|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Intrusive linked list templates, both for singly and doubly linked lists
//
// $Revision: $
// $NoKeywords: $
//===========================================================================//
#ifndef UTILINTRUSIVELIST_H
#define UTILINTRUSIVELIST_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/basetypes.h"
#include "utlmemory.h"
#include "tier0/dbg.h"
//
// These templates are used for intrusive linked list classes. Intrusive linked list templates
// force the structs and classes contained within them to have their own m_pNext, (optionally),
// m_pPrev, and other fields contained within. All memory management is up to the caller and their
// classes. No data will ever be copied. Nodes can only exist on one list at a time, because of
// only having on m_Next field, and manipulating the list while walking it requires that care on
// the part of the caller. All accessing and searching functions work by passing and returning
// pointers.
//
//
//
// naming and field conventions:
// functions referring to a DList are for doubly linked lists. nodes must have m_pHead and
// m_pPrev pointer fields.
// Functions using Priority require an m_Priority field, which must be comparable.
//
// Some functions are mean for use with lists which maintain both a head and tail pointer
// in order to support fast adding to the end.
/// validates that the doubly linked list has the proper structure, pointer-wise
namespace IntrusiveList { #ifdef SUPERSLOW_DEBUG_VERSION
template<class T> inline void ValidateDList(T *head) { if (head) { Assert(head->m_pPrev==0); } while(head) { if (head->m_pNext) { Assert(head->m_pNext->m_pPrev==head); } if (head->m_pPrev) { Assert(head->m_pPrev->m_pNext==head); } head=head->m_pNext; } } #else
template<class T> inline void ValidateDList(T * /*head*/) { } #endif
// move a node in a doubly linked list backwards one step.
template <class T> inline void MoveDNodeBackwards( T *which, T * &head) { if (which->m_pPrev) { T *p=which->m_pPrev; T *pp=p->m_pPrev; T *n=which->m_pNext; Assert(p->m_pNext == which); if (n) { Assert(n->m_pPrev==which); n->m_pPrev=p; } if (pp) { Assert(pp->m_pNext==p); pp->m_pNext=which; } else { head=which; // this node is the new root!
} which->m_pNext=p; which->m_pPrev=pp; p->m_pNext=n; p->m_pPrev=which; } ValidateDList(head); }
// removes node 'which' from doubly linked list with 'head'
template<class T> inline void RemoveFromDList(T * &head, T *which) { if (which->m_pPrev) { Assert(which->m_pPrev->m_pNext==which); which->m_pPrev->m_pNext=which->m_pNext; if (which->m_pNext) { Assert(which->m_pNext->m_pPrev==which); which->m_pNext->m_pPrev=which->m_pPrev; } } else { if (head==which) { head=which->m_pNext; if (head) { Assert(head->m_pPrev==which); head->m_pPrev=0; } } } which->m_pNext=which->m_pPrev=0; ValidateDList(head); }
//checks to see if node is in doubly linked list
template<class T> bool OnDList(T const *head, T const *which) { return (head==which) || (which->m_pNext !=0) || (which->m_pPrev !=0); }
// add a node to the end of a singly linked list
template<class T> void AddToDTail(T * & head, T * node) { node->m_pNext=0; if (! head) { head=node; } else { T *ptr=head; while(ptr->m_pNext) { ptr=ptr->m_pNext; } ptr->m_pNext=node; node->m_pPrev=ptr; //
} }
// add a node to end of doubly linked list.
template<class T> inline void AddToDHead(T * &head, T *which) { which->m_pNext=head; if (head) { head->m_pPrev=which; } which->m_pPrev=0; head=which; ValidateDList(head); }
// add a node to front of doubly linked list which maintains a tail ptr
template<class T> inline void AddToDHeadWithTailPtr(T * &head, T *which, T * &tailptr) { which->m_pNext=head; if (head) { head->m_pPrev=which; } else { tailptr=which; } which->m_pPrev=0; head=which; ValidateDList(head); }
// add a node to end of doubly linked list which maintains a tail ptr
template<class T> inline void AddToDTailWithTailPtr(T * &head, T *which, T * & tailptr) { if (! tailptr) { Assert(! head); which->m_pPrev=which->m_pNext=0; tailptr=head=which; } else { which->m_pNext=0; which->m_pPrev=tailptr; tailptr->m_pNext=which; tailptr=which; } ValidateDList( head ); } // Remove a node from a dlist , maintaining the tail ptr. node is not 'delete' d
template<class T> inline void RemoveFromDListWithTailPtr(T * &head, T *which, T * & tailptr) { if (which==tailptr) { tailptr=which->m_pPrev; } if (which->m_pPrev) { Assert(which->m_pPrev->m_pNext==which); which->m_pPrev->m_pNext=which->m_pNext; if (which->m_pNext) { Assert(which->m_pNext->m_pPrev==which); which->m_pNext->m_pPrev=which->m_pPrev; } } else { if (head==which) { head=which->m_pNext; if (head) { Assert(head->m_pPrev==which); head->m_pPrev=0; } } } which->m_pNext=which->m_pPrev=0; ValidateDList(head); }
// this function removes a node, and delete's the node
template<class T> inline void DeleteFromDListWithTailPtr(T * &head, T *which, T * & tailptr) { T *tmp=which; if (which==tailptr) { tailptr=which->m_pPrev; } if (which->m_pPrev) { Assert(which->m_pPrev->m_pNext==which); which->m_pPrev->m_pNext=which->m_pNext; if (which->m_pNext) { Assert(which->m_pNext->m_pPrev==which); which->m_pNext->m_pPrev=which->m_pPrev; } } else { if (head==which) { head=which->m_pNext; if (head) { Assert(head->m_pPrev==which); head->m_pPrev=0; } } } which->m_pNext=which->m_pPrev=0; delete tmp; ValidateDList(head); }
// Add a node to a d-list, keeping the highest priority nodes first. This is a simple
// linear search to insert, NOT a O(logn) heap.
