTexture = materials->FindTexture( "_rt_FullFrameFB1", TEXTURE_GROUP_RENDER_TARGET );
if ( !pTexture ) return bRet;
const int width = GetActualWidth(); const int height = GetActualHeight();
if ( pTexture->GetImageFormat() == IMAGE_FORMAT_RGBA8888 || pTexture->GetImageFormat() == IMAGE_FORMAT_ABGR8888 || pTexture->GetImageFormat() == IMAGE_FORMAT_ARGB8888 || pTexture->GetImageFormat() == IMAGE_FORMAT_BGRA8888 || pTexture->GetImageFormat() == IMAGE_FORMAT_BGRX8888 ) { bool bCleanupTexture = false;
// Need to allocate a temporarily renderable surface. Sadness.
if ( width > pTexture->GetActualWidth() || height > pTexture->GetActualHeight() ) { materials->OverrideRenderTargetAllocation( true ); // This one bumps the ref automatically for us.
pTexture = materials->CreateNamedRenderTargetTextureEx( "_rt_savetofile", width, height, RT_SIZE_LITERAL, IMAGE_FORMAT_BGRA8888, MATERIAL_RT_DEPTH_NONE, TEXTUREFLAGS_IMMEDIATE_CLEANUP ); materials->OverrideRenderTargetAllocation( false );
if ( !pTexture || pTexture->IsError() ) { SafeRelease( &pTexture ); Msg( "SaveToFile: texture '_rt_FullFrameFB1' failed. Ptr:%p Format:%d\n", pTexture, ( pTexture ? pTexture->GetImageFormat() : 0 ) ); return false; }
bCleanupTexture = true; }
Rect_t SrcRect = { 0, 0, width, height }; Rect_t DstRect = SrcRect;
if ( ( width > 0 ) && ( height > 0 ) ) { void *pixelValue = malloc( width * height * 2 * sizeof( BGRA8888_t ) );
if( pixelValue ) { CMatRenderContextPtr pRenderContext( MaterialSystem() );
// Set the clear color to opaque black
pRenderContext->ClearColor4ub( 0, 0, 0, 0xFF ); pRenderContext->ClearBuffers( true, true, true ); pRenderContext->PushRenderTargetAndViewport( pTexture, 0, 0, width, height ); pRenderContext->CopyTextureToRenderTargetEx( 0, this, &SrcRect, &DstRect );
pRenderContext->ReadPixels( 0, 0, width, height, ( unsigned char * )pixelValue, pTexture->GetImageFormat() );
// Slap the alpha channel at the bottom of the tga file so we don't have to deal with crappy tools that can't
// handle rgb + alpha well. This means we can just do a "mat_texture_save_fonts" concommand, and then use
// something like Beyond Compare to look at the fonts differences between various platforms, etc.
CPixelWriter pixelWriterSrc; CPixelWriter pixelWriterDst; pixelWriterSrc.SetPixelMemory( pTexture->GetImageFormat(), pixelValue, width * sizeof( BGRA8888_t ) ); pixelWriterDst.SetPixelMemory( pTexture->GetImageFormat(), pixelValue, width * sizeof( BGRA8888_t ) );
for (int y = 0; y < height; ++y) { pixelWriterSrc.Seek( 0, y ); pixelWriterDst.Seek( 0, y + height );
for (int x = 0; x < width; ++x) { int r, g, b, a;
pixelWriterSrc.ReadPixelNoAdvance( r, g, b, a ); pixelWriterSrc.WritePixel( a, a, a, 255 ); pixelWriterDst.WritePixel( r, g, b, 255 ); } }
if ( TGAWriter::WriteTGAFile( fileName, width, height * 2, pTexture->GetImageFormat(), ( uint8 * )pixelValue, width * sizeof( BGRA8888_t ) ) ) { bRet = true; }
// restore our previous state
pRenderContext->PopRenderTargetAndViewport();
free( pixelValue ); } }
if ( bCleanupTexture ) SafeRelease( &pTexture ); } else { Msg( "SaveToFile: texture '_rt_FullFrameFB1' failed. Ptr:%p Format:%d\n", pTexture, ( pTexture ? pTexture->GetImageFormat() : 0 ) ); }
return bRet; }
bool CTexture::AsyncReadTextureFromFile( IVTFTexture* pVTFTexture, unsigned int nAdditionalCreationFlags ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ ); m_bStreamingFileReadFailed = false; // Optimism!
char pCacheFileName[ MATERIAL_MAX_PATH ]; FileHandle_t fileHandle = FILESYSTEM_INVALID_HANDLE;
GetCacheFilename( pCacheFileName, MATERIAL_MAX_PATH ); if ( !GetFileHandle( &fileHandle, pCacheFileName, NULL ) ) { m_bStreamingFileReadFailed = true; return false; }
if ( V_strstr( GetName(), "c_sniperrifle_scope" ) ) { int i = 0; i = 3; }
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - %s", __FUNCTION__, tmDynamicString( TELEMETRY_LEVEL0, pCacheFileName ) ); // OSX hackery
int nPreserveFlags = nAdditionalCreationFlags; if ( m_nFlags & TEXTUREFLAGS_SRGB ) nPreserveFlags |= TEXTUREFLAGS_SRGB;
uint16 dontCareStreamedMips = m_nStreamingMips; TextureLODControlSettings_t settings = m_cachedFileLodSettings;
if ( !SLoadTextureBitsFromFile( &pVTFTexture, fileHandle, m_nFlags | nPreserveFlags, &settings, m_nDesiredDimensionLimit, &dontCareStreamedMips, GetName(), pCacheFileName, &m_dimsMapping ) ) { g_pFullFileSystem->Close( fileHandle ); m_bStreamingFileReadFailed = true; return false; }
g_pFullFileSystem->Close( fileHandle );
m_pStreamingVTF = pVTFTexture;
return true; }
void CTexture::AsyncCancelReadTexture( ) { Assert( m_bStreamingFileReadFailed || m_pStreamingVTF != NULL ); if ( m_pStreamingVTF ) { TextureManager()->ReleaseAsyncScratchVTF( m_pStreamingVTF ); m_pStreamingVTF = NULL; } }
void CTexture::Bind( Sampler_t sampler ) { Bind( sampler, 0 ); }
//-----------------------------------------------------------------------------
// Binds a particular texture (possibly paired)
//-----------------------------------------------------------------------------
void CTexture::Bind( Sampler_t sampler1, int nFrame, Sampler_t sampler2 /* = -1 */ ) { if ( g_pShaderDevice->IsUsingGraphics() ) { TextureManager()->RequestAllMipmaps( this );
if ( nFrame < 0 || nFrame >= m_nFrameCount ) { // FIXME: Use the well-known 'error' id instead of frame 0
nFrame = 0; // Assert(0);
}
// Make sure we've actually allocated the texture handle
if ( HasBeenAllocated() ) { g_pShaderAPI->BindTexture( sampler1, m_pTextureHandles[nFrame] ); } else { ExecuteNTimes( 20, Warning( "Trying to bind texture %s, but texture handles are not valid. Binding a white texture!\n", GetName() ) ); g_pShaderAPI->BindStandardTexture( sampler1, TEXTURE_WHITE ); } } }
void CTexture::BindVertexTexture( VertexTextureSampler_t sampler, int nFrame ) { if ( g_pShaderDevice->IsUsingGraphics() ) { if ( nFrame < 0 || nFrame >= m_nFrameCount ) { // FIXME: Use the well-known 'error' id instead of frame 0
nFrame = 0; // Assert(0);
}
// Make sure we've actually allocated the texture
Assert( HasBeenAllocated() );
g_pShaderAPI->BindVertexTexture( sampler, m_pTextureHandles[nFrame] ); } }
//-----------------------------------------------------------------------------
// Set this texture as a render target
//-----------------------------------------------------------------------------
bool CTexture::SetRenderTarget( int nRenderTargetID ) { return SetRenderTarget( nRenderTargetID, NULL ); }
//-----------------------------------------------------------------------------
// Set this texture as a render target
// Optionally bind pDepthTexture as depth buffer
//-----------------------------------------------------------------------------
bool CTexture::SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture ) { if ( ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) == 0 ) return false;
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
ShaderAPITextureHandle_t textureHandle = m_pTextureHandles[0];
ShaderAPITextureHandle_t depthTextureHandle = (unsigned int)SHADER_RENDERTARGET_DEPTHBUFFER;
if ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) { Assert( m_nFrameCount >= 2 ); depthTextureHandle = m_pTextureHandles[1]; } else if ( m_nFlags & TEXTUREFLAGS_NODEPTHBUFFER ) { // GR - render target without depth buffer
depthTextureHandle = (unsigned int)SHADER_RENDERTARGET_NONE; }
if ( pDepthTexture) { depthTextureHandle = static_cast<ITextureInternal *>(pDepthTexture)->GetTextureHandle(0); }
g_pShaderAPI->SetRenderTargetEx( nRenderTargetID, textureHandle, depthTextureHandle ); return true; }
//-----------------------------------------------------------------------------
// Reference counting
//-----------------------------------------------------------------------------
void CTexture::IncrementReferenceCount( void ) { ++m_nRefCount; }
void CTexture::DecrementReferenceCount( void ) { if ( ( --m_nRefCount <= 0 ) && ( m_nFlags & TEXTUREFLAGS_IMMEDIATE_CLEANUP ) != 0 ) { Assert( m_nRefCount == 0 ); // Just inform the texture manager, it will decide to free us at a later date.
