|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: A collection of utility classes to simplify thread handling, and
// as much as possible contain portability problems. Here avoiding
// including windows.h.
//
//=============================================================================
#ifndef THREADTOOLS_H
#define THREADTOOLS_H
#include "tier0/type_traits.h"
#include <limits.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier0/vcrmode.h"
#include "tier0/vprof_telemetry.h"
#ifdef PLATFORM_WINDOWS_PC
#include <intrin.h>
#endif
#ifdef POSIX
#include <pthread.h>
#include <errno.h>
#define WAIT_OBJECT_0 0
#define WAIT_TIMEOUT 0x00000102
#define WAIT_FAILED -1
#define THREAD_PRIORITY_HIGHEST 2
#endif
#if defined( _WIN32 )
#pragma once
#pragma warning(push)
#pragma warning(disable:4251)
#endif
// #define THREAD_PROFILER 1
#ifndef _RETAIL
#define THREAD_MUTEX_TRACING_SUPPORTED
#if defined(_WIN32) && defined(_DEBUG)
#define THREAD_MUTEX_TRACING_ENABLED
#endif
#endif
#ifdef _WIN32
typedef void *HANDLE; #endif
// Start thread running - error if already running
enum ThreadPriorityEnum_t { #if defined( PLATFORM_PS3 )
TP_PRIORITY_NORMAL = 1001, TP_PRIORITY_HIGH = 100, TP_PRIORITY_LOW = 2001, TP_PRIORITY_DEFAULT = 1001 #error "Need PRIORITY_LOWEST/HIGHEST"
#elif defined( PLATFORM_LINUX )
// We can use nice on Linux threads to change scheduling.
// pthreads on Linux only allows priority setting on
// real-time threads.
// NOTE: Lower numbers are higher priority, thus the need
// for TP_IS_PRIORITY_HIGHER.
TP_PRIORITY_DEFAULT = 0, TP_PRIORITY_NORMAL = 0, TP_PRIORITY_HIGH = -10, TP_PRIORITY_LOW = 10, TP_PRIORITY_HIGHEST = -20, TP_PRIORITY_LOWEST = 19, #else // PLATFORM_PS3
TP_PRIORITY_DEFAULT = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_NORMAL = 0, // THREAD_PRIORITY_NORMAL
TP_PRIORITY_HIGH = 1, // THREAD_PRIORITY_ABOVE_NORMAL
TP_PRIORITY_LOW = -1, // THREAD_PRIORITY_BELOW_NORMAL
TP_PRIORITY_HIGHEST = 2, // THREAD_PRIORITY_HIGHEST
TP_PRIORITY_LOWEST = -2, // THREAD_PRIORITY_LOWEST
#endif // PLATFORM_PS3
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const unsigned TT_INFINITE = 0xffffffff;
#ifndef NO_THREAD_LOCAL
#ifndef THREAD_LOCAL
#ifdef _WIN32
#define THREAD_LOCAL __declspec(thread)
#elif POSIX
#define THREAD_LOCAL __thread
#endif
#endif
#endif // NO_THREAD_LOCAL
typedef unsigned long ThreadId_t;
//-----------------------------------------------------------------------------
//
// Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex
// in that it accepts a standard C function rather than compiler specific one.
//
//-----------------------------------------------------------------------------
FORWARD_DECLARE_HANDLE( ThreadHandle_t ); typedef unsigned (*ThreadFunc_t)( void *pParam );
PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0 ); PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 ); PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t );
//-----------------------------------------------------------------------------
PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0); PLATFORM_INTERFACE uint ThreadGetCurrentId(); PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle(); PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL ); PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority ); inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); } PLATFORM_INTERFACE bool ThreadInMainThread(); PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread();
// NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE
typedef int (*ThreadedLoadLibraryFunc_t)(); PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func ); PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc();
#if defined( _WIN32 ) && !defined( _WIN64 ) && !defined( _X360 )
extern "C" unsigned long __declspec(dllimport) __stdcall GetCurrentThreadId(); #define ThreadGetCurrentId GetCurrentThreadId
#endif
inline void ThreadPause() { #if defined( PLATFORM_WINDOWS_PC )
// Intrinsic for __asm pause; from <intrin.h>
_mm_pause(); #elif POSIX
__asm __volatile( "pause" ); #elif defined( _X360 )
#else
#error "implement me"
#endif
}
PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE ); // If you're not calling ThreadJoin, you need to call ThreadDetach so pthreads on Linux knows it can
// free the memory for this thread. Otherwise you wind up leaking threads until you run out and
// CreateSimpleThread() will fail.
PLATFORM_INTERFACE void ThreadDetach( ThreadHandle_t );
PLATFORM_INTERFACE void ThreadSetDebugName( ThreadId_t id, const char *pszName ); inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( (ThreadId_t)-1, pszName ); }
PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask );
//-----------------------------------------------------------------------------
enum ThreadWaitResult_t { TW_FAILED = 0xffffffff, // WAIT_FAILED
TW_TIMEOUT = 0x00000102, // WAIT_TIMEOUT
};
#ifdef _WIN32
PLATFORM_INTERFACE int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); inline int ThreadWaitForObject( HANDLE handle, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { return ThreadWaitForObjects( 1, &handle, bWaitAll, timeout ); } #endif
//-----------------------------------------------------------------------------
//
// Interlock methods. These perform very fast atomic thread
// safe operations. These are especially relevant in a multi-core setting.
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
#define NOINLINE
#elif POSIX
#define NOINLINE __attribute__ ((noinline))
#endif
// ThreadMemoryBarrier is a fence/barrier sufficient for most uses. It prevents reads
// from moving past reads, and writes moving past writes. It is sufficient for
// read-acquire and write-release barriers. It is not a full barrier and it does
// not prevent reads from moving past writes -- that would require a full __sync()
// on PPC and is significantly more expensive.
