|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//===========================================================================//
#include "tier1/convar.h"
#include "jigglebones.h"
#ifdef CLIENT_DLL
#include "engine/ivdebugoverlay.h"
#include "cdll_client_int.h"
#endif // CLIENT_DLL
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#ifdef CLIENT_DLL
//-----------------------------------------------------------------------------
ConVar cl_jiggle_bone_debug( "cl_jiggle_bone_debug", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" ); ConVar cl_jiggle_bone_debug_yaw_constraints( "cl_jiggle_bone_debug_yaw_constraints", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" ); ConVar cl_jiggle_bone_debug_pitch_constraints( "cl_jiggle_bone_debug_pitch_constraints", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" ); #endif // CLIENT_DLL
ConVar cl_jiggle_bone_framerate_cutoff( "cl_jiggle_bone_framerate_cutoff", "20", 0, "Skip jiggle bone simulation if framerate drops below this value (frames/second)" );
//-----------------------------------------------------------------------------
JiggleData * CJiggleBones::GetJiggleData( int bone, float currenttime, const Vector &initBasePos, const Vector &initTipPos ) { FOR_EACH_LL( m_jiggleBoneState, it ) { if ( m_jiggleBoneState[it].bone == bone ) { return &m_jiggleBoneState[it]; } }
JiggleData data; data.Init( bone, currenttime, initBasePos, initTipPos );
// Start out using jiggle bones for at least 16 frames.
data.useGoalMatrixCount = 0; data.useJiggleBoneCount = 16;
int idx = m_jiggleBoneState.AddToHead( data ); if ( idx == m_jiggleBoneState.InvalidIndex() ) return NULL;
return &m_jiggleBoneState[idx]; }
//-----------------------------------------------------------------------------
/**
* Do spring physics calculations and update "jiggle bone" matrix * (Michael Booth, Turtle Rock Studios) */ void CJiggleBones::BuildJiggleTransformations( int boneIndex, float currenttime, const mstudiojigglebone_t *jiggleInfo, const matrix3x4_t &goalMX, matrix3x4_t &boneMX ) { Vector goalBasePosition; MatrixPosition( goalMX, goalBasePosition );
Vector goalForward, goalUp, goalLeft; MatrixGetColumn( goalMX, 0, goalLeft ); MatrixGetColumn( goalMX, 1, goalUp ); MatrixGetColumn( goalMX, 2, goalForward );
// compute goal tip position
Vector goalTip = goalBasePosition + jiggleInfo->length * goalForward;
JiggleData *data = GetJiggleData( boneIndex, currenttime, goalBasePosition, goalTip ); if ( !data ) { return; }
// if frames have been skipped since our last update, we were likely
// disabled and re-enabled, so re-init
#if defined(CLIENT_DLL) || defined(GAME_DLL)
float timeTolerance = 1.2f * gpGlobals->frametime; #else
float timeTolerance = 0.5f; #endif
if ( currenttime - data->lastUpdate > timeTolerance ) { data->Init( boneIndex, currenttime, goalBasePosition, goalTip ); }
if ( data->lastLeft.IsZero() ) { data->lastLeft = goalLeft; }
// limit maximum deltaT to avoid simulation blowups
// if framerate is too low, skip jigglebones altogether, since movement will be too
// large between frames to simulate with a simple Euler integration
float deltaT = currenttime - data->lastUpdate;
const float thousandHZ = 0.001f; bool bMaxDeltaT = deltaT < thousandHZ; bool bUseGoalMatrix = cl_jiggle_bone_framerate_cutoff.GetFloat() <= 0.0f || deltaT > ( 1.0f / cl_jiggle_bone_framerate_cutoff.GetFloat() );
if ( bUseGoalMatrix ) { // We hit the jiggle bone framerate cutoff. Reset the useGoalMatrixCount so we
// use the goal matrix at least 32 frames and don't flash back and forth.
data->useGoalMatrixCount = 32; } else if ( data->useGoalMatrixCount > 0 ) { // Below the cutoff, but still need to use the goal matrix a few more times.
bUseGoalMatrix = true; data->useGoalMatrixCount--; } else { // Use real jiggle bones. Woot!
data->useJiggleBoneCount = 32; }
if ( data->useJiggleBoneCount > 0 ) { // Make sure we draw at least runs of 32 frames with real jiggle bones.