TextureManager()->MarkUnreferencedTextureForCleanup( this ); } }
int CTexture::GetReferenceCount( ) { return m_nRefCount; }
//-----------------------------------------------------------------------------
// Various accessor methods
//-----------------------------------------------------------------------------
const char* CTexture::GetName( ) const { return m_Name.String(); }
const char* CTexture::GetTextureGroupName( ) const { return m_TextureGroupName.String(); }
void CTexture::SetName( const char* pName ) { // normalize and convert to a symbol
char szCleanName[MAX_PATH]; m_Name = NormalizeTextureName( pName, szCleanName, sizeof( szCleanName ) );
#ifdef _DEBUG
if ( m_pDebugName ) { delete [] m_pDebugName; } int nLen = V_strlen( szCleanName ) + 1; m_pDebugName = new char[nLen]; V_memcpy( m_pDebugName, szCleanName, nLen ); #endif
}
ImageFormat CTexture::GetImageFormat() const { return m_ImageFormat; }
int CTexture::GetMappingWidth() const { return m_dimsMapping.m_nWidth; }
int CTexture::GetMappingHeight() const { return m_dimsMapping.m_nHeight; }
int CTexture::GetMappingDepth() const { return m_dimsMapping.m_nDepth; }
int CTexture::GetActualWidth() const { return m_dimsActual.m_nWidth; }
int CTexture::GetActualHeight() const { return m_dimsActual.m_nHeight; }
int CTexture::GetActualDepth() const { return m_dimsActual.m_nDepth; }
int CTexture::GetNumAnimationFrames() const { return m_nFrameCount; }
void CTexture::GetReflectivity( Vector& reflectivity ) { Precache(); VectorCopy( m_vecReflectivity, reflectivity ); }
//-----------------------------------------------------------------------------
// Little helper polling methods
//-----------------------------------------------------------------------------
bool CTexture::IsTranslucent() const { return ( m_nFlags & (TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA) ) != 0; }
bool CTexture::IsNormalMap( void ) const { return ( ( m_nFlags & TEXTUREFLAGS_NORMAL ) != 0 ); }
bool CTexture::IsCubeMap( void ) const { return ( ( m_nFlags & TEXTUREFLAGS_ENVMAP ) != 0 ); }
bool CTexture::IsRenderTarget( void ) const { return ( ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) != 0 ); }
bool CTexture::IsTempRenderTarget( void ) const { return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET ) != 0 ); }
bool CTexture::IsProcedural() const { return ( (m_nFlags & TEXTUREFLAGS_PROCEDURAL) != 0 ); }
bool CTexture::IsMipmapped() const { return ( (m_nFlags & TEXTUREFLAGS_NOMIP) == 0 ); }
unsigned int CTexture::GetFlags() const { return m_nFlags; }
void CTexture::ForceLODOverride( int iNumLodsOverrideUpOrDown ) { TextureLodOverride::OverrideInfo oi( iNumLodsOverrideUpOrDown, iNumLodsOverrideUpOrDown ); TextureLodOverride::Add( GetName(), oi ); Download( NULL ); }
bool CTexture::IsError() const { return ( (m_nInternalFlags & TEXTUREFLAGSINTERNAL_ERROR) != 0 ); }
bool CTexture::HasBeenAllocated() const { return ( (m_nInternalFlags & TEXTUREFLAGSINTERNAL_ALLOCATED) != 0 ); }
bool CTexture::IsVolumeTexture() const { return (m_dimsMapping.m_nDepth > 1); }
//-----------------------------------------------------------------------------
// Sets the filtering + clamping modes on the texture
//-----------------------------------------------------------------------------
void CTexture::SetFilteringAndClampingMode( bool bOnlyLodValues ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
if( !HasBeenAllocated() ) return;
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame ) { Modify( iFrame ); // Indicate we're changing state with respect to a particular frame
if ( !bOnlyLodValues ) { SetWrapState(); // Send the appropriate wrap/clamping modes to the shaderapi.
SetFilterState(); // Set the filtering mode for the texture after downloading it.
// NOTE: Apparently, the filter state cannot be set until after download
} else SetLodState(); } }
//-----------------------------------------------------------------------------
// Loads up the non-fallback information about the texture
//-----------------------------------------------------------------------------
void CTexture::Precache() { // We only have to do something in the case of a file texture
if ( IsRenderTarget() || IsProcedural() ) return;
if ( HasBeenAllocated() ) return;
// Blow off env_cubemap too...
if ( !Q_strnicmp( m_Name.String(), "env_cubemap", 12 )) return; int nAdditionalFlags = 0; if ( ( m_nFlags & TEXTUREFLAGS_STREAMABLE ) != 0 ) { // If we were previously streamed in, make sure we still do this time around.
nAdditionalFlags = TEXTUREFLAGS_STREAMABLE_COARSE; Assert( ( m_nFlags & TEXTUREFLAGS_STREAMABLE_FINE ) == 0 ); Assert( m_residenceCurrent == RESIDENT_NONE && m_residenceTarget == RESIDENT_NONE ); Assert( m_lodClamp == 0 ); Assert( m_lodBiasCurrent == 0 && m_lodBiasInitial == 0 ); Assert( m_lodBiasStartTime == 0 ); }
ScratchVTF scratch( this ); IVTFTexture *pVTFTexture = scratch.Get();
// The texture name doubles as the relative file name
// It's assumed to have already been set by this point
// Compute the cache name
char pCacheFileName[MATERIAL_MAX_PATH]; Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, m_Name.String() );
int nHeaderSize = VTFFileHeaderSize( VTF_MAJOR_VERSION ); unsigned char *pMem = (unsigned char *)stackalloc( nHeaderSize ); CUtlBuffer buf( pMem, nHeaderSize ); if ( !g_pFullFileSystem->ReadFile( pCacheFileName, NULL, buf, nHeaderSize ) ) { goto precacheFailed; }
if ( !pVTFTexture->Unserialize( buf, true ) ) { Warning( "Error reading material \"%s\"\n", pCacheFileName ); goto precacheFailed; }
// NOTE: Don't set the image format in case graphics are active
VectorCopy( pVTFTexture->Reflectivity(), m_vecReflectivity ); m_dimsMapping.m_nWidth = pVTFTexture->Width(); m_dimsMapping.m_nHeight = pVTFTexture->Height(); m_dimsMapping.m_nDepth = pVTFTexture->Depth(); m_nFlags = pVTFTexture->Flags() | nAdditionalFlags; m_nFrameCount = pVTFTexture->FrameCount(); if ( !m_pTextureHandles ) { // NOTE: m_nFrameCount and m_pTextureHandles are strongly associated
// whenever one is modified the other must also be modified
AllocateTextureHandles(); }
return;
precacheFailed: m_vecReflectivity.Init( 0, 0, 0 ); m_dimsMapping.m_nWidth = 32; m_dimsMapping.m_nHeight = 32; m_dimsMapping.m_nDepth = 1; m_nFlags = TEXTUREFLAGS_NOMIP; SetErrorTexture( true ); m_nFrameCount = 1; if ( !m_pTextureHandles ) { // NOTE: m_nFrameCount and m_pTextureHandles are strongly associated
// whenever one is modified the other must also be modified
AllocateTextureHandles(); } }
//-----------------------------------------------------------------------------
// Loads the low-res image from the texture
//-----------------------------------------------------------------------------
void CTexture::LoadLowResTexture( IVTFTexture *pTexture ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
delete [] m_pLowResImage; m_pLowResImage = NULL;
if ( pTexture->LowResWidth() == 0 || pTexture->LowResHeight() == 0 ) { m_LowResImageWidth = m_LowResImageHeight = 0; return; }
m_LowResImageWidth = pTexture->LowResWidth(); m_LowResImageHeight = pTexture->LowResHeight();
m_pLowResImage = new unsigned char[m_LowResImageWidth * m_LowResImageHeight * 3]; #ifdef DBGFLAG_ASSERT
bool retVal = #endif
ImageLoader::ConvertImageFormat( pTexture->LowResImageData(), pTexture->LowResFormat(), m_pLowResImage, IMAGE_FORMAT_RGB888, m_LowResImageWidth, m_LowResImageHeight ); Assert( retVal ); }
void *CTexture::GetResourceData( uint32 eDataType, size_t *pnumBytes ) const { for ( DataChunk const *pDataChunk = m_arrDataChunks.Base(), *pDataChunkEnd = pDataChunk + m_arrDataChunks.Count(); pDataChunk < pDataChunkEnd; ++pDataChunk ) { if ( ( pDataChunk->m_eType & ~RSRCF_MASK ) == eDataType ) { if ( ( pDataChunk->m_eType & RSRCF_HAS_NO_DATA_CHUNK ) == 0 ) { if ( pnumBytes) *pnumBytes = pDataChunk->m_numBytes; return pDataChunk->m_pvData; } else { if ( pnumBytes ) *pnumBytes = sizeof( pDataChunk->m_numBytes );
return ( void *)( &pDataChunk->m_numBytes ); } } } if ( pnumBytes ) pnumBytes = 0; return NULL; }
#pragma pack(1)
struct DXTColBlock { unsigned short col0; unsigned short col1;
// no bit fields - use bytes
unsigned char row[4]; };
struct DXTAlphaBlock3BitLinear { unsigned char alpha0; unsigned char alpha1;
unsigned char stuff[6]; };
#pragma pack()
static void FillCompressedTextureWithSingleColor( int red, int green, int blue, int alpha, unsigned char *pImageData, int width, int height, int depth, ImageFormat imageFormat ) { Assert( ( width < 4 ) || !( width % 4 ) ); Assert( ( height < 4 ) || !( height % 4 ) ); Assert( ( depth < 4 ) || !( depth % 4 ) );
if ( width < 4 && width > 0 ) { width = 4; } if ( height < 4 && height > 0 ) { height = 4; } if ( depth < 4 && depth > 1 ) { depth = 4; } int numBlocks = ( width * height ) >> 4; numBlocks *= depth; DXTColBlock colorBlock; memset( &colorBlock, 0, sizeof( colorBlock ) ); ( ( BGR565_t * )&( colorBlock.col0 ) )->Set( red, green, blue ); ( ( BGR565_t * )&( colorBlock.col1 ) )->Set( red, green, blue );
switch( imageFormat ) { case IMAGE_FORMAT_DXT1: case IMAGE_FORMAT_ATI1N: // Invalid block data, but correct memory footprint
{ int i; for( i = 0; i < numBlocks; i++ ) { memcpy( pImageData + i * 8, &colorBlock, sizeof( colorBlock ) ); } } break; case IMAGE_FORMAT_DXT5: case IMAGE_FORMAT_ATI2N: { int i; for( i = 0; i < numBlocks; i++ ) { // memset( pImageData + i * 16, 0, 16 );
memcpy( pImageData + i * 16 + 8, &colorBlock, sizeof( colorBlock ) ); // memset( pImageData + i * 16 + 8, 0xffff, 8 ); // alpha block
} } break; default: Assert( 0 ); break; } }
// This table starts out like the programmatic logic that used to be here,
// but then has some other colors, so that we don't see repeats.
// Also, there is no black, which seems to be an error condition on OpenGL.
// There also aren't any zeros in this table, since these colors may get
// multiplied with, say, vertex colors which are tinted, resulting in black pixels.
int sg_nMipLevelColors[14][3] = { { 64, 255, 64 }, // Green
{ 255, 64, 64 }, // Red
{ 255, 255, 64 }, // Yellow
{ 64, 64, 255 }, // Blue
{ 64, 255, 255 }, // Cyan
{ 255, 64, 255 }, // Magenta
{ 255, 255, 255 }, // White
{ 255, 150, 150 }, // Light Red
{ 255, 255, 150 }, // Light Yellow
{ 150, 150, 255 }, // Light Blue
{ 150, 255, 255 }, // Light Cyan
{ 255, 150, 255 }, // Light Magenta
{ 150, 150, 128 }, // Light Gray
{ 138, 131, 64 } };// Brown
//-----------------------------------------------------------------------------
// Generate a texture that shows the various mip levels
//-----------------------------------------------------------------------------
void CTexture::GenerateShowMipLevelsTextures( IVTFTexture *pTexture ) { if( pTexture->FaceCount() > 1 ) return;
switch( pTexture->Format() ) { // These are formats that we don't bother with for generating mip level textures.