#if defined( _X360 ) || defined( _PS3 )
#define ThreadMemoryBarrier() __lwsync()
#elif defined(_MSC_VER)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
#if _MSC_VER < 1500
// !KLUDGE! For VC 2005
// http://connect.microsoft.com/VisualStudio/feedback/details/100051
#pragma intrinsic(_ReadWriteBarrier)
#endif
#define ThreadMemoryBarrier() _ReadWriteBarrier()
#elif defined(GNUC)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
// http://preshing.com/20120625/memory-ordering-at-compile-time
#define ThreadMemoryBarrier() asm volatile("" ::: "memory")
#else
#error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering
#endif
#if defined(_WIN32) && !defined(_X360)
#if ( _MSC_VER >= 1310 )
#define USE_INTRINSIC_INTERLOCKED
#endif
#endif
#ifdef USE_INTRINSIC_INTERLOCKED
extern "C" { long __cdecl _InterlockedIncrement(volatile long*); long __cdecl _InterlockedDecrement(volatile long*); long __cdecl _InterlockedExchange(volatile long*, long); long __cdecl _InterlockedExchangeAdd(volatile long*, long); long __cdecl _InterlockedCompareExchange(volatile long*, long, long); }
#pragma intrinsic( _InterlockedCompareExchange )
#pragma intrinsic( _InterlockedDecrement )
#pragma intrinsic( _InterlockedExchange )
#pragma intrinsic( _InterlockedExchangeAdd )
#pragma intrinsic( _InterlockedIncrement )
inline long ThreadInterlockedIncrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( p ); } inline long ThreadInterlockedDecrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( p ); } inline long ThreadInterlockedExchange( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( p, value ); } inline long ThreadInterlockedExchangeAdd( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( p, value ); } inline long ThreadInterlockedCompareExchange( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( p, value, comperand ); } inline bool ThreadInterlockedAssignIf( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( p, value, comperand ) == comperand ); } #else
PLATFORM_INTERFACE long ThreadInterlockedIncrement( long volatile * ); PLATFORM_INTERFACE long ThreadInterlockedDecrement( long volatile * ); PLATFORM_INTERFACE long ThreadInterlockedExchange( long volatile *, long value ); PLATFORM_INTERFACE long ThreadInterlockedExchangeAdd( long volatile *, long value ); PLATFORM_INTERFACE long ThreadInterlockedCompareExchange( long volatile *, long value, long comperand ); PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( long volatile *, long value, long comperand ); #endif
inline unsigned ThreadInterlockedExchangeSubtract( long volatile *p, long value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, -value ); }
#if defined( USE_INTRINSIC_INTERLOCKED ) && !defined( _WIN64 )
#define TIPTR()
inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { return (void *)_InterlockedExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value) ); } inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { return (void *)_InterlockedCompareExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value), reinterpret_cast<long>(comperand) ); } inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { return ( _InterlockedCompareExchange( reinterpret_cast<long volatile *>(p), reinterpret_cast<long>(value), reinterpret_cast<long>(comperand) ) == reinterpret_cast<long>(comperand) ); } #else
PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE; PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE; #endif
inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); } inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); } inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
#if defined( PLATFORM_64BITS )
#if defined (_WIN32)
typedef __m128i int128; inline int128 int128_zero() { return _mm_setzero_si128(); } #else
typedef __int128_t int128; #define int128_zero() 0
#endif
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) NOINLINE;
#endif
PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE;
inline unsigned ThreadInterlockedExchangeSubtract( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline unsigned ThreadInterlockedIncrement( unsigned volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); } inline unsigned ThreadInterlockedDecrement( unsigned volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); } inline unsigned ThreadInterlockedExchange( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); } inline unsigned ThreadInterlockedExchangeAdd( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline unsigned ThreadInterlockedCompareExchange( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); }
inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); } inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); } inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); } inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); }
//-----------------------------------------------------------------------------
// Access to VTune thread profiling
//-----------------------------------------------------------------------------
#if defined(_WIN32) && defined(THREAD_PROFILER)
PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p); PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p); PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p); PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p); #else
#define ThreadNotifySyncPrepare(p) ((void)0)
#define ThreadNotifySyncCancel(p) ((void)0)
#define ThreadNotifySyncAcquired(p) ((void)0)
#define ThreadNotifySyncReleasing(p) ((void)0)
#endif
//-----------------------------------------------------------------------------
// Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't
// work in a DLL loaded with LoadLibrary()
//-----------------------------------------------------------------------------
#ifndef NO_THREAD_LOCAL
#if defined(_LINUX) && !defined(OSX)
// linux totally supports compiler thread locals, even across dll's.