template<class T> inline void AddToDPriority(T * &head, T *which) { T* prevnode=0; for(T *curnode=head;curnode;curnode=curnode->m_pNext) { if (which->m_Priority>=curnode->m_Priority) break; prevnode=curnode; } // now, we have either run out of list, or we have found an
// element to add this one before
if (! prevnode) { AddToDHead(head,which); } else { which->m_pNext=prevnode->m_pNext; prevnode->m_pNext=which; which->m_pPrev=prevnode; if (which->m_pNext) which->m_pNext->m_pPrev=which; } }
// same as AddToDPriority, except with reverse order
template<class T> inline void AddToDPriorityLowestFirst(T * &head, T *which) { T* prevnode=0; for(T *curnode=head;curnode;curnode=curnode->m_pNext) { if (which->m_Priority<=curnode->m_Priority) break; prevnode=curnode; } // now, we have either run out of list, or we have found an
// element to add this one before
if (! prevnode) { AddToDHead(head,which); } else { which->m_pNext=prevnode->m_pNext; prevnode->m_pNext=which; which->m_pPrev=prevnode; if (which->m_pNext) which->m_pNext->m_pPrev=which; } }
// return a pointer to the last node in a singly-linked (or doubly) list
template<class T> T * LastNode(T * head) { if (head) { while(head->m_pNext) { head=head->m_pNext; } } return head; }
// Remove from a singly linked list. no delete called.
template<class T,class V> void RemoveFromList(T * & head, V *which) { if (head==which) { head=which->m_pNext; } else { for(T * i=head; i; i=i->m_pNext) { if (i->m_pNext==which) { i->m_pNext=which->m_pNext; return; } } } }
// same as RemoveFromList, but 'delete' is called.
template<class T,class V> void DeleteFromList(T * & head, V *which) { T *tmp; if (head==which) { tmp=which->m_pNext; delete(head); head=tmp; } else { for(T * i=head; i; i=i->m_pNext) { if (i->m_pNext==which) { tmp=which->m_pNext; delete(which); i->m_pNext=tmp; return; } } } }
// find the position in a list of a node. -1 if not found. Linear search.
// nodes must have comparison functions
template<class T,class V> int PositionInList(T *head, V *node) { int pos=0; while(head) { if (head==node) return pos; head=head->m_pNext; pos++; } return -1; }
// find the Nth node in a list. null if index too high.
template<class T> T *NthNode(T * head, int idx) { while(idx && head) { idx--; head=head->m_pNext; } return head; }
//Add a node to the head of a singly-linked
// Note that the head var passed to this will be modified.
template<class T,class V> static inline void AddToHead(T * & head, V * node) { node->m_pNext=head; head=node; }
//Add a node to the tail of a singly-linked. Not fast
// Note that the head var passed to this will be modified.
template<class T,class V> static inline void AddToTail(T * & head, V * node) { node->m_pNext = NULL; if ( ! head ) head = node; else { T *pLastNode = head; while( pLastNode->m_pNext ) pLastNode = pLastNode->m_pNext; pLastNode->m_pNext = node; } }
//Add a node to the head of a singly-linked list, maintaining a tail pointer
template<class T,class V> static inline void AddToHead(T * & head, T * &tail,V * node) { if (! head) { tail=node; } node->m_pNext=head; head=node; }
// return the node in head before in a singly linked list. returns null if head is empty, n is
// null, or if n is the first node. not fast.
template<class T> static inline T * PrevNode(T *head, T *node) { T *i; for(i=head;i;i=i->m_pNext) { if (i->m_pNext == node) break; } return i; }
// add a node to the end of a singly linked list. Not fast.
template<class T,class V> void AddToEnd(T * & head, V * node) { node->m_pNext=0; if (! head) { head=node; } else { T *ptr=head; while(ptr->m_pNext) { ptr=ptr->m_pNext; } ptr->m_pNext=node; } }
// add a node to the end of a singly linked list, maintaining a tail pointer.