data->useJiggleBoneCount--; data->useGoalMatrixCount = 0; bUseGoalMatrix = false; }
if ( bMaxDeltaT ) { deltaT = thousandHZ; } else if ( bUseGoalMatrix ) { // disable jigglebone - just use goal matrix
boneMX = goalMX; return; }
// we want lastUpdate here, so if jigglebones were skipped they get reinitialized if they turn back on
data->lastUpdate = currenttime;
//
// Bone tip flex
//
if ( jiggleInfo->flags & ( JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID ) ) { // apply gravity in global space
data->tipAccel.z -= jiggleInfo->tipMass;
if ( jiggleInfo->flags & JIGGLE_IS_FLEXIBLE ) { // decompose into local coordinates
Vector error = goalTip - data->tipPos;
Vector localError; localError.x = DotProduct( goalLeft, error ); localError.y = DotProduct( goalUp, error ); localError.z = DotProduct( goalForward, error );
Vector localVel; localVel.x = DotProduct( goalLeft, data->tipVel ); localVel.y = DotProduct( goalUp, data->tipVel );
// yaw spring
float yawAccel = jiggleInfo->yawStiffness * localError.x - jiggleInfo->yawDamping * localVel.x;
// pitch spring
float pitchAccel = jiggleInfo->pitchStiffness * localError.y - jiggleInfo->pitchDamping * localVel.y;
if ( jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT ) { // drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp; } else { // allow flex along length of spring
localVel.z = DotProduct( goalForward, data->tipVel );
// along spring
float alongAccel = jiggleInfo->alongStiffness * localError.z - jiggleInfo->alongDamping * localVel.z;
// drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp + alongAccel * goalForward; } }
// simple euler integration
data->tipVel += data->tipAccel * deltaT; data->tipPos += data->tipVel * deltaT;
// clear this timestep's accumulated accelerations
data->tipAccel = vec3_origin;
//
// Apply optional constraints
//
if ( jiggleInfo->flags & ( JIGGLE_HAS_YAW_CONSTRAINT | JIGGLE_HAS_PITCH_CONSTRAINT ) ) { // find components of spring vector in local coordinate system
Vector along = data->tipPos - goalBasePosition; Vector localAlong; localAlong.x = DotProduct( goalLeft, along ); localAlong.y = DotProduct( goalUp, along ); localAlong.z = DotProduct( goalForward, along );
Vector localVel; localVel.x = DotProduct( goalLeft, data->tipVel ); localVel.y = DotProduct( goalUp, data->tipVel ); localVel.z = DotProduct( goalForward, data->tipVel );
if ( jiggleInfo->flags & JIGGLE_HAS_YAW_CONSTRAINT ) { // enforce yaw constraints in local XZ plane
float yawError = atan2( localAlong.x, localAlong.z );
bool isAtLimit = false; float yaw = 0.0f;
if ( yawError < jiggleInfo->minYaw ) { // at angular limit
isAtLimit = true; yaw = jiggleInfo->minYaw; } else if ( yawError > jiggleInfo->maxYaw ) { // at angular limit
isAtLimit = true; yaw = jiggleInfo->maxYaw; }
if ( isAtLimit ) { float sy, cy; SinCos( yaw, &sy, &cy );
// yaw matrix
matrix3x4_t yawMatrix;
yawMatrix[0][0] = cy; yawMatrix[1][0] = 0; yawMatrix[2][0] = -sy;
yawMatrix[0][1] = 0; yawMatrix[1][1] = 1.0f; yawMatrix[2][1] = 0;
yawMatrix[0][2] = sy; yawMatrix[1][2] = 0; yawMatrix[2][2] = cy;
yawMatrix[0][3] = 0; yawMatrix[1][3] = 0; yawMatrix[2][3] = 0;
// global coordinates of limit
matrix3x4_t limitMatrix; ConcatTransforms( goalMX, yawMatrix, limitMatrix );
Vector limitLeft( limitMatrix.m_flMatVal[0][0], limitMatrix.m_flMatVal[1][0], limitMatrix.m_flMatVal[2][0] );
Vector limitUp( limitMatrix.m_flMatVal[0][1], limitMatrix.m_flMatVal[1][1], limitMatrix.m_flMatVal[2][1] );
Vector limitForward( limitMatrix.m_flMatVal[0][2], limitMatrix.m_flMatVal[1][2], limitMatrix.m_flMatVal[2][2] );
#ifdef CLIENT_DLL
if ( cl_jiggle_bone_debug_yaw_constraints.GetBool() ) { float dT = 0.01f; const float axisSize = 10.0f; if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitLeft, 0, 255, 255, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitUp, 255, 255, 0, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitForward, 255, 0, 255, true, dT ); } } #endif // CLIENT_DLL