#define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1
#define CTHREADLOCALINTEGER( typ ) __thread int
#define CTHREADLOCALINT __thread int
#define CTHREADLOCALPTR( typ ) __thread typ *
#define CTHREADLOCAL( typ ) __thread typ
#define GETLOCAL( x ) ( x )
#endif // _LINUX && !OSX
#if defined(WIN32) || defined(OSX)
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#define CTHREADLOCALINT CThreadLocalInt<int>
#define CTHREADLOCALINTEGER( typ ) CThreadLocalInt<typ>
#define CTHREADLOCALPTR( typ ) CThreadLocalPtr<typ>
#define CTHREADLOCAL( typ ) CThreadLocal<typ>
#define GETLOCAL( x ) ( x.Get() )
#endif
#endif // WIN32 || OSX
#endif // NO_THREAD_LOCALS
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#ifndef NO_THREAD_LOCAL
class PLATFORM_CLASS CThreadLocalBase { public: CThreadLocalBase(); ~CThreadLocalBase();
void * Get() const; void Set(void *);
private: #ifdef _WIN32
uint32 m_index; #elif POSIX
pthread_key_t m_index; #endif
};
//---------------------------------------------------------
#ifndef __AFXTLS_H__
template <class T> class CThreadLocal : public CThreadLocalBase { public: CThreadLocal() { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) ); }
T Get() const { return reinterpret_cast<T>( CThreadLocalBase::Get() ); }
void Set(T val) { CThreadLocalBase::Set( reinterpret_cast<void *>(val) ); } };
#endif
//---------------------------------------------------------
template <class T = intp> class CThreadLocalInt : public CThreadLocal<T> { public: CThreadLocalInt() { COMPILE_TIME_ASSERT( sizeof(T) >= sizeof(int) ); }
operator int() const { return (int)this->Get(); } int operator=( int i ) { this->Set( (intp)i ); return i; }
int operator++() { T i = this->Get(); this->Set( ++i ); return (int)i; } int operator++(int) { T i = this->Get(); this->Set( i + 1 ); return (int)i; }
int operator--() { T i = this->Get(); this->Set( --i ); return (int)i; } int operator--(int) { T i = this->Get(); this->Set( i - 1 ); return (int)i; } };
//---------------------------------------------------------
template <class T> class CThreadLocalPtr : private CThreadLocalBase { public: CThreadLocalPtr() {}
operator const void *() const { return (T *)Get(); } operator void *() { return (T *)Get(); }
operator const T *() const { return (T *)Get(); } operator const T *() { return (T *)Get(); } operator T *() { return (T *)Get(); }
int operator=( int i ) { AssertMsg( i == 0, "Only NULL allowed on integer assign" ); Set( NULL ); return 0; } T * operator=( T *p ) { Set( p ); return p; }
bool operator !() const { return (!Get()); } bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); } bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); } bool operator==( const void *p ) const { return (Get() == p); } bool operator!=( const void *p ) const { return (Get() != p); } bool operator==( const T *p ) const { return operator==((void*)p); } bool operator!=( const T *p ) const { return operator!=((void*)p); }
T * operator->() { return (T *)Get(); } T & operator *() { return *((T *)Get()); }
const T * operator->() const { return (T *)Get(); } const T & operator *() const { return *((T *)Get()); }
const T & operator[]( int i ) const { return *((T *)Get() + i); } T & operator[]( int i ) { return *((T *)Get() + i); }
private: // Disallowed operations
CThreadLocalPtr( T *pFrom ); CThreadLocalPtr( const CThreadLocalPtr<T> &from ); T **operator &(); T * const *operator &() const; void operator=( const CThreadLocalPtr<T> &from ); bool operator==( const CThreadLocalPtr<T> &p ) const; bool operator!=( const CThreadLocalPtr<T> &p ) const; };
#endif // NO_THREAD_LOCAL
#endif // !__AFXTLS_H__
//-----------------------------------------------------------------------------
//
// A super-fast thread-safe integer A simple class encapsulating the notion of an
// atomic integer used across threads that uses the built in and faster
// "interlocked" functionality rather than a full-blown mutex. Useful for simple
// things like reference counts, etc.
//
//-----------------------------------------------------------------------------
template <typename T> class CInterlockedIntT { public: CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(long) ); } CInterlockedIntT( T value ) : m_value( value ) {}
T GetRaw() const { return m_value; }
operator T() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); } bool operator==( T rhs ) const { return ( m_value == rhs ); } bool operator!=( T rhs ) const { return ( m_value != rhs ); }
T operator++() { return (T)ThreadInterlockedIncrement( (long *)&m_value ); } T operator++(int) { return operator++() - 1; }
T operator--() { return (T)ThreadInterlockedDecrement( (long *)&m_value ); } T operator--(int) { return operator--() + 1; }
bool AssignIf( T conditionValue, T newValue ) { return ThreadInterlockedAssignIf( (long *)&m_value, (long)newValue, (long)conditionValue ); }
T operator=( T newValue ) { ThreadInterlockedExchange((long *)&m_value, newValue); return m_value; }
void operator+=( T add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, (long)add ); } void operator-=( T subtract ) { operator+=( -subtract ); } void operator*=( T multiplier ) { T original, result; do { original = m_value; result = original * multiplier; } while ( !AssignIf( original, result ) ); } void operator/=( T divisor ) { T original, result; do { original = m_value; result = original / divisor; } while ( !AssignIf( original, result ) ); }
T operator+( T rhs ) const { return m_value + rhs; } T operator-( T rhs ) const { return m_value - rhs; }
private: volatile T m_value; };
typedef CInterlockedIntT<int> CInterlockedInt; typedef CInterlockedIntT<unsigned> CInterlockedUInt;
//-----------------------------------------------------------------------------
template <typename T> class CInterlockedPtr { public: CInterlockedPtr() : m_value( 0 ) {} CInterlockedPtr( T *value ) : m_value( value ) {}
operator T *() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); } bool operator==( T *rhs ) const { return ( m_value == rhs ); } bool operator!=( T *rhs ) const { return ( m_value != rhs ); }
#if defined( PLATFORM_64BITS )
T *operator++() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { ThreadInterlockedExchangeAdd64( (int64 *)&m_value, add * sizeof(T) ); } #else
T *operator++() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) ); }
T *operator--() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, add * sizeof(T) ); } #endif
void operator-=( int subtract ) { operator+=( -subtract ); }
T *operator+( int rhs ) const { return m_value + rhs; } T *operator-( int rhs ) const { return m_value - rhs; } T *operator+( unsigned rhs ) const { return m_value + rhs; } T *operator-( unsigned rhs ) const { return m_value - rhs; } size_t operator-( T *p ) const { return m_value - p; } size_t operator-( const CInterlockedPtr<T> &p ) const { return m_value - p.m_value; }
private: T * volatile m_value; };
//-----------------------------------------------------------------------------
//
// Platform independent verification that multiple threads aren't getting into the same code at the same time.
// Note: This is intended for use to identify problems, it doesn't provide any sort of thread safety.
