|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// NOTE: bf_read is guaranteed to return zeros if it overflows.
#ifndef BITBUF_H
#define BITBUF_H
#ifdef _WIN32
#pragma once
#endif
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#include "basetypes.h"
#include "tier0/dbg.h"
#if _DEBUG
#define BITBUF_INLINE inline
#else
#define BITBUF_INLINE FORCEINLINE
#endif
//-----------------------------------------------------------------------------
// Forward declarations.
//-----------------------------------------------------------------------------
class Vector; class QAngle;
//-----------------------------------------------------------------------------
// You can define a handler function that will be called in case of
// out-of-range values and overruns here.
//
// NOTE: the handler is only called in debug mode.
//
// Call SetBitBufErrorHandler to install a handler.
//-----------------------------------------------------------------------------
typedef enum { BITBUFERROR_VALUE_OUT_OF_RANGE=0, // Tried to write a value with too few bits.
BITBUFERROR_BUFFER_OVERRUN, // Was about to overrun a buffer.
BITBUFERROR_NUM_ERRORS } BitBufErrorType;
typedef void (*BitBufErrorHandler)( BitBufErrorType errorType, const char *pDebugName );
#if defined( _DEBUG )
extern void InternalBitBufErrorHandler( BitBufErrorType errorType, const char *pDebugName ); #define CallErrorHandler( errorType, pDebugName ) InternalBitBufErrorHandler( errorType, pDebugName );
#else
#define CallErrorHandler( errorType, pDebugName )
#endif
// Use this to install the error handler. Call with NULL to uninstall your error handler.
void SetBitBufErrorHandler( BitBufErrorHandler fn );
//-----------------------------------------------------------------------------
// Helpers.
//-----------------------------------------------------------------------------
inline int BitByte( int bits ) { // return PAD_NUMBER( bits, 8 ) >> 3;
return (bits + 7) >> 3; }
//-----------------------------------------------------------------------------
// namespaced helpers
//-----------------------------------------------------------------------------
namespace bitbuf { // ZigZag Transform: Encodes signed integers so that they can be
// effectively used with varint encoding.
//
// varint operates on unsigned integers, encoding smaller numbers into
// fewer bytes. If you try to use it on a signed integer, it will treat
// this number as a very large unsigned integer, which means that even
// small signed numbers like -1 will take the maximum number of bytes
// (10) to encode. ZigZagEncode() maps signed integers to unsigned
// in such a way that those with a small absolute value will have smaller
// encoded values, making them appropriate for encoding using varint.
//
// int32 -> uint32
// -------------------------
// 0 -> 0
// -1 -> 1
// 1 -> 2
// -2 -> 3
// ... -> ...
// 2147483647 -> 4294967294
// -2147483648 -> 4294967295
//
// >> encode >>
// << decode <<
inline uint32 ZigZagEncode32(int32 n) { // Note: the right-shift must be arithmetic
return(n << 1) ^ (n >> 31); }
inline int32 ZigZagDecode32(uint32 n) { return(n >> 1) ^ -static_cast<int32>(n & 1); }
inline uint64 ZigZagEncode64(int64 n) { // Note: the right-shift must be arithmetic
return(n << 1) ^ (n >> 63); }
inline int64 ZigZagDecode64(uint64 n) { return(n >> 1) ^ -static_cast<int64>(n & 1); }
const int kMaxVarintBytes = 10; const int kMaxVarint32Bytes = 5; }
//-----------------------------------------------------------------------------
// Used for serialization
//-----------------------------------------------------------------------------
class bf_write { public: bf_write(); // nMaxBits can be used as the number of bits in the buffer.
// It must be <= nBytes*8. If you leave it at -1, then it's set to nBytes * 8.
bf_write( void *pData, int nBytes, int nMaxBits = -1 ); bf_write( const char *pDebugName, void *pData, int nBytes, int nMaxBits = -1 );
// Start writing to the specified buffer.
// nMaxBits can be used as the number of bits in the buffer.