// the head and tail pointer can be modified by this routine.
template<class T,class V> void AddToEndWithTail(T * & head, T * & tail,V * node) { Assert((head && tail) || ((!head) && (!tail))); node->m_pNext=0; if (! head) { head=tail=node; } else { tail->m_pNext=node; tail=node; } }
// Add a node to a singly linked list, sorting by the m_Name field
template<class T> void AddSortedByName(T * & head, T * node) { if ( (! head) || // empty list?
(stricmp(node->m_Name,head->m_Name)==-1)) // or we should be first?
{ node->m_pNext=head; // make us head
head=node; } else { T *t; for(t=head;t->m_pNext;t=t->m_pNext) // find the node we should be before
if (stricmp(t->m_pNext->m_Name,node->m_Name)>=0) break; node->m_pNext=t->m_pNext; t->m_pNext=node; } }
// count # of elements in list
template<class T> int ListLength(T *head) { int len=0; while(head) { len++; head=head->m_pNext; } return len; }
// this will kill a list if the list is of objects which automatically
// remove themselves from the list when delete is called
template<class T> void KillList(T * & head) { while(head) { delete head; } }
// this will kill all elements in a list if
// the elements are of a type which does NOT remove itself from
// the list when the destructor is called.
template<class T> void DeleteList(T * & head) { while (head) { T* tmp=head->m_pNext; delete head; head=tmp; } }
// find a named node in any list which has both a Next field and a Name field.
template <class T> static inline T * FindNamedNode(T * head, char const *name) { for(;head && stricmp(head->m_Name,name); head=head->m_pNext) { } return head; }
template <class T> static inline T * FindNamedNodeCaseSensitive(T * head, char const *name) { for(;head && strcmp(head->m_Name,name); head=head->m_pNext) { } return head; }
// find data in a singly linked list, using equality match on any field
// usage: FindNodeByField(listptr,data,&list::fieldname)
template <class T, class U, class V> static inline T * FindNodeByField(T * head, U data, U V::*field) { while(head) { if (data==(*head).*field) return head; head=head->m_pNext; } return 0; }
// find a node and its predecessor, matching on equality of a given field.
// usage: FindNodeByFieldWithPrev(listptr,data,&list::fieldname, prevptr)
template <class T, class U, class V> static inline T * FindNodeByFieldWithPrev(T * head, U data, U V::*field, T * & prev) { prev=0; for(T *i=head; i; i=i->m_pNext) { if(data==(*i).*field) return i; prev=i; } prev=0; return 0; }
/// sort a list. comparefn should return 0 if the items are equal, 1 if A goes first, and -1 if A goes last.
// NOT fast.
template<class T> void SortList(T * &head, int (*comparefn)(T * a, T * b)) { int didswap=1; while(didswap) { didswap=0; T *prev=0; for(T *i=head;i && i->m_pNext; i=i->m_pNext) { /// compare i and i+1
int rslt=(*comparefn)(i,i->m_pNext); if (rslt==-1) { /// need to swap
didswap=1; T *newfirst=i->m_pNext; if (prev) { prev->m_pNext=newfirst; i->m_pNext=newfirst->m_pNext; newfirst->m_pNext=i; } else { head=i->m_pNext; i->m_pNext=newfirst->m_pNext; newfirst->m_pNext=i; } i=newfirst; } prev=i; } } }
// sort a doubly linked list. NOt fast.
template <class T> void SortDList(T * & head, int (*comparefn)(T * a, T * b)) { SortList(head,comparefn); /// now, regen prev ptrs
T *prev=0; for(T *i=head;i;i=i->m_pNext) { i->m_pPrev=prev; prev=i; } }
// reverse a singly linked list. not recommended for anything other than valve programming
// interview :-)
template <class T> T *ReversedList( T * head ) { T * pNewHead=NULL; while( head ) { T *pNext=head->m_pNext; #ifdef INTERVIEW_QUESTION
head->m_pNext=pNewHead; pNewHead = head; #else
AddToHead( pNewHead, head ); #endif
head = pNext; } return pNewHead; } };
// singly linked list
template<class T> class CUtlIntrusiveList { public: T *m_pHead;
FORCEINLINE T *Head( void ) const { return m_pHead; } FORCEINLINE CUtlIntrusiveList(void) { m_pHead = NULL; }
FORCEINLINE void RemoveAll( void ) { // empty list. doesn't touch nodes at all
m_pHead = NULL; } FORCEINLINE void AddToHead( T * node ) { IntrusiveList::AddToHead( m_pHead, node ); }
FORCEINLINE void AddToTail( T * node ) { IntrusiveList::AddToTail( m_pHead, node ); }
void RemoveNode(T *which) { IntrusiveList::RemoveFromList( m_pHead, which ); }
// this will kill a list if the list is of objects which automatically
// remove themselves from the list when delete is called
void KillList( void ) { while(m_pHead) { delete m_pHead; } }
// return the node in head before in a singly linked list. returns null if head is empty, n is
// null, or if n is the first node. not fast. Fast for dlists
T * PrevNode(T *node) { return IntrusiveList::PrevNode( m_pHead, node ); }
int NthNode( int n ) { return NthNode( m_pHead, n ); }
// this will kill all elements in a list if
// the elements are of a type which does NOT remove itself from
// the list when the destructor is called.