//
//-----------------------------------------------------------------------------
class ReentrancyVerifier { public: inline ReentrancyVerifier(CInterlockedInt* counter, int sleepTimeMS) : mCounter(counter) { Assert(mCounter != NULL);
if (++(*mCounter) != 1) { DebuggerBreakIfDebugging_StagingOnly(); }
if (sleepTimeMS > 0) { ThreadSleep(sleepTimeMS); } }
inline ~ReentrancyVerifier() { if (--(*mCounter) != 0) { DebuggerBreakIfDebugging_StagingOnly(); } }
private: CInterlockedInt* mCounter; };
//-----------------------------------------------------------------------------
//
// Platform independent for critical sections management
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadMutex { public: CThreadMutex(); ~CThreadMutex();
//------------------------------------------------------
// Mutex acquisition/release. Const intentionally defeated.
//------------------------------------------------------
void Lock(); void Lock() const { (const_cast<CThreadMutex *>(this))->Lock(); } void Unlock(); void Unlock() const { (const_cast<CThreadMutex *>(this))->Unlock(); }
bool TryLock(); bool TryLock() const { return (const_cast<CThreadMutex *>(this))->TryLock(); }
//------------------------------------------------------
// Use this to make deadlocks easier to track by asserting
// when it is expected that the current thread owns the mutex
//------------------------------------------------------
bool AssertOwnedByCurrentThread();
//------------------------------------------------------
// Enable tracing to track deadlock problems
//------------------------------------------------------
void SetTrace( bool );
private: // Disallow copying
CThreadMutex( const CThreadMutex & ); CThreadMutex &operator=( const CThreadMutex & );
#if defined( _WIN32 )
// Efficient solution to breaking the windows.h dependency, invariant is tested.
#ifdef _WIN64
#define TT_SIZEOF_CRITICALSECTION 40
#else
#ifndef _X360
#define TT_SIZEOF_CRITICALSECTION 24
#else
#define TT_SIZEOF_CRITICALSECTION 28
#endif // !_XBOX
#endif // _WIN64
byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION]; #elif defined(POSIX)
pthread_mutex_t m_Mutex; pthread_mutexattr_t m_Attr; #else
#error
#endif
#ifdef THREAD_MUTEX_TRACING_SUPPORTED
// Debugging (always here to allow mixed debug/release builds w/o changing size)
uint m_currentOwnerID; uint16 m_lockCount; bool m_bTrace; #endif
};
//-----------------------------------------------------------------------------
//
// An alternative mutex that is useful for cases when thread contention is
// rare, but a mutex is required. Instances should be declared volatile.
// Sleep of 0 may not be sufficient to keep high priority threads from starving
// lesser threads. This class is not a suitable replacement for a critical
// section if the resource contention is high.
//
//-----------------------------------------------------------------------------
#if !defined(THREAD_PROFILER)
class CThreadFastMutex { public: CThreadFastMutex() : m_ownerID( 0 ), m_depth( 0 ) { }
private: FORCEINLINE bool TryLockInline( const uint32 threadId ) volatile { if ( threadId != m_ownerID && !ThreadInterlockedAssignIf( (volatile long *)&m_ownerID, (long)threadId, 0 ) ) return false;
ThreadMemoryBarrier(); ++m_depth; return true; }
bool TryLock( const uint32 threadId ) volatile { return TryLockInline( threadId ); }
PLATFORM_CLASS void Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile;
public: bool TryLock() volatile { #ifdef _DEBUG
if ( m_depth == INT_MAX ) DebuggerBreak();
if ( m_depth < 0 ) DebuggerBreak(); #endif
return TryLockInline( ThreadGetCurrentId() ); }
#ifndef _DEBUG
FORCEINLINE #endif
void Lock( unsigned int nSpinSleepTime = 0 ) volatile { const uint32 threadId = ThreadGetCurrentId();
if ( !TryLockInline( threadId ) ) { ThreadPause(); Lock( threadId, nSpinSleepTime ); } #ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() ) DebuggerBreak();
if ( m_depth == INT_MAX ) DebuggerBreak();
if ( m_depth < 0 ) DebuggerBreak(); #endif
}
#ifndef _DEBUG
FORCEINLINE #endif
void Unlock() volatile { #ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() ) DebuggerBreak();
if ( m_depth <= 0 ) DebuggerBreak(); #endif
--m_depth; if ( !m_depth ) { ThreadMemoryBarrier(); ThreadInterlockedExchange( &m_ownerID, 0 ); } }
#ifdef WIN32
bool TryLock() const volatile { return (const_cast<CThreadFastMutex *>(this))->TryLock(); } void Lock(unsigned nSpinSleepTime = 1 ) const volatile { (const_cast<CThreadFastMutex *>(this))->Lock( nSpinSleepTime ); } void Unlock() const volatile { (const_cast<CThreadFastMutex *>(this))->Unlock(); } #endif
// To match regular CThreadMutex:
bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {}
uint32 GetOwnerId() const { return m_ownerID; } int GetDepth() const { return m_depth; } private: volatile uint32 m_ownerID; int m_depth; };
#ifdef COMPILER_CLANG
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wunused-private-field"
#endif // Q_CC_CLANG
class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex { public: CAlignedThreadFastMutex() { Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 ); }
private: uint8 pad[128-sizeof(CThreadFastMutex)]; } ALIGN128_POST;
#ifdef COMPILER_CLANG
# pragma clang diagnostic pop
#endif
#else
typedef CThreadMutex CThreadFastMutex; #endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CThreadNullMutex { public: static void Lock() {} static void Unlock() {}
static bool TryLock() { return true; } static bool AssertOwnedByCurrentThread() { return true; } static void SetTrace( bool b ) {}
static uint32 GetOwnerId() { return 0; } static int GetDepth() { return 0; } };
//-----------------------------------------------------------------------------
//
// A mutex decorator class used to control the use of a mutex, to make it
// less expensive when not multithreading
//