// It must be <= nBytes*8. If you leave it at -1, then it's set to nBytes * 8.
void StartWriting( void *pData, int nBytes, int iStartBit = 0, int nMaxBits = -1 );
// Restart buffer writing.
void Reset();
// Get the base pointer.
unsigned char* GetBasePointer() { return (unsigned char*) m_pData; }
// Enable or disable assertion on overflow. 99% of the time, it's a bug that we need to catch,
// but there may be the occasional buffer that is allowed to overflow gracefully.
void SetAssertOnOverflow( bool bAssert );
// This can be set to assign a name that gets output if the buffer overflows.
const char* GetDebugName(); void SetDebugName( const char *pDebugName );
// Seek to a specific position.
public: void SeekToBit( int bitPos );
// Bit functions.
public:
void WriteOneBit(int nValue); void WriteOneBitNoCheck(int nValue); void WriteOneBitAt( int iBit, int nValue ); // Write signed or unsigned. Range is only checked in debug.
void WriteUBitLong( unsigned int data, int numbits, bool bCheckRange=true ); void WriteSBitLong( int data, int numbits ); // Tell it whether or not the data is unsigned. If it's signed,
// cast to unsigned before passing in (it will cast back inside).
void WriteBitLong(unsigned int data, int numbits, bool bSigned);
// Write a list of bits in.
bool WriteBits(const void *pIn, int nBits);
// writes an unsigned integer with variable bit length
void WriteUBitVar( unsigned int data );
// writes a varint encoded integer
void WriteVarInt32( uint32 data ); void WriteVarInt64( uint64 data ); void WriteSignedVarInt32( int32 data ); void WriteSignedVarInt64( int64 data ); int ByteSizeVarInt32( uint32 data ); int ByteSizeVarInt64( uint64 data ); int ByteSizeSignedVarInt32( int32 data ); int ByteSizeSignedVarInt64( int64 data );
// Copy the bits straight out of pIn. This seeks pIn forward by nBits.
// Returns an error if this buffer or the read buffer overflows.
bool WriteBitsFromBuffer( class bf_read *pIn, int nBits ); void WriteBitAngle( float fAngle, int numbits ); void WriteBitCoord (const float f); void WriteBitCoordMP( const float f, bool bIntegral, bool bLowPrecision ); void WriteBitFloat(float val); void WriteBitVec3Coord( const Vector& fa ); void WriteBitNormal( float f ); void WriteBitVec3Normal( const Vector& fa ); void WriteBitAngles( const QAngle& fa );
// Byte functions.
public:
void WriteChar(int val); void WriteByte(int val); void WriteShort(int val); void WriteWord(int val); void WriteLong(long val); void WriteLongLong(int64 val); void WriteFloat(float val); bool WriteBytes( const void *pBuf, int nBytes );
// Returns false if it overflows the buffer.
bool WriteString(const char *pStr);
// Status.
public:
// How many bytes are filled in?
int GetNumBytesWritten() const; int GetNumBitsWritten() const; int GetMaxNumBits(); int GetNumBitsLeft(); int GetNumBytesLeft(); unsigned char* GetData(); const unsigned char* GetData() const;
// Has the buffer overflowed?
bool CheckForOverflow(int nBits); inline bool IsOverflowed() const {return m_bOverflow;}
void SetOverflowFlag();
public: // The current buffer.
unsigned long* RESTRICT m_pData; int m_nDataBytes; int m_nDataBits; // Where we are in the buffer.
int m_iCurBit; private:
// Errors?
bool m_bOverflow;
bool m_bAssertOnOverflow; const char *m_pDebugName; };
//-----------------------------------------------------------------------------
// Inlined methods
//-----------------------------------------------------------------------------
// How many bytes are filled in?
inline int bf_write::GetNumBytesWritten() const { return BitByte(m_iCurBit); }
inline int bf_write::GetNumBitsWritten() const { return m_iCurBit; }
inline int bf_write::GetMaxNumBits() { return m_nDataBits; }
inline int bf_write::GetNumBitsLeft() { return m_nDataBits - m_iCurBit; }
inline int bf_write::GetNumBytesLeft() { return GetNumBitsLeft() >> 3; }
inline unsigned char* bf_write::GetData() { return (unsigned char*) m_pData; }
inline const unsigned char* bf_write::GetData() const { return (unsigned char*) m_pData; }
BITBUF_INLINE bool bf_write::CheckForOverflow(int nBits) { if ( m_iCurBit + nBits > m_nDataBits ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); } return m_bOverflow; }
BITBUF_INLINE void bf_write::SetOverflowFlag() { #ifdef DBGFLAG_ASSERT
if ( m_bAssertOnOverflow ) { Assert( false ); } #endif
m_bOverflow = true; }
BITBUF_INLINE void bf_write::WriteOneBitNoCheck(int nValue) { #if __i386__
if(nValue) m_pData[m_iCurBit >> 5] |= 1u << (m_iCurBit & 31); else m_pData[m_iCurBit >> 5] &= ~(1u << (m_iCurBit & 31)); #else
extern unsigned long g_LittleBits[32]; if(nValue) m_pData[m_iCurBit >> 5] |= g_LittleBits[m_iCurBit & 31]; else m_pData[m_iCurBit >> 5] &= ~g_LittleBits[m_iCurBit & 31]; #endif
++m_iCurBit; }
inline void bf_write::WriteOneBit(int nValue) { if( m_iCurBit >= m_nDataBits ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return; } WriteOneBitNoCheck( nValue ); }
inline void bf_write::WriteOneBitAt( int iBit, int nValue ) { if( iBit >= m_nDataBits ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return; }
#if __i386__
if(nValue) m_pData[iBit >> 5] |= 1u << (iBit & 31); else m_pData[iBit >> 5] &= ~(1u << (iBit & 31)); #else
extern unsigned long g_LittleBits[32]; if(nValue) m_pData[iBit >> 5] |= g_LittleBits[iBit & 31]; else m_pData[iBit >> 5] &= ~g_LittleBits[iBit & 31]; #endif
}
BITBUF_INLINE void bf_write::WriteUBitLong( unsigned int curData, int numbits, bool bCheckRange ) RESTRICT { #ifdef _DEBUG
// Make sure it doesn't overflow.