case IMAGE_FORMAT_RGBA16161616F: case IMAGE_FORMAT_R32F: case IMAGE_FORMAT_RGB323232F: case IMAGE_FORMAT_RGBA32323232F: case IMAGE_FORMAT_UV88: break; default: for (int iFrame = 0; iFrame < pTexture->FrameCount(); ++iFrame ) { for (int iFace = 0; iFace < pTexture->FaceCount(); ++iFace ) { for (int iMip = 0; iMip < pTexture->MipCount(); ++iMip ) { int red = sg_nMipLevelColors[iMip][0];//( ( iMip + 1 ) & 2 ) ? 255 : 0;
int green = sg_nMipLevelColors[iMip][1];//( ( iMip + 1 ) & 1 ) ? 255 : 0;
int blue = sg_nMipLevelColors[iMip][2];//( ( iMip + 1 ) & 4 ) ? 255 : 0;
int nWidth, nHeight, nDepth; pTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth ); if( pTexture->Format() == IMAGE_FORMAT_DXT1 || pTexture->Format() == IMAGE_FORMAT_DXT5 || pTexture->Format() == IMAGE_FORMAT_ATI1N || pTexture->Format() == IMAGE_FORMAT_ATI2N ) { unsigned char *pImageData = pTexture->ImageData( iFrame, iFace, iMip, 0, 0, 0 ); int alpha = 255; FillCompressedTextureWithSingleColor( red, green, blue, alpha, pImageData, nWidth, nHeight, nDepth, pTexture->Format() ); } else { for ( int z = 0; z < nDepth; ++z ) { CPixelWriter pixelWriter; pixelWriter.SetPixelMemory( pTexture->Format(), pTexture->ImageData( iFrame, iFace, iMip, 0, 0, z ), pTexture->RowSizeInBytes( iMip ) );
for (int y = 0; y < nHeight; ++y) { pixelWriter.Seek( 0, y ); for (int x = 0; x < nWidth; ++x) { pixelWriter.WritePixel( red, green, blue, 255 ); } } } } } } } break; } }
//-----------------------------------------------------------------------------
// Generate a texture that shows the various mip levels
//-----------------------------------------------------------------------------
void CTexture::CopyLowResImageToTexture( IVTFTexture *pTexture ) { int nFlags = pTexture->Flags(); nFlags |= TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_POINTSAMPLE; nFlags &= ~(TEXTUREFLAGS_TRILINEAR | TEXTUREFLAGS_ANISOTROPIC | TEXTUREFLAGS_HINT_DXT5); nFlags &= ~(TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_ENVMAP); nFlags &= ~(TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA);
Assert( pTexture->FrameCount() == 1 );
Init( pTexture->Width(), pTexture->Height(), 1, IMAGE_FORMAT_BGR888, nFlags, 1 ); pTexture->Init( m_LowResImageWidth, m_LowResImageHeight, 1, IMAGE_FORMAT_BGR888, nFlags, 1 );
// Don't bother computing the actual size; it's actually equal to the low-res size
// With only one mip level
m_dimsActual.m_nWidth = m_LowResImageWidth; m_dimsActual.m_nHeight = m_LowResImageHeight; m_dimsActual.m_nDepth = 1; m_dimsActual.m_nMipCount = 1;
// Copy the row-res image into the VTF Texture
CPixelWriter pixelWriter; pixelWriter.SetPixelMemory( pTexture->Format(), pTexture->ImageData( 0, 0, 0 ), pTexture->RowSizeInBytes( 0 ) );
for ( int y = 0; y < m_LowResImageHeight; ++y ) { pixelWriter.Seek( 0, y ); for ( int x = 0; x < m_LowResImageWidth; ++x ) { int red = m_pLowResImage[0]; int green = m_pLowResImage[1]; int blue = m_pLowResImage[2]; m_pLowResImage += 3;
pixelWriter.WritePixel( red, green, blue, 255 ); } } }
//-----------------------------------------------------------------------------
// Sets up debugging texture bits, if appropriate
//-----------------------------------------------------------------------------
bool CTexture::SetupDebuggingTextures( IVTFTexture *pVTFTexture ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
if ( pVTFTexture->Flags() & TEXTUREFLAGS_NODEBUGOVERRIDE ) return false;
// The all mips flag is typically used on detail textures, which can
// really mess up visualization if we apply the debug-colorized
// versions of them to debug-colorized base textures, so skip 'em
if ( g_config.nShowMipLevels && !(pVTFTexture->Flags() & TEXTUREFLAGS_ALL_MIPS) ) { // mat_showmiplevels 1 means don't do normal maps
if ( ( g_config.nShowMipLevels == 1 ) && ( pVTFTexture->Flags() & ( TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_SSBUMP ) ) ) return false;
// mat_showmiplevels 2 means don't do base textures
if ( ( g_config.nShowMipLevels == 2 ) && !( pVTFTexture->Flags() & ( TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_SSBUMP ) ) ) return false;
// This mode shows the mip levels as different colors
GenerateShowMipLevelsTextures( pVTFTexture ); return true; } else if ( g_config.bShowLowResImage && pVTFTexture->FrameCount() == 1 && pVTFTexture->FaceCount() == 1 && ((pVTFTexture->Flags() & TEXTUREFLAGS_NORMAL) == 0) && m_LowResImageWidth != 0 && m_LowResImageHeight != 0 ) { // This mode just uses the low res texture
CopyLowResImageToTexture( pVTFTexture ); return true; }
return false; }
//-----------------------------------------------------------------------------
// Converts the texture to the actual format
// Returns true if conversion applied, false otherwise
//-----------------------------------------------------------------------------
bool CTexture::ConvertToActualFormat( IVTFTexture *pVTFTexture ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
if ( !g_pShaderDevice->IsUsingGraphics() ) return false;
bool bConverted = false;
ImageFormat fmt = m_ImageFormat;
ImageFormat dstFormat = ComputeActualFormat( pVTFTexture->Format() ); if ( fmt != dstFormat ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - conversion from (%d to %d)", __FUNCTION__, fmt, dstFormat );
pVTFTexture->ConvertImageFormat( dstFormat, false );
m_ImageFormat = dstFormat; bConverted = true; } else if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER && fmt == dstFormat && dstFormat == IMAGE_FORMAT_RGBA16161616F ) { // This is to force at most the precision of int16 for fp16 texture when running the integer path.
pVTFTexture->ConvertImageFormat( IMAGE_FORMAT_RGBA16161616, false ); pVTFTexture->ConvertImageFormat( IMAGE_FORMAT_RGBA16161616F, false ); bConverted = true; }
return bConverted; }
void CTexture::GetFilename( char *pOut, int maxLen ) const { const char *pName = m_Name.String(); bool bIsUNCName = ( pName[0] == '/' && pName[1] == '/' && pName[2] != '/' );
if ( !bIsUNCName ) { Q_snprintf( pOut, maxLen, "materials/%s" TEXTURE_FNAME_EXTENSION, pName ); } else { Q_snprintf( pOut, maxLen, "%s" TEXTURE_FNAME_EXTENSION, pName ); } }
void CTexture::ReloadFilesInList( IFileList *pFilesToReload ) { if ( IsProcedural() || IsRenderTarget() ) return;
char filename[MAX_PATH]; GetFilename( filename, sizeof( filename ) ); if ( pFilesToReload->IsFileInList( filename ) ) { Download(); } }
//-----------------------------------------------------------------------------
// Loads the texture bits from a file.
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::LoadTextureBitsFromFile( char *pCacheFileName, char **ppResolvedFilename ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s %s", __FUNCTION__, tmDynamicString( TELEMETRY_LEVEL0, pCacheFileName ) ); if ( m_bStreamingFileReadFailed ) { Assert( m_pStreamingVTF == NULL ); return HandleFileLoadFailedTexture( GetScratchVTFTexture() ); }
// OSX hackery
int nPreserveFlags = 0; if ( m_nFlags & TEXTUREFLAGS_SRGB ) nPreserveFlags |= TEXTUREFLAGS_SRGB;
unsigned int stripFlags = 0;
IVTFTexture *pVTFTexture = m_pStreamingVTF; if ( !pVTFTexture ) { pVTFTexture = GetScratchVTFTexture();
FileHandle_t fileHandle = FILESYSTEM_INVALID_HANDLE;
if ( !GetFileHandle( &fileHandle, pCacheFileName, ppResolvedFilename ) ) return HandleFileLoadFailedTexture( pVTFTexture );
TextureLODControlSettings_t settings = m_cachedFileLodSettings; if ( !SLoadTextureBitsFromFile( &pVTFTexture, fileHandle, m_nFlags | nPreserveFlags, &settings, m_nDesiredDimensionLimit, &m_nStreamingMips, GetName(), pCacheFileName, &m_dimsMapping, &m_dimsActual, &m_dimsAllocated, &stripFlags ) ) { g_pFullFileSystem->Close( fileHandle ); return HandleFileLoadFailedTexture( pVTFTexture ); }
g_pFullFileSystem->Close( fileHandle ); }
// Don't reinitialize here if we're streaming in the fine levels, we already have been initialized with coarse.
if ( ( m_nFlags & TEXTUREFLAGS_STREAMABLE_FINE ) == 0 ) { // Initing resets these, but we're happy with the values now--so store and restore them around the Init call.
TexDimensions_t actual = m_dimsActual, allocated = m_dimsAllocated;
// Initialize the texture class with vtf header data before operations
Init( m_dimsMapping.m_nWidth, m_dimsMapping.m_nHeight, m_dimsMapping.m_nDepth, pVTFTexture->Format(), pVTFTexture->Flags() | nPreserveFlags, pVTFTexture->FrameCount() );
m_dimsActual = actual; m_dimsAllocated = allocated;
m_nFlags &= ~stripFlags; } else { // Not illegal, just needs investigation.
Assert( stripFlags == 0 ); }
if ( m_pStreamingVTF ) ComputeActualSize( false, pVTFTexture, ( m_nFlags & TEXTUREFLAGS_STREAMABLE ) != 0 );
VectorCopy( pVTFTexture->Reflectivity(), m_vecReflectivity );
// If we've only streamed in coarse but haven't started on fine yet, go ahead and mark us as
// partially resident and set up our clamping values.
if ( ( m_nFlags & TEXTUREFLAGS_STREAMABLE ) == TEXTUREFLAGS_STREAMABLE_COARSE ) { pVTFTexture->GetMipmapRange( &m_lodClamp, NULL ); m_residenceTarget = RESIDENT_PARTIAL; m_residenceCurrent = RESIDENT_PARTIAL; }
// Build the low-res texture
LoadLowResTexture( pVTFTexture );
// Load the resources
if ( unsigned int uiRsrcCount = pVTFTexture->GetResourceTypes( NULL, 0 ) ) { uint32 *arrRsrcTypes = ( uint32 * )_alloca( uiRsrcCount * sizeof( unsigned int ) ); pVTFTexture->GetResourceTypes( arrRsrcTypes, uiRsrcCount );
m_arrDataChunks.EnsureCapacity( uiRsrcCount ); for ( uint32 *arrRsrcTypesEnd = arrRsrcTypes + uiRsrcCount; arrRsrcTypes < arrRsrcTypesEnd; ++arrRsrcTypes ) { switch ( *arrRsrcTypes ) { case VTF_LEGACY_RSRC_LOW_RES_IMAGE: case VTF_LEGACY_RSRC_IMAGE: // These stock types use specific load routines
continue; default: { DataChunk dc; dc.m_eType = *arrRsrcTypes; dc.m_eType &= ~RSRCF_MASK;
size_t numBytes; if ( void *pvData = pVTFTexture->GetResourceData( dc.m_eType, &numBytes ) ) { Assert( numBytes >= sizeof( uint32 ) ); if ( numBytes == sizeof( dc.m_numBytes ) ) { dc.m_eType |= RSRCF_HAS_NO_DATA_CHUNK; dc.m_pvData = NULL; memcpy( &dc.m_numBytes, pvData, numBytes ); } else { dc.Allocate( numBytes ); memcpy( dc.m_pvData, pvData, numBytes ); }
m_arrDataChunks.AddToTail( dc ); } } } } }
// Try to set up debugging textures, if we're in a debugging mode
if ( !IsProcedural() ) SetupDebuggingTextures( pVTFTexture );
if ( ConvertToActualFormat( pVTFTexture ) ) pVTFTexture; // STAGING_ONLY_EXEC ( Warning( "\"%s\" not in final format, this is causing stutters or load time bloat!\n", pCacheFileName ) );
return pVTFTexture; }
IVTFTexture *CTexture::HandleFileLoadFailedTexture( IVTFTexture *pVTFTexture ) { // create the error texture
// This will make a checkerboard texture to indicate failure
pVTFTexture->Init( 32, 32, 1, IMAGE_FORMAT_BGRA8888, m_nFlags, 1 ); Init( pVTFTexture->Width(), pVTFTexture->Height(), pVTFTexture->Depth(), pVTFTexture->Format(), pVTFTexture->Flags(), pVTFTexture->FrameCount() ); m_vecReflectivity.Init( 0.5f, 0.5f, 0.5f );
// NOTE: For mat_picmip to work, we must use the same size (32x32)
// Which should work since every card can handle textures of that size
m_dimsAllocated.m_nWidth = m_dimsActual.m_nWidth = pVTFTexture->Width(); m_dimsAllocated.m_nHeight = m_dimsActual.m_nHeight = pVTFTexture->Height(); m_dimsAllocated.m_nDepth = 1; m_dimsAllocated.m_nMipCount = m_dimsActual.m_nMipCount = 1; m_nStreamingMips = 0;
// generate the checkerboard
TextureManager()->GenerateErrorTexture( this, pVTFTexture ); ConvertToActualFormat( pVTFTexture );
// Deactivate procedural texture...