//-----------------------------------------------------------------------------
template <class BaseClass, bool *pCondition> class CThreadConditionalMutex : public BaseClass { public: void Lock() { if ( *pCondition ) BaseClass::Lock(); } void Lock() const { if ( *pCondition ) BaseClass::Lock(); } void Unlock() { if ( *pCondition ) BaseClass::Unlock(); } void Unlock() const { if ( *pCondition ) BaseClass::Unlock(); }
bool TryLock() { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool TryLock() const { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; } void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); } };
//-----------------------------------------------------------------------------
// Mutex decorator that blows up if another thread enters
//-----------------------------------------------------------------------------
template <class BaseClass> class CThreadTerminalMutex : public BaseClass { public: bool TryLock() { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } bool TryLock() const { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } void Lock() { if ( !TryLock() ) BaseClass::Lock(); } void Lock() const { if ( !TryLock() ) BaseClass::Lock(); }
};
//-----------------------------------------------------------------------------
//
// Class to Lock a critical section, and unlock it automatically
// when the lock goes out of scope
//
//-----------------------------------------------------------------------------
template <class MUTEX_TYPE = CThreadMutex> class CAutoLockT { public: FORCEINLINE CAutoLockT( MUTEX_TYPE &lock, const char* pMutexName, const char* pFilename, int nLineNum, uint64 minReportDurationUs ) : m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type & >( lock ) ) , m_pMutexName( pMutexName ) , m_pFilename( pFilename ) , m_nLineNum( nLineNum ) , m_bOwned( true ) { tmTryLockEx( TELEMETRY_LEVEL0, &m_uLockMatcher, minReportDurationUs, pFilename, nLineNum, &m_lock, pMutexName ); m_lock.Lock(); tmEndTryLockEx( TELEMETRY_LEVEL0, m_uLockMatcher, pFilename, nLineNum, &m_lock, TMLR_SUCCESS ); tmSetLockStateEx( TELEMETRY_LEVEL0, pFilename, nLineNum, &m_lock, TMLS_LOCKED, pMutexName ); }
FORCEINLINE CAutoLockT<MUTEX_TYPE>( CAutoLockT<MUTEX_TYPE> && rhs ) : m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type &>( rhs.m_lock ) ) { m_pMutexName = rhs.m_pMutexName; m_pFilename = rhs.m_pFilename; m_nLineNum = rhs.m_nLineNum; #ifdef RAD_TELEMETRY_ENABLED
m_uLockMatcher = rhs.m_uLockMatcher; #endif
m_bOwned = true; rhs.m_bOwned = false; }
FORCEINLINE ~CAutoLockT() { if ( m_bOwned ) { m_lock.Unlock(); tmSetLockStateEx( TELEMETRY_LEVEL0, m_pFilename, m_nLineNum, &m_lock, TMLS_RELEASED, m_pMutexName ); } }
private: typename V_remove_const< MUTEX_TYPE >::type &m_lock; const char* m_pMutexName; const char* m_pFilename; int m_nLineNum; bool m_bOwned; // Did owenership of the lock pass to another instance?
#ifdef RAD_TELEMETRY_ENABLED
TmU64 m_uLockMatcher; #endif
// Disallow copying
CAutoLockT<MUTEX_TYPE>( const CAutoLockT<MUTEX_TYPE> & ); CAutoLockT<MUTEX_TYPE> &operator=( const CAutoLockT<MUTEX_TYPE> & );
// No move assignment because no default construction.
CAutoLockT<MUTEX_TYPE> &operator=( CAutoLockT<MUTEX_TYPE> && ); };
typedef CAutoLockT<CThreadMutex> CAutoLock;
template < typename MUTEX_TYPE > inline CAutoLockT<MUTEX_TYPE> make_auto_lock( MUTEX_TYPE& lock, const char* pMutexname, const char* pFilename, int nLineNum, int nMinReportDurationUs = 1 ) { return CAutoLockT<MUTEX_TYPE>( lock, pMutexname, pFilename, nLineNum, nMinReportDurationUs ); }
//---------------------------------------------------------
#define AUTO_LOCK( mutex ) \
auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__ );
#define AUTO_LOCK_D( mutex, minDurationUs ) \
auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__, minDurationUs );
#define LOCAL_THREAD_LOCK_( tag ) \
; \ static CThreadFastMutex autoMutex_##tag; \ AUTO_LOCK( autoMutex_##tag )
#define LOCAL_THREAD_LOCK() \
LOCAL_THREAD_LOCK_(_)
//-----------------------------------------------------------------------------
//
// Base class for event, semaphore and mutex objects.
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSyncObject { public: ~CThreadSyncObject();
//-----------------------------------------------------
// Query if object is useful
//-----------------------------------------------------
bool operator!() const;
//-----------------------------------------------------
// Access handle
//-----------------------------------------------------
#ifdef _WIN32
operator HANDLE() { return GetHandle(); } const HANDLE GetHandle() const { return m_hSyncObject; } #endif
//-----------------------------------------------------
// Wait for a signal from the object
//-----------------------------------------------------
bool Wait( uint32 dwTimeout = TT_INFINITE );
protected: CThreadSyncObject(); void AssertUseable();
#ifdef _WIN32
HANDLE m_hSyncObject; bool m_bCreatedHandle; #elif defined(POSIX)
pthread_mutex_t m_Mutex; pthread_cond_t m_Condition; bool m_bInitalized; int m_cSet; bool m_bManualReset; bool m_bWakeForEvent; #else
#error "Implement me"
#endif
private: CThreadSyncObject( const CThreadSyncObject & ); CThreadSyncObject &operator=( const CThreadSyncObject & ); };
//-----------------------------------------------------------------------------
//
// Wrapper for unnamed event objects
//
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
//-----------------------------------------------------------------------------
//
// CThreadSemaphore
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject { public: CThreadSemaphore(long initialValue, long maxValue);
//-----------------------------------------------------
// Increases the count of the semaphore object by a specified
// amount. Wait() decreases the count by one on return.