if ( bCheckRange && numbits < 32 ) { if ( curData >= (unsigned long)(1 << numbits) ) { CallErrorHandler( BITBUFERROR_VALUE_OUT_OF_RANGE, GetDebugName() ); } } Assert( numbits >= 0 && numbits <= 32 ); #endif
if ( GetNumBitsLeft() < numbits ) { m_iCurBit = m_nDataBits; SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return; }
int iCurBitMasked = m_iCurBit & 31; int iDWord = m_iCurBit >> 5; m_iCurBit += numbits;
// Mask in a dword.
Assert( (iDWord*4 + sizeof(long)) <= (unsigned int)m_nDataBytes ); unsigned long * RESTRICT pOut = &m_pData[iDWord];
// Rotate data into dword alignment
curData = (curData << iCurBitMasked) | (curData >> (32 - iCurBitMasked));
// Calculate bitmasks for first and second word
unsigned int temp = 1 << (numbits-1); unsigned int mask1 = (temp*2-1) << iCurBitMasked; unsigned int mask2 = (temp-1) >> (31 - iCurBitMasked); // Only look beyond current word if necessary (avoid access violation)
int i = mask2 & 1; unsigned long dword1 = LoadLittleDWord( pOut, 0 ); unsigned long dword2 = LoadLittleDWord( pOut, i ); // Drop bits into place
dword1 ^= ( mask1 & ( curData ^ dword1 ) ); dword2 ^= ( mask2 & ( curData ^ dword2 ) );
// Note reversed order of writes so that dword1 wins if mask2 == 0 && i == 0
StoreLittleDWord( pOut, i, dword2 ); StoreLittleDWord( pOut, 0, dword1 ); }
// writes an unsigned integer with variable bit length
BITBUF_INLINE void bf_write::WriteUBitVar( unsigned int data ) { /* Reference:
if ( data < 0x10u ) WriteUBitLong( 0, 2 ), WriteUBitLong( data, 4 ); else if ( data < 0x100u ) WriteUBitLong( 1, 2 ), WriteUBitLong( data, 8 ); else if ( data < 0x1000u ) WriteUBitLong( 2, 2 ), WriteUBitLong( data, 12 ); else WriteUBitLong( 3, 2 ), WriteUBitLong( data, 32 ); */ // a < b ? -1 : 0 translates into a CMP, SBB instruction pair
// with no flow control. should also be branchless on consoles.
int n = (data < 0x10u ? -1 : 0) + (data < 0x100u ? -1 : 0) + (data < 0x1000u ? -1 : 0); WriteUBitLong( data*4 + n + 3, 6 + n*4 + 12 ); if ( data >= 0x1000u ) { WriteUBitLong( data >> 16, 16 ); } }
// write raw IEEE float bits in little endian form
BITBUF_INLINE void bf_write::WriteBitFloat(float val) { long intVal;
Assert(sizeof(long) == sizeof(float)); Assert(sizeof(float) == 4);
intVal = *((long*)&val); WriteUBitLong( intVal, 32 ); }
//-----------------------------------------------------------------------------
// This is useful if you just want a buffer to write into on the stack.
//-----------------------------------------------------------------------------
template<int SIZE> class old_bf_write_static : public bf_write { public: inline old_bf_write_static() : bf_write(m_StaticData, SIZE) {}
char m_StaticData[SIZE]; };
//-----------------------------------------------------------------------------
// Used for unserialization
//-----------------------------------------------------------------------------
class bf_read { public: bf_read();
// nMaxBits can be used as the number of bits in the buffer.