m_nFlags &= ~TEXTUREFLAGS_PROCEDURAL; SetErrorTexture( true );
return pVTFTexture; }
//-----------------------------------------------------------------------------
// Computes subrect for a particular miplevel
//-----------------------------------------------------------------------------
void CTexture::ComputeMipLevelSubRect( const Rect_t* pSrcRect, int nMipLevel, Rect_t *pSubRect ) { if (nMipLevel == 0) { *pSubRect = *pSrcRect; return; }
float flInvShrink = 1.0f / (float)(1 << nMipLevel); pSubRect->x = pSrcRect->x * flInvShrink; pSubRect->y = pSrcRect->y * flInvShrink; pSubRect->width = (int)ceil( (pSrcRect->x + pSrcRect->width) * flInvShrink ) - pSubRect->x; pSubRect->height = (int)ceil( (pSrcRect->y + pSrcRect->height) * flInvShrink ) - pSubRect->y; }
//-----------------------------------------------------------------------------
// Computes the face count + first face
//-----------------------------------------------------------------------------
void CTexture::GetDownloadFaceCount( int &nFirstFace, int &nFaceCount ) { nFaceCount = 1; nFirstFace = 0; if ( IsCubeMap() ) { if ( HardwareConfig()->SupportsCubeMaps() ) { nFaceCount = CUBEMAP_FACE_COUNT-1; } else { // This will cause us to use the spheremap instead of the cube faces
// in the case where we don't support cubemaps
nFirstFace = CUBEMAP_FACE_SPHEREMAP; } } }
//-----------------------------------------------------------------------------
// Fixup a queue loaded texture with the delayed hi-res data
//-----------------------------------------------------------------------------
void CTexture::FixupTexture( const void *pData, int nSize, LoaderError_t loaderError ) { if ( loaderError != LOADERERROR_NONE ) { // mark as invalid
nSize = 0; }
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() ); }
static void QueuedLoaderCallback( void *pContext, void *pContext2, const void *pData, int nSize, LoaderError_t loaderError ) { reinterpret_cast< CTexture * >( pContext )->FixupTexture( pData, nSize, loaderError ); }
//-----------------------------------------------------------------------------
// Generates the procedural bits
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::ReconstructPartialProceduralBits( const Rect_t *pRect, Rect_t *pActualRect ) { // Figure out the actual size for this texture based on the current mode
bool bIgnorePicmip = ( m_nFlags & ( TEXTUREFLAGS_STAGING_MEMORY | TEXTUREFLAGS_IGNORE_PICMIP ) ) != 0; ComputeActualSize( bIgnorePicmip );
// Figure out how many mip levels we're skipping...
int nSizeFactor = 1; int nWidth = GetActualWidth(); if ( nWidth != 0 ) { nSizeFactor = GetMappingWidth() / nWidth; } int nMipSkipCount = 0; while (nSizeFactor > 1) { nSizeFactor >>= 1; ++nMipSkipCount; }
// Determine a rectangle appropriate for the actual size...
// It must bound all partially-covered pixels..
ComputeMipLevelSubRect( pRect, nMipSkipCount, pActualRect );
// Create the texture
IVTFTexture *pVTFTexture = GetScratchVTFTexture();
// Initialize the texture
pVTFTexture->Init( m_dimsActual.m_nWidth, m_dimsActual.m_nHeight, m_dimsActual.m_nDepth, ComputeActualFormat( m_ImageFormat ), m_nFlags, m_nFrameCount );
// Generate the bits from the installed procedural regenerator
if ( m_pTextureRegenerator ) { m_pTextureRegenerator->RegenerateTextureBits( this, pVTFTexture, pActualRect ); } else { // In this case, we don't have one, so just use a checkerboard...
TextureManager()->GenerateErrorTexture( this, pVTFTexture ); }
return pVTFTexture; }
//-----------------------------------------------------------------------------
// Regenerates the bits of a texture within a particular rectangle
//-----------------------------------------------------------------------------
void CTexture::ReconstructPartialTexture( const Rect_t *pRect ) { // FIXME: for now, only procedural textures can handle sub-rect specification.
Assert( IsProcedural() );
// Also, we need procedural textures that have only a single copy!!
// Otherwise this partial upload will not occur on all copies
Assert( m_nFlags & TEXTUREFLAGS_SINGLECOPY );
Rect_t vtfRect; IVTFTexture *pVTFTexture = ReconstructPartialProceduralBits( pRect, &vtfRect );
// FIXME: for now, depth textures do not work with this.
Assert( pVTFTexture->Depth() == 1 );
// Make sure we've allocated the API textures
if ( !HasBeenAllocated() ) { if ( !AllocateShaderAPITextures() ) return; }
int nFaceCount, nFirstFace; GetDownloadFaceCount( nFirstFace, nFaceCount ); // Blit down portions of the various VTF frames into the board memory
int nStride; Rect_t mipRect; for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame ) { Modify( iFrame );
for ( int iFace = 0; iFace < nFaceCount; ++iFace ) { for ( int iMip = 0; iMip < m_dimsActual.m_nMipCount; ++iMip ) { pVTFTexture->ComputeMipLevelSubRect( &vtfRect, iMip, &mipRect ); nStride = pVTFTexture->RowSizeInBytes( iMip ); unsigned char *pBits = pVTFTexture->ImageData( iFrame, iFace + nFirstFace, iMip, mipRect.x, mipRect.y, 0 ); g_pShaderAPI->TexSubImage2D( iMip, iFace, mipRect.x, mipRect.y, 0, mipRect.width, mipRect.height, pVTFTexture->Format(), nStride, false, pBits ); } } } }
//-----------------------------------------------------------------------------
// Generates the procedural bits
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::ReconstructProceduralBits() { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// Figure out the actual size for this texture based on the current mode
bool bIgnorePicmip = ( m_nFlags & ( TEXTUREFLAGS_STAGING_MEMORY | TEXTUREFLAGS_IGNORE_PICMIP ) ) != 0; ComputeActualSize( bIgnorePicmip );
// Create the texture
IVTFTexture *pVTFTexture = NULL; { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - GetScratchVTFTexture", __FUNCTION__ ); pVTFTexture = GetScratchVTFTexture(); }
{ tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Init", __FUNCTION__ ); // Initialize the texture
pVTFTexture->Init( m_dimsActual.m_nWidth, m_dimsActual.m_nHeight, m_dimsActual.m_nDepth, ComputeActualFormat( m_ImageFormat ), m_nFlags, m_nFrameCount ); }
// Generate the bits from the installed procedural regenerator
if ( m_pTextureRegenerator ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - RegenerateTextureBits", __FUNCTION__ );
Rect_t rect; rect.x = 0; rect.y = 0; rect.width = m_dimsActual.m_nWidth; rect.height = m_dimsActual.m_nHeight; m_pTextureRegenerator->RegenerateTextureBits( this, pVTFTexture, &rect ); } else { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - GenerateErrorTexture", __FUNCTION__ );
// In this case, we don't have one, so just use a checkerboard...
TextureManager()->GenerateErrorTexture( this, pVTFTexture ); }
return pVTFTexture; }
void CTexture::WriteDataToShaderAPITexture( int nFrameCount, int nFaceCount, int nFirstFace, int nMipCount, IVTFTexture *pVTFTexture, ImageFormat fmt ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// If we're a staging texture, there's nothing to do.
if ( ( m_nFlags & TEXTUREFLAGS_STAGING_MEMORY ) != 0 ) return;
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame ) { Modify( iFrame ); g_pShaderAPI->TexImageFromVTF( pVTFTexture, iFrame ); } }
bool CTexture::IsDepthTextureFormat( ImageFormat fmt ) { return ( ( m_ImageFormat == IMAGE_FORMAT_NV_DST16 ) || ( m_ImageFormat == IMAGE_FORMAT_NV_DST24 ) || ( m_ImageFormat == IMAGE_FORMAT_NV_INTZ ) || ( m_ImageFormat == IMAGE_FORMAT_NV_RAWZ ) || ( m_ImageFormat == IMAGE_FORMAT_ATI_DST16 ) || ( m_ImageFormat == IMAGE_FORMAT_ATI_DST24 ) ); }
//-----------------------------------------------------------------------------
void CTexture::NotifyUnloadedFile() { // Make sure we have a regular texture that was loaded from a file
if ( IsProcedural() || IsRenderTarget() || !m_Name.IsValid() ) return; const char *pName = m_Name.String(); if ( *pName == '\0' ) return; bool bIsUNCName = ( pName[0] == '/' && pName[1] == '/' && pName[2] != '/' ); if ( bIsUNCName ) return;
// Generate the filename
char pCacheFileName[MATERIAL_MAX_PATH]; Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, pName );
// Let filesystem know that the file is uncached, so it knows
// what to do with tracking info
g_pFullFileSystem->NotifyFileUnloaded( pCacheFileName, "GAME" ); }
//-----------------------------------------------------------------------------
// Sets or updates the texture bits
//-----------------------------------------------------------------------------
void CTexture::ReconstructTexture( bool bCopyFromCurrent ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
Assert( !bCopyFromCurrent || HardwareConfig()->CanStretchRectFromTextures() );
int oldWidth = m_dimsAllocated.m_nWidth; int oldHeight = m_dimsAllocated.m_nHeight; int oldDepth = m_dimsAllocated.m_nDepth; int oldMipCount = m_dimsAllocated.m_nMipCount; int oldFrameCount = m_nFrameCount;
// FIXME: Should RenderTargets be a special case of Procedural?
char *pResolvedFilename = NULL; IVTFTexture *pVTFTexture = NULL; { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Begin", __FUNCTION__ ); if ( IsProcedural() ) { // This will call the installed texture bit regeneration interface
pVTFTexture = ReconstructProceduralBits(); } else if ( IsRenderTarget() ) { // Compute the actual size + format based on the current mode
bool bIgnorePicmip = m_RenderTargetSizeMode != RT_SIZE_LITERAL_PICMIP; ComputeActualSize( bIgnorePicmip ); } else if ( bCopyFromCurrent ) { ComputeActualSize( false, NULL, true ); } else { NotifyUnloadedFile();
char pCacheFileName[ MATERIAL_MAX_PATH ] = { 0 }; GetCacheFilename( pCacheFileName, ARRAYSIZE( pCacheFileName ) ); // Get the data from disk...