//-----------------------------------------------------
bool Release(long releaseCount = 1, long * pPreviousCount = NULL );
private: CThreadSemaphore(const CThreadSemaphore &); CThreadSemaphore &operator=(const CThreadSemaphore &); };
//-----------------------------------------------------------------------------
//
// A mutex suitable for out-of-process, multi-processor usage
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject { public: CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL );
//-----------------------------------------------------
// Release ownership of the mutex
//-----------------------------------------------------
bool Release();
// To match regular CThreadMutex:
void Lock() { Wait(); } void Lock( unsigned timeout ) { Wait( timeout ); } void Unlock() { Release(); } bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {}
private: CThreadFullMutex( const CThreadFullMutex & ); CThreadFullMutex &operator=( const CThreadFullMutex & ); }; #endif
class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject { public: CThreadEvent( bool fManualReset = false ); #ifdef WIN32
CThreadEvent( HANDLE hHandle ); #endif
//-----------------------------------------------------
// Set the state to signaled
//-----------------------------------------------------
bool Set();
//-----------------------------------------------------
// Set the state to nonsignaled
//-----------------------------------------------------
bool Reset();
//-----------------------------------------------------
// Check if the event is signaled
//-----------------------------------------------------
bool Check();
bool Wait( uint32 dwTimeout = TT_INFINITE );
private: CThreadEvent( const CThreadEvent & ); CThreadEvent &operator=( const CThreadEvent & ); };
// Hard-wired manual event for use in array declarations
class CThreadManualEvent : public CThreadEvent { public: CThreadManualEvent() : CThreadEvent( true ) { } };
inline int ThreadWaitForEvents( int nEvents, CThreadEvent * const *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { #ifdef POSIX
Assert( nEvents == 1); if ( pEvents[0]->Wait( timeout ) ) return WAIT_OBJECT_0; else return WAIT_TIMEOUT; #else
HANDLE handles[64]; for ( int i = 0; i < min( nEvents, (int)ARRAYSIZE(handles) ); i++ ) handles[i] = pEvents[i]->GetHandle(); return ThreadWaitForObjects( nEvents, handles, bWaitAll, timeout ); #endif
}
//-----------------------------------------------------------------------------
//
// CThreadRWLock
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadRWLock { public: CThreadRWLock();
void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite();
void LockForRead() const { const_cast<CThreadRWLock *>(this)->LockForRead(); } void UnlockRead() const { const_cast<CThreadRWLock *>(this)->UnlockRead(); } void LockForWrite() const { const_cast<CThreadRWLock *>(this)->LockForWrite(); } void UnlockWrite() const { const_cast<CThreadRWLock *>(this)->UnlockWrite(); }
private: void WaitForRead();
#ifdef WIN32
CThreadFastMutex m_mutex; #else
CThreadMutex m_mutex; #endif
CThreadEvent m_CanWrite; CThreadEvent m_CanRead;
int m_nWriters; int m_nActiveReaders; int m_nPendingReaders; };
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock
//
//-----------------------------------------------------------------------------
class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock { public: CThreadSpinRWLock() { COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 ); memset( this, 0, sizeof( *this ) ); }
bool TryLockForWrite(); bool TryLockForRead();
void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite();
bool TryLockForWrite() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForWrite(); } bool TryLockForRead() const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForRead(); } void LockForRead() const { const_cast<CThreadSpinRWLock *>(this)->LockForRead(); } void UnlockRead() const { const_cast<CThreadSpinRWLock *>(this)->UnlockRead(); } void LockForWrite() const { const_cast<CThreadSpinRWLock *>(this)->LockForWrite(); } void UnlockWrite() const { const_cast<CThreadSpinRWLock *>(this)->UnlockWrite(); }
private: struct LockInfo_t { uint32 m_writerId; int m_nReaders; };
bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ); bool TryLockForWrite( const uint32 threadId ); void SpinLockForWrite( const uint32 threadId );
volatile LockInfo_t m_lockInfo; CInterlockedInt m_nWriters; } ALIGN8_POST;
//-----------------------------------------------------------------------------
//
// A thread wrapper similar to a Java thread.
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThread { public: CThread(); virtual ~CThread();
//-----------------------------------------------------
const char *GetName(); void SetName( const char * );
size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); }
//-----------------------------------------------------
// Functions for the other threads
//-----------------------------------------------------
// Start thread running - error if already running
virtual bool Start( unsigned nBytesStack = 0 );
// Returns true if thread has been created and hasn't yet exited
bool IsAlive();
// This method causes the current thread to wait until this thread
// is no longer alive.
bool Join( unsigned timeout = TT_INFINITE );
#ifdef _WIN32
// Access the thread handle directly
HANDLE GetThreadHandle(); uint GetThreadId(); #elif defined( LINUX )
uint GetThreadId(); #endif
//-----------------------------------------------------
int GetResult();
//-----------------------------------------------------
// Functions for both this, and maybe, and other threads
//-----------------------------------------------------
// Forcibly, abnormally, but relatively cleanly stop the thread
void Stop( int exitCode = 0 );
// Get the priority
int GetPriority() const;
// Set the priority
bool SetPriority( int );
// Request a thread to suspend, this must ONLY be called from the thread itself, not the main thread
// This suspend variant causes the thread in question to suspend at a known point in its execution
// which means you don't risk the global deadlocks/hangs potentially caused by the raw Suspend() call
void SuspendCooperative();
// Resume a previously suspended thread from the Cooperative call
void ResumeCooperative();
// wait for a thread to execute its SuspendCooperative call
void BWaitForThreadSuspendCooperative();
#ifndef LINUX
// forcefully Suspend a thread
unsigned int Suspend();
// forcefully Resume a previously suspended thread
unsigned int Resume(); #endif
// Force hard-termination of thread. Used for critical failures.
bool Terminate( int exitCode = 0 );
//-----------------------------------------------------
// Global methods
//-----------------------------------------------------
// Get the Thread object that represents the current thread, if any.