Vector limitAlong( DotProduct( limitLeft, along ), DotProduct( limitUp, along ), DotProduct( limitForward, along ) );
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.y * limitUp + limitAlong.z * limitForward;
// removed friction and velocity clipping against constraint - was causing simulation blowups (MSB 12/9/2010)
data->tipVel.Zero();
// update along vectors for use by pitch constraint
along = data->tipPos - goalBasePosition; localAlong.x = DotProduct( goalLeft, along ); localAlong.y = DotProduct( goalUp, along ); localAlong.z = DotProduct( goalForward, along );
localVel.x = DotProduct( goalLeft, data->tipVel ); localVel.y = DotProduct( goalUp, data->tipVel ); localVel.z = DotProduct( goalForward, data->tipVel ); } }
if ( jiggleInfo->flags & JIGGLE_HAS_PITCH_CONSTRAINT ) { // enforce pitch constraints in local YZ plane
float pitchError = atan2( localAlong.y, localAlong.z );
bool isAtLimit = false; float pitch = 0.0f;
if ( pitchError < jiggleInfo->minPitch ) { // at angular limit
isAtLimit = true; pitch = jiggleInfo->minPitch; } else if ( pitchError > jiggleInfo->maxPitch ) { // at angular limit
isAtLimit = true; pitch = jiggleInfo->maxPitch; }
if ( isAtLimit ) { float sp, cp; SinCos( pitch, &sp, &cp );
// pitch matrix
matrix3x4_t pitchMatrix;
pitchMatrix[0][0] = 1.0f; pitchMatrix[1][0] = 0; pitchMatrix[2][0] = 0;
pitchMatrix[0][1] = 0; pitchMatrix[1][1] = cp; pitchMatrix[2][1] = -sp;
pitchMatrix[0][2] = 0; pitchMatrix[1][2] = sp; pitchMatrix[2][2] = cp;
pitchMatrix[0][3] = 0; pitchMatrix[1][3] = 0; pitchMatrix[2][3] = 0;
// global coordinates of limit
matrix3x4_t limitMatrix; ConcatTransforms( goalMX, pitchMatrix, limitMatrix );
Vector limitLeft( limitMatrix.m_flMatVal[0][0], limitMatrix.m_flMatVal[1][0], limitMatrix.m_flMatVal[2][0] );
Vector limitUp( limitMatrix.m_flMatVal[0][1], limitMatrix.m_flMatVal[1][1], limitMatrix.m_flMatVal[2][1] );
Vector limitForward( limitMatrix.m_flMatVal[0][2], limitMatrix.m_flMatVal[1][2], limitMatrix.m_flMatVal[2][2] );
#ifdef CLIENT_DLL
if (cl_jiggle_bone_debug_pitch_constraints.GetBool()) { float dT = 0.01f; const float axisSize = 10.0f; if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitLeft, 0, 255, 255, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitUp, 255, 255, 0, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitForward, 255, 0, 255, true, dT ); } } #endif // CLIENT_DLL
Vector limitAlong( DotProduct( limitLeft, along ), DotProduct( limitUp, along ), DotProduct( limitForward, along ) );
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.x * limitLeft + limitAlong.z * limitForward;
// removed friction and velocity clipping against constraint - was causing simulation blowups (MSB 12/9/2010)
data->tipVel.Zero(); } } }
// needed for matrix assembly below
Vector forward = data->tipPos - goalBasePosition; forward.NormalizeInPlace();
if ( jiggleInfo->flags & JIGGLE_HAS_ANGLE_CONSTRAINT ) { // enforce max angular error
Vector error = goalTip - data->tipPos; float dot = DotProduct( forward, goalForward ); float angleBetween = acos( dot ); if ( dot < 0.0f ) { angleBetween = 2.0f * M_PI - angleBetween; }
if ( angleBetween > jiggleInfo->angleLimit ) { // at angular limit
float maxBetween = jiggleInfo->length * sin( jiggleInfo->angleLimit );
Vector delta = goalTip - data->tipPos; delta.NormalizeInPlace();
data->tipPos = goalTip - maxBetween * delta;
forward = data->tipPos - goalBasePosition; forward.NormalizeInPlace(); } }
if ( jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT ) { // enforce spring length
data->tipPos = goalBasePosition + jiggleInfo->length * forward;
// zero velocity along forward bone axis
data->tipVel -= DotProduct( data->tipVel, forward ) * forward; }
//
// Build bone matrix to align along current tip direction
//
Vector left = CrossProduct( goalUp, forward ); left.NormalizeInPlace();
if ( DotProduct( left, data->lastLeft ) < 0.0f ) { // The bone has rotated so far its on the other side of the up vector
// resulting in the cross product result flipping 180 degrees around the up
// vector. Flip it back.