// It must be <= nBytes*8. If you leave it at -1, then it's set to nBytes * 8.
bf_read( const void *pData, int nBytes, int nBits = -1 ); bf_read( const char *pDebugName, const void *pData, int nBytes, int nBits = -1 );
// Start reading from the specified buffer.
// pData's start address must be dword-aligned.
// nMaxBits can be used as the number of bits in the buffer.
// It must be <= nBytes*8. If you leave it at -1, then it's set to nBytes * 8.
void StartReading( const void *pData, int nBytes, int iStartBit = 0, int nBits = -1 );
// Restart buffer reading.
void Reset();
// Enable or disable assertion on overflow. 99% of the time, it's a bug that we need to catch,
// but there may be the occasional buffer that is allowed to overflow gracefully.
void SetAssertOnOverflow( bool bAssert );
// This can be set to assign a name that gets output if the buffer overflows.
const char* GetDebugName() const { return m_pDebugName; } void SetDebugName( const char *pName );
void ExciseBits( int startbit, int bitstoremove );
// Bit functions.
public: // Returns 0 or 1.
int ReadOneBit();
protected:
unsigned int CheckReadUBitLong(int numbits); // For debugging.
int ReadOneBitNoCheck(); // Faster version, doesn't check bounds and is inlined.
bool CheckForOverflow(int nBits);
public:
// Get the base pointer.
const unsigned char* GetBasePointer() { return m_pData; }
BITBUF_INLINE int TotalBytesAvailable( void ) const { return m_nDataBytes; }
// Read a list of bits in.
void ReadBits(void *pOut, int nBits); // Read a list of bits in, but don't overrun the destination buffer.
// Returns the number of bits read into the buffer. The remaining
// bits are skipped over.
int ReadBitsClamped_ptr(void *pOut, size_t outSizeBytes, size_t nBits); // Helper 'safe' template function that infers the size of the destination
// array. This version of the function should be preferred.
// Usage: char databuffer[100];
// ReadBitsClamped( dataBuffer, msg->m_nLength );
template <typename T, size_t N> int ReadBitsClamped( T (&pOut)[N], size_t nBits ) { return ReadBitsClamped_ptr( pOut, N * sizeof(T), nBits ); } float ReadBitAngle( int numbits );
unsigned int ReadUBitLong( int numbits ) RESTRICT; unsigned int ReadUBitLongNoInline( int numbits ) RESTRICT; unsigned int PeekUBitLong( int numbits ); int ReadSBitLong( int numbits );
// reads an unsigned integer with variable bit length
unsigned int ReadUBitVar(); unsigned int ReadUBitVarInternal( int encodingType );
// reads a varint encoded integer
uint32 ReadVarInt32(); uint64 ReadVarInt64(); int32 ReadSignedVarInt32(); int64 ReadSignedVarInt64();
// You can read signed or unsigned data with this, just cast to
// a signed int if necessary.
unsigned int ReadBitLong(int numbits, bool bSigned);
float ReadBitCoord(); float ReadBitCoordMP( bool bIntegral, bool bLowPrecision ); float ReadBitFloat(); float ReadBitNormal(); void ReadBitVec3Coord( Vector& fa ); void ReadBitVec3Normal( Vector& fa ); void ReadBitAngles( QAngle& fa );
// Faster for comparisons but do not fully decode float values
unsigned int ReadBitCoordBits(); unsigned int ReadBitCoordMPBits( bool bIntegral, bool bLowPrecision );
// Byte functions (these still read data in bit-by-bit).
public: BITBUF_INLINE int ReadChar() { return (char)ReadUBitLong(8); } BITBUF_INLINE int ReadByte() { return ReadUBitLong(8); } BITBUF_INLINE int ReadShort() { return (short)ReadUBitLong(16); } BITBUF_INLINE int ReadWord() { return ReadUBitLong(16); } BITBUF_INLINE long ReadLong() { return ReadUBitLong(32); } int64 ReadLongLong(); float ReadFloat(); bool ReadBytes(void *pOut, int nBytes);
// Returns false if bufLen isn't large enough to hold the
// string in the buffer.
//
// Always reads to the end of the string (so you can read the
// next piece of data waiting).
//
// If bLine is true, it stops when it reaches a '\n' or a null-terminator.
//
// pStr is always null-terminated (unless bufLen is 0).
//
// pOutNumChars is set to the number of characters left in pStr when the routine is
// complete (this will never exceed bufLen-1).