// Can return NULL if the current thread was not created using
// CThread
static CThread *GetCurrentCThread();
// Offer a context switch. Under Win32, equivalent to Sleep(0)
#ifdef Yield
#undef Yield
#endif
static void Yield();
// This method causes the current thread to yield and not to be
// scheduled for further execution until a certain amount of real
// time has elapsed, more or less.
static void Sleep( unsigned duration );
protected:
// Optional pre-run call, with ability to fail-create. Note Init()
// is forced synchronous with Start()
virtual bool Init();
// Thread will run this function on startup, must be supplied by
// derived class, performs the intended action of the thread.
virtual int Run() = 0;
// Called when the thread is about to exit, by the about-to-exit thread.
virtual void OnExit();
// Called after OnExit when a thread finishes or is killed. Not virtual because no inherited classes
// override it and we don't want to change the vtable from the published SDK version.
void Cleanup();
bool WaitForCreateComplete( CThreadEvent *pEvent );
// "Virtual static" facility
typedef unsigned (__stdcall *ThreadProc_t)( void * ); virtual ThreadProc_t GetThreadProc(); virtual bool IsThreadRunning();
CThreadMutex m_Lock;
#ifdef WIN32
ThreadHandle_t GetThreadID() const { return (ThreadHandle_t)m_hThread; } #else
ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; } #endif
private: enum Flags { SUPPORT_STOP_PROTOCOL = 1 << 0 };
// Thread initially runs this. param is actually 'this'. function
// just gets this and calls ThreadProc
struct ThreadInit_t { CThread * pThread; CThreadEvent *pInitCompleteEvent; bool * pfInitSuccess; };
static unsigned __stdcall ThreadProc( void * pv );
// make copy constructor and assignment operator inaccessible
CThread( const CThread & ); CThread &operator=( const CThread & );
#ifdef _WIN32
HANDLE m_hThread; ThreadId_t m_threadId; #elif defined(POSIX)
pthread_t m_threadId; #endif
CInterlockedInt m_nSuspendCount; CThreadEvent m_SuspendEvent; CThreadEvent m_SuspendEventSignal; int m_result; char m_szName[32]; void * m_pStackBase; unsigned m_flags; };
//-----------------------------------------------------------------------------
//
// A helper class to let you sleep a thread for memory validation, you need to handle
// m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate when sleeping
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CValidatableThread : public CThread { public: CValidatableThread() { m_bSleepForValidate = false; m_bSleepingForValidate = false; }
#ifdef DBGFLAG_VALIDATE
virtual void SleepForValidate() { m_bSleepForValidate = true; } bool BSleepingForValidate() { return m_bSleepingForValidate; } virtual void WakeFromValidate() { m_bSleepForValidate = false; } #endif
protected: bool m_bSleepForValidate; bool m_bSleepingForValidate; };
//-----------------------------------------------------------------------------
// Simple thread class encompasses the notion of a worker thread, handing
// synchronized communication.
//-----------------------------------------------------------------------------
// These are internal reserved error results from a call attempt
enum WTCallResult_t { WTCR_FAIL = -1, WTCR_TIMEOUT = -2, WTCR_THREAD_GONE = -3, };
class CFunctor; class PLATFORM_CLASS CWorkerThread : public CThread { public: CWorkerThread();
//-----------------------------------------------------
//
// Inter-thread communication
//
// Calls in either direction take place on the same "channel."
// Seperate functions are specified to make identities obvious
//
//-----------------------------------------------------
// Master: Signal the thread, and block for a response
int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true, CFunctor *pParamFunctor = NULL );
// Worker: Signal the thread, and block for a response
int CallMaster( unsigned, unsigned timeout = TT_INFINITE );
// Wait for the next request
bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL ); bool WaitForCall( unsigned *pResult = NULL );
// Is there a request?
bool PeekCall( unsigned *pParam = NULL, CFunctor **ppParamFunctor = NULL );
// Reply to the request
void Reply( unsigned );
// Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE
int WaitForReply( unsigned timeout = TT_INFINITE );
// If you want to do WaitForMultipleObjects you'll need to include
// this handle in your wait list or you won't be responsive
CThreadEvent &GetCallHandle(); // Find out what the request was
unsigned GetCallParam( CFunctor **ppParamFunctor = NULL ) const;
// Boost the worker thread to the master thread, if worker thread is lesser, return old priority
int BoostPriority();
protected: #ifndef _WIN32
#define __stdcall
#endif
typedef uint32 (__stdcall *WaitFunc_t)( int nEvents, CThreadEvent * const *pEvents, int bWaitAll, uint32 timeout ); int Call( unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL, CFunctor *pParamFunctor = NULL ); int WaitForReply( unsigned timeout, WaitFunc_t );
private: CWorkerThread( const CWorkerThread & ); CWorkerThread &operator=( const CWorkerThread & );
CThreadEvent m_EventSend; CThreadEvent m_EventComplete;
unsigned m_Param; CFunctor *m_pParamFunctor; int m_ReturnVal; };
// a unidirectional message queue. A queue of type T. Not especially high speed since each message
// is malloced/freed. Note that if your message class has destructors/constructors, they MUST be
// thread safe!