// NOTE: Reloading the texture bits can cause the texture size, frames, format, pretty much *anything* can change.
pVTFTexture = LoadTextureBitsFromFile( pCacheFileName, &pResolvedFilename ); } }
if ( !HasBeenAllocated() || m_dimsAllocated.m_nWidth != oldWidth || m_dimsAllocated.m_nHeight != oldHeight || m_dimsAllocated.m_nDepth != oldDepth || m_dimsAllocated.m_nMipCount != oldMipCount || m_nFrameCount != oldFrameCount ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Allocation", __FUNCTION__ );
const bool cbCanStretchRectTextures = HardwareConfig()->CanStretchRectFromTextures(); const bool cbShouldMigrateTextures = ( ( m_nFlags & TEXTUREFLAGS_STREAMABLE_FINE ) != 0 ) && m_nFrameCount == oldFrameCount;
// If we're just streaming in more data--or demoting ourselves, do a migration instead.
if ( bCopyFromCurrent || ( cbCanStretchRectTextures && cbShouldMigrateTextures ) ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Migration", __FUNCTION__ );
MigrateShaderAPITextures();
// Ahh--I feel terrible about this, but we genuinely don't need anything else if we're streaming.
if ( bCopyFromCurrent ) return; } else { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Deallocate / Allocate", __FUNCTION__ );
// If we're doing a wholesale copy, we need to restore these values that will be cleared by FreeShaderAPITextures.
// Record them here, restore them below.
unsigned int restoreStreamingFlag = ( m_nFlags & TEXTUREFLAGS_STREAMABLE ); ResidencyType_t restoreResidenceCurrent = m_residenceCurrent; ResidencyType_t restoreResidenceTarget = m_residenceTarget;
if ( HasBeenAllocated() ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Deallocate", __FUNCTION__ );
// This is necessary for the reload case, we may discover there
// are more frames of a texture animation, for example, which means
// we can't rely on having the same number of texture frames.
FreeShaderAPITextures(); }
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Allocate", __FUNCTION__ );
// Create the shader api textures
if ( !AllocateShaderAPITextures() ) return;
// Restored once we successfully allocate the shader api textures, but only if we're
//
if ( !cbCanStretchRectTextures && cbShouldMigrateTextures ) { m_nFlags |= restoreStreamingFlag; m_residenceCurrent = restoreResidenceCurrent; m_residenceTarget = restoreResidenceTarget; } } } else if ( bCopyFromCurrent ) { Assert( !"We're about to crash, last chance to examine this texture." ); }
// Render Targets just need to be cleared, they have no upload
if ( IsRenderTarget() ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - RT Stuff", __FUNCTION__ );
// Clear the render target to opaque black
// Only clear if we're not a depth-stencil texture
if ( !IsDepthTextureFormat( m_ImageFormat ) ) { tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Clearing", __FUNCTION__ );
CMatRenderContextPtr pRenderContext( MaterialSystem() ); ITexture *pThisTexture = GetEmbeddedTexture( 0 ); pRenderContext->PushRenderTargetAndViewport( pThisTexture ); // Push this texture on the stack
g_pShaderAPI->ClearColor4ub( 0, 0, 0, 0xFF ); // Set the clear color to opaque black
g_pShaderAPI->ClearBuffers( true, false, false, m_dimsActual.m_nWidth, m_dimsActual.m_nHeight ); // Clear the target
pRenderContext->PopRenderTargetAndViewport(); // Pop back to previous target
} // no upload
return; }
// Blit down the texture faces, frames, and mips into the board memory
int nFirstFace, nFaceCount; GetDownloadFaceCount( nFirstFace, nFaceCount ); WriteDataToShaderAPITexture( m_nFrameCount, nFaceCount, nFirstFace, m_dimsActual.m_nMipCount, pVTFTexture, m_ImageFormat );
ReleaseScratchVTFTexture( pVTFTexture ); pVTFTexture = NULL;
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - Final Cleanup", __FUNCTION__ );
// allocated by strdup
free( pResolvedFilename );
// the pc can afford to persist a large buffer
FreeOptimalReadBuffer( 6*1024*1024 ); }
void CTexture::GetCacheFilename( char* pOutBuffer, int nBufferSize ) const { Assert( pOutBuffer );
if ( IsProcedural() || IsRenderTarget() ) { pOutBuffer[0] = 0; return; } else { const char *pName; if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE ) { pName = "dev/dev_exclude_error"; } else { pName = m_Name.String(); }
bool bIsUNCName = ( pName[ 0 ] == '/' && pName[ 1 ] == '/' && pName[ 2 ] != '/' ); if ( !bIsUNCName ) { Q_snprintf( pOutBuffer, nBufferSize, "materials/%s" TEXTURE_FNAME_EXTENSION, pName ); } else { Q_snprintf( pOutBuffer, nBufferSize, "%s" TEXTURE_FNAME_EXTENSION, pName ); } } }
bool CTexture::GetFileHandle( FileHandle_t *pOutFileHandle, char *pCacheFileName, char **ppResolvedFilename ) const { Assert( pOutFileHandle ); FileHandle_t& fileHandle = *pOutFileHandle; fileHandle = FILESYSTEM_INVALID_HANDLE;
while ( fileHandle == FILESYSTEM_INVALID_HANDLE ) // run until found a file or out of rules
{ fileHandle = g_pFullFileSystem->OpenEx( pCacheFileName, "rb", 0, MaterialSystem()->GetForcedTextureLoadPathID(), ppResolvedFilename ); if ( fileHandle == FILESYSTEM_INVALID_HANDLE ) { // try any fallbacks.
char *pHdrExt = Q_stristr( pCacheFileName, ".hdr" TEXTURE_FNAME_EXTENSION ); if ( pHdrExt ) { DevWarning( "A custom HDR cubemap \"%s\": cannot be found on disk.\n" "This really should have a HDR version, trying a fall back to a non-HDR version.\n", pCacheFileName ); strcpy( pHdrExt, TEXTURE_FNAME_EXTENSION ); } else { // no more fallbacks
break; } } }
if ( fileHandle == FILESYSTEM_INVALID_HANDLE ) { if ( Q_strnicmp( m_Name.String(), "env_cubemap", 12 ) ) { if ( IsPosix() ) { Msg( "\n ##### CTexture::LoadTextureBitsFromFile couldn't find %s\n", pCacheFileName ); } DevWarning( "\"%s\": can't be found on disk\n", pCacheFileName ); }
return false; }
return true; }
// Get the shaderapi texture handle associated w/ a particular frame
ShaderAPITextureHandle_t CTexture::GetTextureHandle( int nFrame, int nTextureChannel ) { if ( nFrame < 0 ) { nFrame = 0; Warning( "CTexture::GetTextureHandle(): nFrame is < 0!\n" ); } if ( nFrame >= m_nFrameCount ) { // NOTE: This can happen during alt-tab. If you alt-tab while loading a level then the first local cubemap bind will do this, for example.
Assert( nFrame < m_nFrameCount ); return INVALID_SHADERAPI_TEXTURE_HANDLE; } Assert( nTextureChannel < 2 );
// Make sure we've actually allocated the texture handles
Assert( m_pTextureHandles ); Assert( HasBeenAllocated() ); if ( m_pTextureHandles == NULL || !HasBeenAllocated() ) { return INVALID_SHADERAPI_TEXTURE_HANDLE; }
// Don't get paired handle here...callers of this function don't know about paired textures
return m_pTextureHandles[nFrame]; }
void CTexture::GetLowResColorSample( float s, float t, float *color ) const { if ( m_LowResImageWidth <= 0 || m_LowResImageHeight <= 0 ) { // Warning( "Programming error: GetLowResColorSample \"%s\": %dx%d\n", m_pName, ( int )m_LowResImageWidth, ( int )m_LowResImageHeight );
return; }
// force s and t into [0,1)
if ( s < 0.0f ) { s = ( 1.0f - ( float )( int )s ) + s; } if ( t < 0.0f ) { t = ( 1.0f - ( float )( int )t ) + t; } s = s - ( float )( int )s; t = t - ( float )( int )t; s *= m_LowResImageWidth; t *= m_LowResImageHeight; int wholeS, wholeT; wholeS = ( int )s; wholeT = ( int )t; float fracS, fracT; fracS = s - ( float )( int )s; fracT = t - ( float )( int )t; // filter twice in the s dimension.
float sColor[2][3]; int wholeSPlusOne = ( wholeS + 1 ) % m_LowResImageWidth; int wholeTPlusOne = ( wholeT + 1 ) % m_LowResImageHeight; sColor[0][0] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) ); sColor[0][1] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) ); sColor[0][2] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) ); sColor[0][0] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) ); sColor[0][1] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) ); sColor[0][2] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
sColor[1][0] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) ); sColor[1][1] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) ); sColor[1][2] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) ); sColor[1][0] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) ); sColor[1][1] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) ); sColor[1][2] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
color[0] = sColor[0][0] * ( 1.0f - fracT ) + sColor[1][0] * fracT; color[1] = sColor[0][1] * ( 1.0f - fracT ) + sColor[1][1] * fracT; color[2] = sColor[0][2] * ( 1.0f - fracT ) + sColor[1][2] * fracT; }
int CTexture::GetApproximateVidMemBytes( void ) const { ImageFormat format = GetImageFormat(); int width = GetActualWidth(); int height = GetActualHeight(); int depth = GetActualDepth(); int numFrames = GetNumAnimationFrames(); bool isMipmapped = IsMipmapped();
return numFrames * ImageLoader::GetMemRequired( width, height, depth, format, isMipmapped ); }
void CTexture::CopyFrameBufferToMe( int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect ) { Assert( m_pTextureHandles && m_nFrameCount >= 1 );
if ( m_pTextureHandles && m_nFrameCount >= 1 ) { g_pShaderAPI->CopyRenderTargetToTextureEx( m_pTextureHandles[0], nRenderTargetID, pSrcRect, pDstRect ); } }
void CTexture::CopyMeToFrameBuffer( int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect ) { Assert( m_pTextureHandles && m_nFrameCount >= 1 );
if ( m_pTextureHandles && m_nFrameCount >= 1 ) { g_pShaderAPI->CopyTextureToRenderTargetEx( nRenderTargetID, m_pTextureHandles[0], pSrcRect, pDstRect ); } }
ITexture *CTexture::GetEmbeddedTexture( int nIndex ) { return ( nIndex == 0 ) ? this : NULL; }
void CTexture::DeleteIfUnreferenced() { if ( m_nRefCount > 0 ) return;
if ( ThreadInMainThread() ) { // Render thread better not be active or bad things can happen.
Assert( MaterialSystem()->GetRenderThreadId() == 0xFFFFFFFF ); TextureManager()->RemoveTexture( this ); return; }
// Can't actually clean up from render thread--just safely mark this texture as
// one we should check for cleanup next EndFrame when it's safe.