left = -left; } data->lastLeft = left;
#ifdef CLIENT_DLL
if ( cl_jiggle_bone_debug.GetBool() ) { if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + 10.0f * data->lastLeft, 255, 0, 255, true, 0.01f ); } } #endif
Vector up = CrossProduct( forward, left );
boneMX[0][0] = left.x; boneMX[1][0] = left.y; boneMX[2][0] = left.z; boneMX[0][1] = up.x; boneMX[1][1] = up.y; boneMX[2][1] = up.z; boneMX[0][2] = forward.x; boneMX[1][2] = forward.y; boneMX[2][2] = forward.z;
boneMX[0][3] = goalBasePosition.x; boneMX[1][3] = goalBasePosition.y; boneMX[2][3] = goalBasePosition.z; }
//
// Bone base flex
//
if ( jiggleInfo->flags & JIGGLE_HAS_BASE_SPRING ) { // gravity
data->baseAccel.z -= jiggleInfo->baseMass;
// simple spring
Vector error = goalBasePosition - data->basePos; data->baseAccel += jiggleInfo->baseStiffness * error - jiggleInfo->baseDamping * data->baseVel;
data->baseVel += data->baseAccel * deltaT; data->basePos += data->baseVel * deltaT;
// clear this timestep's accumulated accelerations
data->baseAccel = vec3_origin;
// constrain to limits
error = data->basePos - goalBasePosition; Vector localError; localError.x = DotProduct( goalLeft, error ); localError.y = DotProduct( goalUp, error ); localError.z = DotProduct( goalForward, error );
Vector localVel; localVel.x = DotProduct( goalLeft, data->baseVel ); localVel.y = DotProduct( goalUp, data->baseVel ); localVel.z = DotProduct( goalForward, data->baseVel );
// horizontal constraint
if ( localError.x < jiggleInfo->baseMinLeft ) { localError.x = jiggleInfo->baseMinLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward); } else if ( localError.x > jiggleInfo->baseMaxLeft ) { localError.x = jiggleInfo->baseMaxLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward); }
if ( localError.y < jiggleInfo->baseMinUp ) { localError.y = jiggleInfo->baseMinUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward); } else if ( localError.y > jiggleInfo->baseMaxUp ) { localError.y = jiggleInfo->baseMaxUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward); }
if ( localError.z < jiggleInfo->baseMinForward ) { localError.z = jiggleInfo->baseMinForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp); } else if ( localError.z > jiggleInfo->baseMaxForward ) { localError.z = jiggleInfo->baseMaxForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp); }
data->basePos = goalBasePosition + localError.x * goalLeft + localError.y * goalUp + localError.z * goalForward;
// fix up velocity
data->baseVel = (data->basePos - data->baseLastPos) / deltaT; data->baseLastPos = data->basePos;
if ( !( jiggleInfo->flags & ( JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID ) ) ) { // no tip flex - use bone's goal orientation
boneMX = goalMX; }
// update bone position
MatrixSetColumn( data->basePos, 3, boneMX ); } else if ( jiggleInfo->flags & JIGGLE_IS_BOING ) { // estimate velocity
Vector vel = goalBasePosition - data->lastBoingPos;
#ifdef CLIENT_DLL
if ( cl_jiggle_bone_debug.GetBool() ) { if ( debugoverlay ) { debugoverlay->AddLineOverlay( data->lastBoingPos, goalBasePosition, 0, 128, ( gpGlobals->framecount & 0x1 ) ? 0 : 200, true, 999.9f ); } } #endif
data->lastBoingPos = goalBasePosition;
float speed = vel.NormalizeInPlace(); if ( speed < 0.00001f ) { vel = Vector( 0, 0, 1.0f ); speed = 0.0f; } else { speed /= deltaT; }
data->boingTime += deltaT;