//
bool ReadString( char *pStr, int bufLen, bool bLine=false, int *pOutNumChars=NULL );
// Reads a string and allocates memory for it. If the string in the buffer
// is > 2048 bytes, then pOverflow is set to true (if it's not NULL).
char* ReadAndAllocateString( bool *pOverflow = 0 );
// Returns nonzero if any bits differ
int CompareBits( bf_read * RESTRICT other, int bits ) RESTRICT; int CompareBitsAt( int offset, bf_read * RESTRICT other, int otherOffset, int bits ) RESTRICT;
// Status.
public: int GetNumBytesLeft(); int GetNumBytesRead(); int GetNumBitsLeft(); int GetNumBitsRead() const;
// Has the buffer overflowed?
inline bool IsOverflowed() const {return m_bOverflow;}
inline bool Seek(int iBit); // Seek to a specific bit.
inline bool SeekRelative(int iBitDelta); // Seek to an offset from the current position.
// Called when the buffer is overflowed.
void SetOverflowFlag();
public:
// The current buffer.
const unsigned char* RESTRICT m_pData; int m_nDataBytes; int m_nDataBits; // Where we are in the buffer.
int m_iCurBit;
private: // Errors?
bool m_bOverflow;
// For debugging..
bool m_bAssertOnOverflow;
const char *m_pDebugName; };
//-----------------------------------------------------------------------------
// Inlines.
//-----------------------------------------------------------------------------
inline int bf_read::GetNumBytesRead() { return BitByte(m_iCurBit); }
inline int bf_read::GetNumBitsLeft() { return m_nDataBits - m_iCurBit; }
inline int bf_read::GetNumBytesLeft() { return GetNumBitsLeft() >> 3; }
inline int bf_read::GetNumBitsRead() const { return m_iCurBit; }
inline bool bf_read::Seek(int iBit) { if(iBit < 0 || iBit > m_nDataBits) { SetOverflowFlag(); m_iCurBit = m_nDataBits; return false; } else { m_iCurBit = iBit; return true; } }
// Seek to an offset from the current position.
inline bool bf_read::SeekRelative(int iBitDelta) { return Seek(m_iCurBit+iBitDelta); }
inline bool bf_read::CheckForOverflow(int nBits) { if( m_iCurBit + nBits > m_nDataBits ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); }
return m_bOverflow; }
inline int bf_read::ReadOneBitNoCheck() { #if VALVE_LITTLE_ENDIAN
unsigned int value = ((unsigned long * RESTRICT)m_pData)[m_iCurBit >> 5] >> (m_iCurBit & 31); #else
unsigned char value = m_pData[m_iCurBit >> 3] >> (m_iCurBit & 7); #endif
++m_iCurBit; return value & 1; }
inline int bf_read::ReadOneBit() { if( GetNumBitsLeft() <= 0 ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return 0; } return ReadOneBitNoCheck(); }
inline float bf_read::ReadBitFloat() { union { uint32 u; float f; } c = { ReadUBitLong(32) }; return c.f; }
BITBUF_INLINE unsigned int bf_read::ReadUBitVar() { // six bits: low 2 bits for encoding + first 4 bits of value
unsigned int sixbits = ReadUBitLong(6); unsigned int encoding = sixbits & 3; if ( encoding ) { // this function will seek back four bits and read the full value
return ReadUBitVarInternal( encoding ); } return sixbits >> 2; }
BITBUF_INLINE unsigned int bf_read::ReadUBitLong( int numbits ) RESTRICT { Assert( numbits > 0 && numbits <= 32 );
if ( GetNumBitsLeft() < numbits ) { m_iCurBit = m_nDataBits; SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return 0; }
unsigned int iStartBit = m_iCurBit & 31u; int iLastBit = m_iCurBit + numbits - 1; unsigned int iWordOffset1 = m_iCurBit >> 5; unsigned int iWordOffset2 = iLastBit >> 5; m_iCurBit += numbits; #if __i386__
unsigned int bitmask = (2 << (numbits-1)) - 1; #else
extern unsigned long g_ExtraMasks[33]; unsigned int bitmask = g_ExtraMasks[numbits]; #endif
unsigned int dw1 = LoadLittleDWord( (unsigned long* RESTRICT)m_pData, iWordOffset1 ) >> iStartBit; unsigned int dw2 = LoadLittleDWord( (unsigned long* RESTRICT)m_pData, iWordOffset2 ) << (32 - iStartBit);
return (dw1 | dw2) & bitmask; }
BITBUF_INLINE int bf_read::CompareBits( bf_read * RESTRICT other, int numbits ) RESTRICT { return (ReadUBitLong(numbits) != other->ReadUBitLong(numbits)); }
#endif
|