TextureManager()->MarkUnreferencedTextureForCleanup( this ); }
//Swap everything about a texture except the name. Created to support Portal mod's need for swapping out water render targets in recursive stencil views
void CTexture::SwapContents( ITexture *pOther ) { if( (pOther == NULL) || (pOther == this) ) return;
ICallQueue *pCallQueue = materials->GetRenderContext()->GetCallQueue(); if ( pCallQueue ) { pCallQueue->QueueCall( this, &CTexture::SwapContents, pOther ); return; }
AssertMsg( dynamic_cast<CTexture *>(pOther) != NULL, "Texture swapping broken" );
CTexture *pOtherAsCTexture = (CTexture *)pOther;
CTexture *pTemp = (CTexture *)stackalloc( sizeof( CTexture ) ); //swap everything. Note that this copies the entire object including the
// vtable pointer, thus ruining polymorphism. Use with care.
// The unnecessary casts to (void*) hint to clang that we know what we
// are doing.
memcpy( (void*)pTemp, (const void*)this, sizeof( CTexture ) ); memcpy( (void*)this, (const void*)pOtherAsCTexture, sizeof( CTexture ) ); memcpy( (void*)pOtherAsCTexture, (const void*)pTemp, sizeof( CTexture ) );
//we have the other's name, give it back
memcpy( &pOtherAsCTexture->m_Name, &m_Name, sizeof( m_Name ) );
//pTemp still has our name
memcpy( &m_Name, &pTemp->m_Name, sizeof( m_Name ) ); }
void CTexture::MarkAsPreloaded( bool bSet ) { if ( bSet ) { m_nInternalFlags |= TEXTUREFLAGSINTERNAL_PRELOADED; } else { m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_PRELOADED; } }
bool CTexture::IsPreloaded() const { return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_PRELOADED ) != 0 ); }
void CTexture::MarkAsExcluded( bool bSet, int nDimensionsLimit ) { if ( bSet ) { // exclusion trumps picmipping
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE; m_nDesiredDimensionLimit = 0; } else { // not excluding, but can optionally picmip
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE; m_nDesiredDimensionLimit = nDimensionsLimit; } }
bool CTexture::UpdateExcludedState( void ) { bool bDesired = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE ) != 0; bool bActual = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_EXCLUDED ) != 0; if ( ( bDesired == bActual ) && ( m_nDesiredDimensionLimit == m_nActualDimensionLimit ) ) { return false; }
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD ) { // already scheduled
return true; }
// force the texture to re-download, causes the texture bits to match its desired exclusion state
Download();
return true; }
void CTextureStreamingJob::OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs ) { const int cArgsAsInt = ( int ) pExtraArgs;
Assert( m_pOwner == NULL || m_pOwner == pTex ); if ( m_pOwner ) m_pOwner->OnStreamingJobComplete( static_cast<ResidencyType_t>( cArgsAsInt ) );
// OnStreamingJobComplete should've cleaned us up
Assert( m_pOwner == NULL ); }
// ------------------------------------------------------------------------------------------------
int GetThreadId() { TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
// Turns the current thread into a 0-based index for use in accessing statics in this file.
int retVal = INT_MAX; if ( ThreadInMainThread() ) retVal = 0; else if ( MaterialSystem()->GetRenderThreadId() == ThreadGetCurrentId() ) retVal = 1; else if ( TextureManager()->ThreadInAsyncLoadThread() ) retVal = 2; else if ( TextureManager()->ThreadInAsyncReadThread() ) retVal = 3; else { STAGING_ONLY_EXEC( AssertAlways( !"Unexpected thread in GetThreadId, need to debug this--crash is next. Tell McJohn." ) ); DebuggerBreakIfDebugging_StagingOnly(); } Assert( retVal < MAX_RENDER_THREADS ); return retVal; }
// ------------------------------------------------------------------------------------------------
bool SLoadTextureBitsFromFile( IVTFTexture **ppOutVtfTexture, FileHandle_t hFile, unsigned int nFlags, TextureLODControlSettings_t* pInOutCachedFileLodSettings, int nDesiredDimensionLimit, unsigned short* pOutStreamedMips, const char* pName, const char* pCacheFileName, TexDimensions_t* pOptOutDimsMapping, TexDimensions_t* pOptOutDimsActual, TexDimensions_t* pOptOutDimsAllocated, unsigned int* pOptOutStripFlags ) { // NOTE! NOTE! NOTE! If you are making changes to this function, be aware that it has threading
// NOTE! NOTE! NOTE! implications. It can be called synchronously by the Main thread,
// NOTE! NOTE! NOTE! or by the streaming texture code!
Assert( ppOutVtfTexture != NULL && *ppOutVtfTexture != NULL );
if ( V_strstr( pName, "c_rocketlauncher/c_rocketlauncher" ) ) { int i = 0; i = 3; }
CUtlBuffer buf;
{ tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - ReadHeaderFromFile", __FUNCTION__ ); int nHeaderSize = VTFFileHeaderSize( VTF_MAJOR_VERSION );
// restrict read to the header only!
// header provides info to avoid reading the entire file
int nBytesOptimalRead = GetOptimalReadBuffer( &buf, hFile, nHeaderSize ); int nBytesRead = g_pFullFileSystem->ReadEx( buf.Base(), nBytesOptimalRead, Min( nHeaderSize, ( int ) g_pFullFileSystem->Size( hFile ) ), hFile ); // only read as much as the file has
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead ); nBytesRead = nHeaderSize = ( ( VTFFileBaseHeader_t * ) buf.Base() )->headerSize; g_pFullFileSystem->Seek( hFile, nHeaderSize, FILESYSTEM_SEEK_HEAD ); }
// Unserialize the header only
// need the header first to determine remainder of data
if ( !( *ppOutVtfTexture )->Unserialize( buf, true ) ) { Warning( "Error reading texture header \"%s\"\n", pCacheFileName ); return false; }
// Need to record this now, before we ask for the trimmed down data to potentially be loaded.
TexDimensions_t dimsMappingCurrent( ( *ppOutVtfTexture )->Width(), ( *ppOutVtfTexture )->Height(), ( *ppOutVtfTexture )->MipCount(), ( *ppOutVtfTexture )->Depth() ); if ( pOptOutDimsMapping ) ( *pOptOutDimsMapping ) = dimsMappingCurrent;
int nFullFlags = ( *ppOutVtfTexture )->Flags() | nFlags;
// Seek the reading back to the front of the buffer
buf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 );
// Compute the actual texture dimensions
int nMipSkipCount = ComputeMipSkipCount( pName, dimsMappingCurrent, false, *ppOutVtfTexture, nFullFlags, nDesiredDimensionLimit, pOutStreamedMips, pInOutCachedFileLodSettings, pOptOutDimsActual, pOptOutDimsAllocated, pOptOutStripFlags ); tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s - ReadDataFromFile", __FUNCTION__ );
// Determine how much of the file to read in
int nFileSize = ( *ppOutVtfTexture )->FileSize( nMipSkipCount ); int nActualFileSize = (int)g_pFullFileSystem->Size( hFile ); if ( nActualFileSize < nFileSize ) { if ( mat_spew_on_texture_size.GetInt() ) DevMsg( "Bad VTF data for %s, expected file size:%d actual file size:%d \n", pCacheFileName, nFileSize, nActualFileSize ); nFileSize = nActualFileSize; }
// Read only the portion of the file that we care about
g_pFullFileSystem->Seek( hFile, 0, FILESYSTEM_SEEK_HEAD ); int nBytesOptimalRead = GetOptimalReadBuffer( &buf, hFile, nFileSize ); int nBytesRead = g_pFullFileSystem->ReadEx( buf.Base(), nBytesOptimalRead, nFileSize, hFile ); buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead );
// Some hardware doesn't support copying textures to other textures. For them, we need to reread the
// whole file, so if they are doing the final read (the fine levels) then reread everything by stripping
// off the flags we are trying to pass in.
unsigned int nForceFlags = nFullFlags & TEXTUREFLAGS_STREAMABLE; if ( !HardwareConfig()->CanStretchRectFromTextures() && ( nForceFlags & TEXTUREFLAGS_STREAMABLE_FINE ) ) nForceFlags = 0;
// NOTE: Skipping mip levels here will cause the size to be changed
bool bRetVal = ( *ppOutVtfTexture )->UnserializeEx( buf, false, nForceFlags, nMipSkipCount );
FreeOptimalReadBuffer( 6*1024*1024 );
if ( !bRetVal ) { Warning( "Error reading texture data \"%s\"\n", pCacheFileName ); }
return bRetVal; }
//-----------------------------------------------------------------------------
// Compute the actual mip count based on the actual size
//-----------------------------------------------------------------------------
int ComputeActualMipCount( const TexDimensions_t& actualDims, unsigned int nFlags ) { if ( nFlags & TEXTUREFLAGS_ENVMAP ) { if ( !HardwareConfig()->SupportsMipmappedCubemaps() ) { return 1; } }
if ( nFlags & TEXTUREFLAGS_NOMIP ) { return 1; }
// Unless ALLMIPS is set, we stop mips at 32x32
const int nMaxMipSize = 32; // Clamp border textures on Posix to fix L4D2 flashlight cookie issue
#ifdef DX_TO_GL_ABSTRACTION
if ( ( false && !g_bForceTextureAllMips && !( nFlags & TEXTUREFLAGS_ALL_MIPS ) ) || ( true && ( nFlags & TEXTUREFLAGS_BORDER ) ) ) #else
if ( ( true && !g_bForceTextureAllMips && !( nFlags & TEXTUREFLAGS_ALL_MIPS ) ) || ( false && ( nFlags & TEXTUREFLAGS_BORDER ) ) ) #endif
{ int nNumMipLevels = 1; int h = actualDims.m_nWidth; int w = actualDims.m_nHeight; while ( MIN( w, h ) > nMaxMipSize ) { ++nNumMipLevels;
w >>= 1; h >>= 1; } return nNumMipLevels; }
return ImageLoader::GetNumMipMapLevels( actualDims.m_nWidth, actualDims.m_nHeight, actualDims.m_nDepth ); }
// ------------------------------------------------------------------------------------------------
int ComputeMipSkipCount( const char* pName, const TexDimensions_t& mappingDims, bool bIgnorePicmip, IVTFTexture *pOptVTFTexture, unsigned int nFlags, int nDesiredDimensionLimit, unsigned short* pOutStreamedMips, TextureLODControlSettings_t* pInOutCachedFileLodSettings, TexDimensions_t* pOptOutActualDims, TexDimensions_t* pOptOutAllocatedDims, unsigned int* pOptOutStripFlags ) { // NOTE! NOTE! NOTE! If you are making changes to this function, be aware that it has threading
// NOTE! NOTE! NOTE! implications. It can be called synchronously by the Main thread,
// NOTE! NOTE! NOTE! or by the streaming texture code!