// if velocity changed a lot, we impacted and should *boing*
const float minSpeed = 5.0f; // 15.0f;
const float minReBoingTime = 0.5f; if ( ( speed > minSpeed || data->boingSpeed > minSpeed ) && data->boingTime > minReBoingTime ) { if ( fabs( data->boingSpeed - speed ) > jiggleInfo->boingImpactSpeed || DotProduct( vel, data->boingVelDir ) < jiggleInfo->boingImpactAngle ) { data->boingTime = 0.0f; data->boingDir = -vel;
#ifdef CLIENT_DLL
if ( cl_jiggle_bone_debug.GetBool() ) { if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + 5.0f * data->boingDir, 255, 255, 0, true, 999.9f ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + Vector( 0.1, 0, 0 ), 128, 128, 0, true, 999.9f ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + Vector( 0, 0.1, 0 ), 128, 128, 0, true, 999.9f ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + Vector( 0, 0, 0.1 ), 128, 128, 0, true, 999.9f ); } } #endif
} }
data->boingVelDir = vel; data->boingSpeed = speed;
float damping = 1.0f - ( jiggleInfo->boingDampingRate * data->boingTime ); if ( damping < 0.01f ) { // boing has entirely damped out
boneMX = goalMX; } else { damping *= damping; damping *= damping;
float flex = jiggleInfo->boingAmplitude * cos( jiggleInfo->boingFrequency * data->boingTime ) * damping;
float squash = 1.0f + flex; float stretch = 1.0f - flex;
boneMX[0][0] = goalLeft.x; boneMX[1][0] = goalLeft.y; boneMX[2][0] = goalLeft.z;
boneMX[0][1] = goalUp.x; boneMX[1][1] = goalUp.y; boneMX[2][1] = goalUp.z;
boneMX[0][2] = goalForward.x; boneMX[1][2] = goalForward.y; boneMX[2][2] = goalForward.z;
boneMX[0][3] = 0.0f; boneMX[1][3] = 0.0f; boneMX[2][3] = 0.0f;
// build transform into "boing space", where Z is along primary boing axis
Vector boingSide; if ( fabs( data->boingDir.x ) < 0.9f ) { boingSide = CrossProduct( data->boingDir, Vector( 1.0f, 0, 0 ) ); } else { boingSide = CrossProduct( data->boingDir, Vector( 0, 0, 1.0f ) ); } boingSide.NormalizeInPlace();
Vector boingOtherSide = CrossProduct( data->boingDir, boingSide );
matrix3x4_t xfrmToBoingCoordsMX;
xfrmToBoingCoordsMX[0][0] = boingSide.x; xfrmToBoingCoordsMX[0][1] = boingSide.y; xfrmToBoingCoordsMX[0][2] = boingSide.z;
xfrmToBoingCoordsMX[1][0] = boingOtherSide.x; xfrmToBoingCoordsMX[1][1] = boingOtherSide.y; xfrmToBoingCoordsMX[1][2] = boingOtherSide.z;
xfrmToBoingCoordsMX[2][0] = data->boingDir.x; xfrmToBoingCoordsMX[2][1] = data->boingDir.y; xfrmToBoingCoordsMX[2][2] = data->boingDir.z;
xfrmToBoingCoordsMX[0][3] = 0.0f; xfrmToBoingCoordsMX[1][3] = 0.0f; xfrmToBoingCoordsMX[2][3] = 0.0f;
// build squash and stretch transform in "boing space"
matrix3x4_t boingMX;
boingMX[0][0] = squash; boingMX[1][0] = 0.0f; boingMX[2][0] = 0.0f;
boingMX[0][1] = 0.0f; boingMX[1][1] = squash; boingMX[2][1] = 0.0f;
boingMX[0][2] = 0.0f; boingMX[1][2] = 0.0f; boingMX[2][2] = stretch;
boingMX[0][3] = 0.0f; boingMX[1][3] = 0.0f; boingMX[2][3] = 0.0f;
// transform back from boing space (inverse is transpose since orthogonal)
matrix3x4_t xfrmFromBoingCoordsMX; xfrmFromBoingCoordsMX[0][0] = xfrmToBoingCoordsMX[0][0]; xfrmFromBoingCoordsMX[1][0] = xfrmToBoingCoordsMX[0][1]; xfrmFromBoingCoordsMX[2][0] = xfrmToBoingCoordsMX[0][2];
xfrmFromBoingCoordsMX[0][1] = xfrmToBoingCoordsMX[1][0]; xfrmFromBoingCoordsMX[1][1] = xfrmToBoingCoordsMX[1][1]; xfrmFromBoingCoordsMX[2][1] = xfrmToBoingCoordsMX[1][2];