template<class T> class CMessageQueue { CThreadEvent SignalEvent; // signals presence of data
CThreadMutex QueueAccessMutex;
// the parts protected by the mutex
struct MsgNode { MsgNode *Next; T Data; };
MsgNode *Head; MsgNode *Tail;
public: CMessageQueue( void ) { Head = Tail = NULL; }
// check for a message. not 100% reliable - someone could grab the message first
bool MessageWaiting( void ) { return ( Head != NULL ); }
void WaitMessage( T *pMsg ) { for(;;) { while( ! MessageWaiting() ) SignalEvent.Wait(); QueueAccessMutex.Lock(); if (! Head ) { // multiple readers could make this null
QueueAccessMutex.Unlock(); continue; } *( pMsg ) = Head->Data; MsgNode *remove_this = Head; Head = Head->Next; if (! Head) // if empty, fix tail ptr
Tail = NULL; QueueAccessMutex.Unlock(); delete remove_this; break; } }
void QueueMessage( T const &Msg) { MsgNode *new1=new MsgNode; new1->Data=Msg; new1->Next=NULL; QueueAccessMutex.Lock(); if ( Tail ) { Tail->Next=new1; Tail = new1; } else { Head = new1; Tail = new1; } SignalEvent.Set(); QueueAccessMutex.Unlock(); } };
//-----------------------------------------------------------------------------
//
// CThreadMutex. Inlining to reduce overhead and to allow client code
// to decide debug status (tracing)
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION; typedef RTL_CRITICAL_SECTION CRITICAL_SECTION;
#ifndef _X360
extern "C" { void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *); }; #endif
//---------------------------------------------------------
inline void CThreadMutex::Lock() { #ifdef THREAD_MUTEX_TRACING_ENABLED
uint thisThreadID = ThreadGetCurrentId(); if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) ) Msg( "Thread %u about to wait for lock %p owned by %u\n", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); #endif
VCRHook_EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
#ifdef THREAD_MUTEX_TRACING_ENABLED
if (m_lockCount == 0) { // we now own it for the first time. Set owner information
m_currentOwnerID = thisThreadID; if ( m_bTrace ) Msg( "Thread %u now owns lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); } m_lockCount++; #endif
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock() { #ifdef THREAD_MUTEX_TRACING_ENABLED
AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" ); m_lockCount--; if (m_lockCount == 0) { if ( m_bTrace ) Msg( "Thread %u releasing lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); m_currentOwnerID = 0; } #endif
LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); }
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread() { #ifdef THREAD_MUTEX_TRACING_ENABLED
if (ThreadGetCurrentId() == m_currentOwnerID) return true; AssertMsg3( 0, "Expected thread %u as owner of lock %p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); return false; #else
return true; #endif
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace( bool bTrace ) { #ifdef THREAD_MUTEX_TRACING_ENABLED
m_bTrace = bTrace; #endif
}
//---------------------------------------------------------
#elif defined(POSIX)
inline CThreadMutex::CThreadMutex() { // enable recursive locks as we need them
pthread_mutexattr_init( &m_Attr ); pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE ); pthread_mutex_init( &m_Mutex, &m_Attr ); }
//---------------------------------------------------------
inline CThreadMutex::~CThreadMutex() { pthread_mutex_destroy( &m_Mutex ); }
//---------------------------------------------------------
inline void CThreadMutex::Lock() { pthread_mutex_lock( &m_Mutex ); }
//---------------------------------------------------------
inline void CThreadMutex::Unlock() { pthread_mutex_unlock( &m_Mutex ); }
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread() { return true; }
//---------------------------------------------------------
inline void CThreadMutex::SetTrace(bool fTrace) { }
#endif // POSIX
//-----------------------------------------------------------------------------
//
// CThreadRWLock inline functions
//
//-----------------------------------------------------------------------------
inline CThreadRWLock::CThreadRWLock() : m_CanRead( true ), m_nWriters( 0 ), m_nActiveReaders( 0 ), m_nPendingReaders( 0 ) { }
inline void CThreadRWLock::LockForRead() { m_mutex.Lock(); if ( m_nWriters) { WaitForRead(); } m_nActiveReaders++; m_mutex.Unlock(); }
inline void CThreadRWLock::UnlockRead() { m_mutex.Lock(); m_nActiveReaders--; if ( m_nActiveReaders == 0 && m_nWriters != 0 ) { m_CanWrite.Set(); } m_mutex.Unlock(); }
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock inline functions
//
//-----------------------------------------------------------------------------
inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ) { return ThreadInterlockedAssignIf64( (int64 *)&m_lockInfo, *((int64 *)&newValue), *((int64 *)&comperand) ); }
inline bool CThreadSpinRWLock::TryLockForWrite( const uint32 threadId ) { // In order to grab a write lock, there can be no readers and no owners of the write lock
if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) ) { return false; }
static const LockInfo_t oldValue = { 0, 0 }; LockInfo_t newValue = { threadId, 0 }; const bool bSuccess = AssignIf( newValue, oldValue ); #if defined(_X360)
if ( bSuccess ) { // X360TBD: Serious perf implications. Not Yet. __sync();
} #endif
return bSuccess; }
inline bool CThreadSpinRWLock::TryLockForWrite() { m_nWriters++; if ( !TryLockForWrite( ThreadGetCurrentId() ) ) { m_nWriters--; return false; } return true; }
inline bool CThreadSpinRWLock::TryLockForRead() { if ( m_nWriters != 0 ) { return false; } // In order to grab a write lock, the number of readers must not change and no thread can own the write
LockInfo_t oldValue; LockInfo_t newValue;
oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders + 1; newValue.m_writerId = 0;
const bool bSuccess = AssignIf( newValue, oldValue ); #if defined(_X360)
if ( bSuccess ) { // X360TBD: Serious perf implications. Not Yet. __sync();
} #endif
return bSuccess; }
inline void CThreadSpinRWLock::LockForWrite() { const uint32 threadId = ThreadGetCurrentId();
m_nWriters++;
if ( !TryLockForWrite( threadId ) ) { ThreadPause(); SpinLockForWrite( threadId ); } }
// read data from a memory address
template<class T> FORCEINLINE T ReadVolatileMemory( T const *pPtr ) { volatile const T * pVolatilePtr = ( volatile const T * ) pPtr; return *pVolatilePtr; }
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
#pragma warning(pop)
#endif
#endif // THREADTOOLS_H
|