Assert( pName != NULL ); Assert( pOutStreamedMips != NULL ); Assert( pInOutCachedFileLodSettings != NULL );
TexDimensions_t actualDims = mappingDims, allocatedDims;
const bool bTextureMigration = ( nFlags & TEXTUREFLAGS_STREAMABLE ) != 0; unsigned int stripFlags = 0;
int nClampX = actualDims.m_nWidth; // no clamping (clamp to texture dimensions)
int nClampY = actualDims.m_nHeight; int nClampZ = actualDims.m_nDepth;
// Fetch LOD settings from the VTF if available
TextureLODControlSettings_t lcs; memset( &lcs, 0, sizeof( lcs ) ); TextureLODControlSettings_t const *pLODInfo = NULL; if ( pOptVTFTexture ) { pLODInfo = reinterpret_cast<TextureLODControlSettings_t const *> ( pOptVTFTexture->GetResourceData( VTF_RSRC_TEXTURE_LOD_SETTINGS, NULL ) );
// Texture streaming means there are times we call this where we don't have a VTFTexture, even though
// we're a file. So we need to store off the LOD settings whenever we get in here with a file that has them
// so that we can use the correct values for when we don't. Otherwise, the texture will be confused about
// what size to use and everything will die a horrible, horrible death.
if ( pLODInfo ) ( *pInOutCachedFileLodSettings ) = ( *pLODInfo ); } else if ( bTextureMigration ) { pLODInfo = pInOutCachedFileLodSettings; }
if ( pLODInfo ) lcs = *pLODInfo;
// Prepare the default LOD settings (that essentially result in no clamping)
TextureLODControlSettings_t default_lod_settings; memset( &default_lod_settings, 0, sizeof( default_lod_settings ) ); { for ( int w = actualDims.m_nWidth; w > 1; w >>= 1 ) ++ default_lod_settings.m_ResolutionClampX; for ( int h = actualDims.m_nHeight; h > 1; h >>= 1 ) ++ default_lod_settings.m_ResolutionClampY; }
// Check for LOD control override
{ TextureLodOverride::OverrideInfo oi = TextureLodOverride::Get( pName ); if ( oi.x && oi.y && !pLODInfo ) // If overriding texture that doesn't have lod info yet, then use default
lcs = default_lod_settings;
lcs.m_ResolutionClampX += oi.x; lcs.m_ResolutionClampY += oi.y; if ( int8( lcs.m_ResolutionClampX ) < 0 ) lcs.m_ResolutionClampX = 0; if ( int8( lcs.m_ResolutionClampY ) < 0 ) lcs.m_ResolutionClampY = 0; }
// Compute the requested mip0 dimensions
if ( lcs.m_ResolutionClampX && lcs.m_ResolutionClampY ) { nClampX = (1 << lcs.m_ResolutionClampX ); nClampY = (1 << lcs.m_ResolutionClampY ); }
// In case clamp values exceed texture dimensions, then fix up
// the clamping values
nClampX = min( nClampX, (int)actualDims.m_nWidth ); nClampY = min( nClampY, (int)actualDims.m_nHeight );
//
// Honor dimension limit restrictions
//
if ( nDesiredDimensionLimit > 0 ) { while ( nClampX > nDesiredDimensionLimit || nClampY > nDesiredDimensionLimit ) { nClampX >>= 1; nClampY >>= 1; } }
//
// Unless ignoring picmip, reflect the global picmip level in clamp dimensions
//
if ( !bIgnorePicmip ) { // If picmip requests texture degradation, then honor it
// for loddable textures only
if ( !( nFlags & TEXTUREFLAGS_NOLOD ) && ( g_config.skipMipLevels > 0 ) ) { for ( int iDegrade = 0; iDegrade < g_config.skipMipLevels; ++ iDegrade ) { // don't go lower than 4, or dxt textures won't work properly
if ( nClampX > 4 && nClampY > 4 ) { nClampX >>= 1; nClampY >>= 1; } } }
// If picmip requests quality upgrade, then always honor it
if ( g_config.skipMipLevels < 0 ) { for ( int iUpgrade = 0; iUpgrade < - g_config.skipMipLevels; ++ iUpgrade ) { if ( nClampX < actualDims.m_nWidth && nClampY < actualDims.m_nHeight ) { nClampX <<= 1; nClampY <<= 1; } else break; } } }
//
// Now use hardware settings to clamp our "clamping dimensions"
//
int iHwWidth = HardwareConfig()->MaxTextureWidth(); int iHwHeight = HardwareConfig()->MaxTextureHeight(); int iHwDepth = HardwareConfig()->MaxTextureDepth();
nClampX = min( nClampX, max( iHwWidth, 4 ) ); nClampY = min( nClampY, max( iHwHeight, 4 ) ); nClampZ = min( nClampZ, max( iHwDepth, 1 ) );
// In case clamp values exceed texture dimensions, then fix up
// the clamping values.
nClampX = min( nClampX, (int)actualDims.m_nWidth ); nClampY = min( nClampY, (int)actualDims.m_nHeight ); nClampZ = min( nClampZ, (int)actualDims.m_nDepth ); //
// Clamp to the determined dimensions
//
int numMipsSkipped = 0; // will compute now when clamping how many mips we drop
while ( ( actualDims.m_nWidth > nClampX ) || ( actualDims.m_nHeight > nClampY ) || ( actualDims.m_nDepth > nClampZ ) ) { actualDims.m_nWidth >>= 1; actualDims.m_nHeight >>= 1; actualDims.m_nDepth = Max( 1, actualDims.m_nDepth >> 1 );
++ numMipsSkipped; }
Assert( actualDims.m_nWidth > 0 && actualDims.m_nHeight > 0 && actualDims.m_nDepth > 0 );
// Now that we've got the actual size, we can figure out the mip count
actualDims.m_nMipCount = ComputeActualMipCount( actualDims, nFlags );
// If we're streaming, cut down what we're loading.
// We can only stream things that have a mipmap pyramid (not just a single mipmap).
bool bHasSetAllocation = false; if ( ( nFlags & TEXTUREFLAGS_STREAMABLE ) == TEXTUREFLAGS_STREAMABLE_COARSE ) { if ( actualDims.m_nMipCount > 1 ) { allocatedDims.m_nWidth = actualDims.m_nWidth; allocatedDims.m_nHeight = actualDims.m_nHeight; allocatedDims.m_nDepth = actualDims.m_nDepth; allocatedDims.m_nMipCount = actualDims.m_nMipCount;
for ( int i = 0; i < STREAMING_START_MIPMAP; ++i ) { // Stop when width or height is at 4 pixels (or less). We could do better,
// but some textures really can't function if they're less than 4 pixels (compressed textures, for example).
if ( allocatedDims.m_nWidth <= 4 || allocatedDims.m_nHeight <= 4 ) break;
allocatedDims.m_nWidth >>= 1; allocatedDims.m_nHeight >>= 1; allocatedDims.m_nDepth = Max( 1, allocatedDims.m_nDepth >> 1 ); allocatedDims.m_nMipCount = Max( 1, allocatedDims.m_nMipCount - 1 );
++numMipsSkipped; ++( *pOutStreamedMips ); }
bHasSetAllocation = true; } else { // Clear out that we're streaming, this isn't a texture we can stream.
stripFlags |= TEXTUREFLAGS_STREAMABLE_COARSE; } }
if ( !bHasSetAllocation ) { allocatedDims.m_nWidth = actualDims.m_nWidth; allocatedDims.m_nHeight = actualDims.m_nHeight; allocatedDims.m_nDepth = actualDims.m_nDepth; allocatedDims.m_nMipCount = actualDims.m_nMipCount; }
if ( pOptOutActualDims ) *pOptOutActualDims = actualDims;
if ( pOptOutAllocatedDims ) *pOptOutAllocatedDims = allocatedDims;
if ( pOptOutStripFlags ) ( *pOptOutStripFlags ) = stripFlags; // Returns the number we skipped
return numMipsSkipped; }
//-----------------------------------------------------------------------------
// Get an optimal read buffer, persists and avoids excessive allocations
//-----------------------------------------------------------------------------
int GetOptimalReadBuffer( CUtlBuffer* pOutOptimalBuffer, FileHandle_t hFile, int nSize ) { // NOTE! NOTE! NOTE! If you are making changes to this function, be aware that it has threading
// NOTE! NOTE! NOTE! implications. It can be called synchronously by the Main thread,
// NOTE! NOTE! NOTE! or by the streaming texture code!
Assert( GetThreadId() < MAX_RENDER_THREADS );
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s (%d bytes)", __FUNCTION__, nSize ); Assert( pOutOptimalBuffer != NULL );
// get an optimal read buffer, only resize if necessary
const int minSize = 2 * 1024 * 1024; // Uses 2MB min to avoid fragmentation
nSize = max( nSize, minSize ); int nBytesOptimalRead = g_pFullFileSystem->GetOptimalReadSize( hFile, nSize );
const int ti = GetThreadId();
if ( nBytesOptimalRead > s_nOptimalReadBufferSize[ ti ] ) { FreeOptimalReadBuffer( 0 );
s_nOptimalReadBufferSize[ ti ] = nBytesOptimalRead; s_pOptimalReadBuffer[ ti ] = g_pFullFileSystem->AllocOptimalReadBuffer( hFile, nSize ); if ( mat_spewalloc.GetBool() ) { Msg( "Allocated optimal read buffer of %d bytes @ 0x%p for thread %d\n", s_nOptimalReadBufferSize[ ti ], s_pOptimalReadBuffer[ ti ], ti ); } }
// set external buffer and reset to empty
( *pOutOptimalBuffer ).SetExternalBuffer( s_pOptimalReadBuffer[ ti ], s_nOptimalReadBufferSize[ ti ], 0 );
// return the optimal read size
return nBytesOptimalRead; }
//-----------------------------------------------------------------------------
// Free the optimal read buffer if it grows too large
//-----------------------------------------------------------------------------
void FreeOptimalReadBuffer( int nMaxSize ) { // NOTE! NOTE! NOTE! If you are making changes to this function, be aware that it has threading
// NOTE! NOTE! NOTE! implications. It can be called synchronously by the Main thread,
// NOTE! NOTE! NOTE! or by the streaming texture code!