xfrmFromBoingCoordsMX[0][2] = xfrmToBoingCoordsMX[2][0]; xfrmFromBoingCoordsMX[1][2] = xfrmToBoingCoordsMX[2][1]; xfrmFromBoingCoordsMX[2][2] = xfrmToBoingCoordsMX[2][2];
xfrmFromBoingCoordsMX[0][3] = 0.0f; xfrmFromBoingCoordsMX[1][3] = 0.0f; xfrmFromBoingCoordsMX[2][3] = 0.0f;
// put it all together
matrix3x4_t xfrmMX; MatrixMultiply( xfrmToBoingCoordsMX, boingMX, xfrmMX ); MatrixMultiply( xfrmMX, xfrmFromBoingCoordsMX, xfrmMX ); MatrixMultiply( boneMX, xfrmMX, boneMX );
#ifdef CLIENT_DLL
if ( cl_jiggle_bone_debug.GetBool() ) { float dT = 0.01f; if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + 50.0f * data->boingDir, 255, 255, 0, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + 50.0f * boingSide, 255, 0, 255, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + 50.0f * boingOtherSide, 0, 255, 255, true, dT ); } } #endif
boneMX[0][3] = goalBasePosition.x; boneMX[1][3] = goalBasePosition.y; boneMX[2][3] = goalBasePosition.z; } } else if ( !( jiggleInfo->flags & ( JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID ) ) ) { // no flex at all - just use goal matrix
boneMX = goalMX; }
#ifdef CLIENT_DLL
// debug display for client only so server doesn't try to also draw it
if ( cl_jiggle_bone_debug.GetBool() ) { float dT = 0.01f; const float axisSize = 5.0f; if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalLeft, 255, 0, 0, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalUp, 0, 255, 0, true, dT ); debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalForward, 0, 0, 255, true, dT ); }
if ( cl_jiggle_bone_debug.GetInt() > 1 ) { DevMsg( "Jiggle bone #%d, basePos( %3.2f, %3.2f, %3.2f ), tipPos( %3.2f, %3.2f, %3.2f ), left( %3.2f, %3.2f, %3.2f ), up( %3.2f, %3.2f, %3.2f ), forward( %3.2f, %3.2f, %3.2f )\n", data->bone, goalBasePosition.x, goalBasePosition.y, goalBasePosition.z, data->tipPos.x, data->tipPos.y, data->tipPos.z, goalLeft.x, goalLeft.y, goalLeft.z, goalUp.x, goalUp.y, goalUp.z, goalForward.x, goalForward.y, goalForward.z ); }
const float sz = 1.0f;
if ( jiggleInfo->flags & ( JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID ) ) { if ( debugoverlay ) { debugoverlay->AddLineOverlay( goalBasePosition, data->tipPos, 255, 255, 0, true, dT );
debugoverlay->AddLineOverlay( data->tipPos + Vector( -sz, 0, 0 ), data->tipPos + Vector( sz, 0, 0 ), 0, 255, 255, true, dT ); debugoverlay->AddLineOverlay( data->tipPos + Vector( 0, -sz, 0 ), data->tipPos + Vector( 0, sz, 0 ), 0, 255, 255, true, dT ); debugoverlay->AddLineOverlay( data->tipPos + Vector( 0, 0, -sz ), data->tipPos + Vector( 0, 0, sz ), 0, 255, 255, true, dT ); } }
if ( jiggleInfo->flags & JIGGLE_HAS_BASE_SPRING ) { if ( debugoverlay ) { debugoverlay->AddLineOverlay( data->basePos + Vector( -sz, 0, 0 ), data->basePos + Vector( sz, 0, 0 ), 255, 0, 255, true, dT ); debugoverlay->AddLineOverlay( data->basePos + Vector( 0, -sz, 0 ), data->basePos + Vector( 0, sz, 0 ), 255, 0, 255, true, dT ); debugoverlay->AddLineOverlay( data->basePos + Vector( 0, 0, -sz ), data->basePos + Vector( 0, 0, sz ), 255, 0, 255, true, dT ); } }
if ( jiggleInfo->flags & JIGGLE_IS_BOING ) { if ( cl_jiggle_bone_debug.GetInt() > 2 ) { DevMsg( " boingSpeed = %3.2f, boingVelDir( %3.2f, %3.2f, %3.2f )\n", data->boingVelDir.Length() / deltaT, data->boingVelDir.x, data->boingVelDir.y, data->boingVelDir.z ); } } } #endif // CLIENT_DLL
}
|