void Purge( void ) { while (m_pHead) { T* tmp=m_pHead->m_pNext; delete m_pHead; m_pHead=tmp; } }
int Count( void ) const { return IntrusiveList::ListLength( m_pHead ); }
FORCEINLINE T * FindNamedNodeCaseSensitive( char const *pName ) const { return IntrusiveList::FindNamedNodeCaseSensitive( m_pHead, pName );
}
T *RemoveHead( void ) { if ( m_pHead ) { T *pRet = m_pHead; m_pHead = pRet->m_pNext; return pRet; } else return NULL; } };
// doubly linked list
template<class T> class CUtlIntrusiveDList : public CUtlIntrusiveList<T> { public:
FORCEINLINE void AddToHead( T * node ) { IntrusiveList::AddToDHead( CUtlIntrusiveList<T>::m_pHead, node ); } FORCEINLINE void AddToTail( T * node ) { IntrusiveList::AddToDTail( CUtlIntrusiveList<T>::m_pHead, node ); }
void RemoveNode(T *which) { IntrusiveList::RemoveFromDList( CUtlIntrusiveList<T>::m_pHead, which ); }
T *RemoveHead( void ) { if ( CUtlIntrusiveList<T>::m_pHead ) { T *pRet = CUtlIntrusiveList<T>::m_pHead; CUtlIntrusiveList<T>::m_pHead = CUtlIntrusiveList<T>::m_pHead->m_pNext; if ( CUtlIntrusiveList<T>::m_pHead ) CUtlIntrusiveList<T>::m_pHead->m_pPrev = NULL; return pRet; } else return NULL; }
T * PrevNode(T *node) { return ( node )?node->m_Prev:NULL; }
};
template<class T> class CUtlIntrusiveDListWithTailPtr : public CUtlIntrusiveDList<T> { public:
T *m_pTailPtr;
FORCEINLINE CUtlIntrusiveDListWithTailPtr( void ) : CUtlIntrusiveDList<T>() { m_pTailPtr = NULL; }
FORCEINLINE void AddToHead( T * node ) { IntrusiveList::AddToDHeadWithTailPtr( CUtlIntrusiveList<T>::m_pHead, node, m_pTailPtr ); } FORCEINLINE void AddToTail( T * node ) { IntrusiveList::AddToDTailWithTailPtr( CUtlIntrusiveList<T>::m_pHead, node, m_pTailPtr ); }
void RemoveNode( T *pWhich ) { IntrusiveList::RemoveFromDListWithTailPtr( CUtlIntrusiveList<T>::m_pHead, pWhich, m_pTailPtr ); }
void Purge( void ) { CUtlIntrusiveList<T>::Purge(); m_pTailPtr = NULL; }
void Kill( void ) { CUtlIntrusiveList<T>::Purge(); m_pTailPtr = NULL; }
T *RemoveHead( void ) { if ( CUtlIntrusiveDList<T>::m_pHead ) { T *pRet = CUtlIntrusiveDList<T>::m_pHead; CUtlIntrusiveDList<T>::m_pHead = CUtlIntrusiveDList<T>::m_pHead->m_pNext; if ( CUtlIntrusiveDList<T>::m_pHead ) CUtlIntrusiveDList<T>::m_pHead->m_pPrev = NULL; if (! CUtlIntrusiveDList<T>::m_pHead ) m_pTailPtr = NULL; ValidateDList( CUtlIntrusiveDList<T>::m_pHead ); return pRet; } else return NULL; }
T * PrevNode(T *node) { return ( node )?node->m_Prev:NULL; }
};
template<class T> void PrependDListWithTailToDList( CUtlIntrusiveDListWithTailPtr<T> &src, CUtlIntrusiveDList<T> &dest ) { if ( src.m_pHead ) { src.m_pTailPtr->m_pNext = dest.m_pHead; if ( dest.m_pHead ) dest.m_pHead->m_pPrev = src.m_pTailPtr; dest.m_pHead = src.m_pHead; IntrusiveList::ValidateDList( dest.m_pHead ); } }
#endif
|