Assert( GetThreadId() < MAX_RENDER_THREADS );
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
const int ti = GetThreadId();
if ( s_pOptimalReadBuffer[ ti ] && s_nOptimalReadBufferSize[ ti ] >= nMaxSize ) { if ( mat_spewalloc.GetBool() ) { Msg( "Freeing optimal read buffer of %d bytes @ 0x%p for thread %d\n", s_nOptimalReadBufferSize[ ti ], s_pOptimalReadBuffer[ ti ], ti ); } g_pFullFileSystem->FreeOptimalReadBuffer( s_pOptimalReadBuffer[ ti ] ); s_pOptimalReadBuffer[ ti ] = NULL; s_nOptimalReadBufferSize[ ti ] = 0; } }
#if defined( STAGING_ONLY )
CON_COMMAND( dumptexallocs, "List currently allocated textures and properties about them" ) { Msg( "Texture Memory Statistics follow:\n" ); uint64 totalTexMemAllocated = 0; FOR_EACH_MAP_FAST( g_currentTextures, i ) { const TexInfo_t& tex = g_currentTextures[ i ]; uint64 thisTexMem = tex.ComputeTexSize();
totalTexMemAllocated += thisTexMem; Msg( "%s: %llu bytes\n", ( const char * ) tex.m_Name, thisTexMem ); }
Msg( "Total Memory Allocated: %llu bytes\n", totalTexMemAllocated ); } #endif
//////////////////////////////////////////////////////////////////////////
//
// Saving all the texture LOD modifications to content
//
//////////////////////////////////////////////////////////////////////////
#ifdef IS_WINDOWS_PC
static bool SetBufferValue( char *chTxtFileBuffer, char const *szLookupKey, char const *szNewValue ) { bool bResult = false; size_t lenTmp = strlen( szNewValue ); size_t nTxtFileBufferLen = strlen( chTxtFileBuffer ); for ( char *pch = chTxtFileBuffer; ( NULL != ( pch = strstr( pch, szLookupKey ) ) ); ++ pch ) { char *val = pch + strlen( szLookupKey ); if ( !V_isspace( *val ) ) continue; else ++ val; char *pValStart = val;
// Okay, here comes the value
while ( *val && V_isspace( *val ) ) ++ val; while ( *val && !V_isspace( *val ) ) ++ val;
char *pValEnd = val; // Okay, here ends the value
memmove( pValStart + lenTmp, pValEnd, chTxtFileBuffer + nTxtFileBufferLen + 1 - pValEnd ); memcpy( pValStart, szNewValue, lenTmp );
nTxtFileBufferLen += ( lenTmp - ( pValEnd - pValStart ) ); bResult = true; }
if ( !bResult ) { char *pchAdd = chTxtFileBuffer + nTxtFileBufferLen; strcpy( pchAdd + strlen( pchAdd ), "\n" ); strcpy( pchAdd + strlen( pchAdd ), szLookupKey ); strcpy( pchAdd + strlen( pchAdd ), " " ); strcpy( pchAdd + strlen( pchAdd ), szNewValue ); strcpy( pchAdd + strlen( pchAdd ), "\n" ); bResult = true; }
return bResult; }
// Replaces the first occurrence of "szFindData" with "szNewData"
// Returns the remaining buffer past the replaced data or NULL if
// no replacement occurred.
static char * BufferReplace( char *buf, char const *szFindData, char const *szNewData ) { size_t len = strlen( buf ), lFind = strlen( szFindData ), lNew = strlen( szNewData ); if ( char *pBegin = strstr( buf, szFindData ) ) { memmove( pBegin + lNew, pBegin + lFind, buf + len - ( pBegin + lFind ) ); memmove( pBegin, szNewData, lNew ); return pBegin + lNew; } return NULL; }
class CP4Requirement { public: CP4Requirement(); ~CP4Requirement();
protected: bool m_bLoadedModule; CSysModule *m_pP4Module; };
CP4Requirement::CP4Requirement() : m_bLoadedModule( false ), m_pP4Module( NULL ) { #ifdef STAGING_ONLY
if ( p4 ) return;
// load the p4 lib
m_pP4Module = Sys_LoadModule( "p4lib" ); m_bLoadedModule = true; if ( m_pP4Module ) { CreateInterfaceFn factory = Sys_GetFactory( m_pP4Module ); if ( factory ) { p4 = ( IP4 * )factory( P4_INTERFACE_VERSION, NULL );
if ( p4 ) { extern CreateInterfaceFn g_fnMatSystemConnectCreateInterface; p4->Connect( g_fnMatSystemConnectCreateInterface ); p4->Init(); } } } #endif // STAGING_ONLY
if ( !p4 ) { Warning( "Can't load p4lib.dll\n" ); } }
CP4Requirement::~CP4Requirement() { if ( m_bLoadedModule && m_pP4Module ) { if ( p4 ) { p4->Shutdown(); p4->Disconnect(); }
Sys_UnloadModule( m_pP4Module ); m_pP4Module = NULL; p4 = NULL; } }
static ConVar mat_texture_list_content_path( "mat_texture_list_content_path", "", FCVAR_ARCHIVE, "The content path to the materialsrc directory. If left unset, it'll assume your content directory is next to the currently running game dir." );
CON_COMMAND_F( mat_texture_list_txlod_sync, "'reset' - resets all run-time changes to LOD overrides, 'save' - saves all changes to material content files", FCVAR_DONTRECORD ) { using namespace TextureLodOverride;
if ( args.ArgC() != 2 ) goto usage;
char const *szCmd = args.Arg( 1 ); Msg( "mat_texture_list_txlod_sync %s...\n", szCmd );
if ( !stricmp( szCmd, "reset" ) ) { for ( int k = 0; k < s_OverrideMap.GetNumStrings(); ++ k ) { char const *szTx = s_OverrideMap.String( k ); s_OverrideMap[ k ] = OverrideInfo(); // Reset the override info
// Force the texture LOD override to get re-processed
if ( ITexture *pTx = materials->FindTexture( szTx, "" ) ) pTx->ForceLODOverride( 0 ); else Warning( " mat_texture_list_txlod_sync reset - texture '%s' no longer found.\n", szTx ); }
s_OverrideMap.Purge(); Msg("mat_texture_list_txlod_sync reset : completed.\n"); return; } else if ( !stricmp( szCmd, "save" ) ) { CP4Requirement p4req; if ( !p4 ) g_p4factory->SetDummyMode( true );
for ( int k = 0; k < s_OverrideMap.GetNumStrings(); ++ k ) { char const *szTx = s_OverrideMap.String( k ); OverrideInfo oi = s_OverrideMap[ k ]; ITexture *pTx = materials->FindTexture( szTx, "" ); if ( !oi.x || !oi.y ) continue;
if ( !pTx ) { Warning( " mat_texture_list_txlod_sync save - texture '%s' no longer found.\n", szTx ); continue; }
int iMaxWidth = pTx->GetActualWidth(), iMaxHeight = pTx->GetActualHeight(); // Save maxwidth and maxheight
char chMaxWidth[20], chMaxHeight[20]; sprintf( chMaxWidth, "%d", iMaxWidth ), sprintf( chMaxHeight, "%d", iMaxHeight );
// We have the texture and path to its content
char chResolveName[ MAX_PATH ] = {0}, chResolveNameArg[ MAX_PATH ] = {0}; Q_snprintf( chResolveNameArg, sizeof( chResolveNameArg ) - 1, "materials/%s" TEXTURE_FNAME_EXTENSION, szTx ); char *szTextureContentPath; if ( !mat_texture_list_content_path.GetString()[0] ) { szTextureContentPath = const_cast< char * >( g_pFullFileSystem->RelativePathToFullPath( chResolveNameArg, "game", chResolveName, sizeof( chResolveName ) - 1 ) );
if ( !szTextureContentPath ) { Warning( " mat_texture_list_txlod_sync save - texture '%s' is not loaded from file system.\n", szTx ); continue; } if ( !BufferReplace( szTextureContentPath, "\\game\\", "\\content\\" ) || !BufferReplace( szTextureContentPath, "\\materials\\", "\\materialsrc\\" ) ) { Warning( " mat_texture_list_txlod_sync save - texture '%s' cannot be mapped to content directory.\n", szTx ); continue; } } else { V_strncpy( chResolveName, mat_texture_list_content_path.GetString(), MAX_PATH ); V_strncat( chResolveName, "/", MAX_PATH ); V_strncat( chResolveName, szTx, MAX_PATH ); V_strncat( chResolveName, TEXTURE_FNAME_EXTENSION, MAX_PATH );
szTextureContentPath = chResolveName; }
// Figure out what kind of source content is there:
// 1. look for TGA - if found, get the txt file (if txt file missing, create one)
// 2. otherwise look for PSD - affecting psdinfo
// 3. else error
char *pExtPut = szTextureContentPath + strlen( szTextureContentPath ) - strlen( TEXTURE_FNAME_EXTENSION ); // compensating the TEXTURE_FNAME_EXTENSION(.vtf) extension
// 1.tga
sprintf( pExtPut, ".tga" ); if ( g_pFullFileSystem->FileExists( szTextureContentPath ) ) { // Have tga - pump in the txt file
sprintf( pExtPut, ".txt" ); CUtlBuffer bufTxtFileBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); g_pFullFileSystem->ReadFile( szTextureContentPath, 0, bufTxtFileBuffer ); for ( int kCh = 0; kCh < 1024; ++kCh ) bufTxtFileBuffer.PutChar( 0 );
// Now fix maxwidth/maxheight settings
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxwidth", chMaxWidth ); SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxheight", chMaxHeight ); bufTxtFileBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, strlen( ( char * ) bufTxtFileBuffer.Base() ) );
// Check out or add the file
g_p4factory->SetOpenFileChangeList( "Texture LOD Autocheckout" ); CP4AutoEditFile autop4_edit( szTextureContentPath );
// Save the file contents
if ( g_pFullFileSystem->WriteFile( szTextureContentPath, 0, bufTxtFileBuffer ) ) { Msg(" '%s' : saved.\n", szTextureContentPath ); CP4AutoAddFile autop4_add( szTextureContentPath ); } else { Warning( " '%s' : failed to save - set \"maxwidth %d maxheight %d\" manually.\n", szTextureContentPath, iMaxWidth, iMaxHeight ); }
continue; }
// 2.psd
sprintf( pExtPut, ".psd" ); if ( g_pFullFileSystem->FileExists( szTextureContentPath ) ) { char chCommand[MAX_PATH]; char szTxtFileName[MAX_PATH] = {0}; GetModSubdirectory( "tmp_lod_psdinfo.txt", szTxtFileName, sizeof( szTxtFileName ) ); sprintf( chCommand, "/C psdinfo \"%s\" > \"%s\"", szTextureContentPath, szTxtFileName); ShellExecute( NULL, NULL, "cmd.exe", chCommand, NULL, SW_HIDE ); Sleep( 200 );
CUtlBuffer bufTxtFileBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); g_pFullFileSystem->ReadFile( szTxtFileName, 0, bufTxtFileBuffer ); for ( int kCh = 0; kCh < 1024; ++ kCh ) bufTxtFileBuffer.PutChar( 0 );
// Now fix maxwidth/maxheight settings
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxwidth", chMaxWidth ); SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxheight", chMaxHeight ); bufTxtFileBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, strlen( ( char * ) bufTxtFileBuffer.Base() ) );
// Check out or add the file
// Save the file contents
if ( g_pFullFileSystem->WriteFile( szTxtFileName, 0, bufTxtFileBuffer ) ) { g_p4factory->SetOpenFileChangeList( "Texture LOD Autocheckout" ); CP4AutoEditFile autop4_edit( szTextureContentPath );
sprintf( chCommand, "/C psdinfo -write \"%s\" < \"%s\"", szTextureContentPath, szTxtFileName ); Sleep( 200 ); ShellExecute( NULL, NULL, "cmd.exe", chCommand, NULL, SW_HIDE ); Sleep( 200 );
Msg(" '%s' : saved.\n", szTextureContentPath ); CP4AutoAddFile autop4_add( szTextureContentPath ); } else { Warning( " '%s' : failed to save - set \"maxwidth %d maxheight %d\" manually.\n", szTextureContentPath, iMaxWidth, iMaxHeight ); }
continue; }
// 3. - error
sprintf( pExtPut, "" ); { Warning( " '%s' : doesn't specify a valid TGA or PSD file!\n", szTextureContentPath ); continue; } }
Msg("mat_texture_list_txlod_sync save : completed.\n"); return; } else goto usage;
return;
usage: Warning( "Usage:\n" " mat_texture_list_txlod_sync reset - resets all run-time changes to LOD overrides;\n" " mat_texture_list_txlod_sync save - saves all changes to material content files.\n" ); } #endif
|