|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
// A growable memory class.
//===========================================================================//
#ifndef UTLMEMORY_H
#define UTLMEMORY_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/dbg.h"
#include <string.h>
#include "tier0/platform.h"
#include "mathlib/mathlib.h"
#include "tier0/memalloc.h"
#include "tier0/memdbgon.h"
#pragma warning (disable:4100)
#pragma warning (disable:4514)
//-----------------------------------------------------------------------------
#ifdef UTLMEMORY_TRACK
#define UTLMEMORY_TRACK_ALLOC() MemAlloc_RegisterAllocation( "Sum of all UtlMemory", 0, m_nAllocationCount * sizeof(T), m_nAllocationCount * sizeof(T), 0 )
#define UTLMEMORY_TRACK_FREE() if ( !m_pMemory ) ; else MemAlloc_RegisterDeallocation( "Sum of all UtlMemory", 0, m_nAllocationCount * sizeof(T), m_nAllocationCount * sizeof(T), 0 )
#else
#define UTLMEMORY_TRACK_ALLOC() ((void)0)
#define UTLMEMORY_TRACK_FREE() ((void)0)
#endif
//-----------------------------------------------------------------------------
// The CUtlMemory class:
// A growable memory class which doubles in size by default.
//-----------------------------------------------------------------------------
template< class T, class I = int > class CUtlMemory { public: // constructor, destructor
CUtlMemory( int nGrowSize = 0, int nInitSize = 0 ); CUtlMemory( T* pMemory, int numElements ); CUtlMemory( const T* pMemory, int numElements ); ~CUtlMemory();
// Set the size by which the memory grows
void Init( int nGrowSize = 0, int nInitSize = 0 );
class Iterator_t { public: Iterator_t( I i ) : index( i ) {} I index;
bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( IsIdxValid( 0 ) ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( IsIdxValid( it.index + 1 ) ? it.index + 1 : InvalidIndex() ); } I GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( I i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); }
// element access
T& operator[]( I i ); const T& operator[]( I i ) const; T& Element( I i ); const T& Element( I i ) const;
// Can we use this index?
bool IsIdxValid( I i ) const;
// Specify the invalid ('null') index that we'll only return on failure
static const I INVALID_INDEX = ( I )-1; // For use with COMPILE_TIME_ASSERT
static I InvalidIndex() { return INVALID_INDEX; }
// Gets the base address (can change when adding elements!)
T* Base(); const T* Base() const;
// Attaches the buffer to external memory....
void SetExternalBuffer( T* pMemory, int numElements ); void SetExternalBuffer( const T* pMemory, int numElements ); // Takes ownership of the passed memory, including freeing it when this buffer is destroyed.
void AssumeMemory( T *pMemory, int nSize );
// Fast swap
void Swap( CUtlMemory< T, I > &mem );
// Switches the buffer from an external memory buffer to a reallocatable buffer
// Will copy the current contents of the external buffer to the reallocatable buffer
void ConvertToGrowableMemory( int nGrowSize );
// Size
int NumAllocated() const; int Count() const;
// Grows the memory, so that at least allocated + num elements are allocated
void Grow( int num = 1 );
// Makes sure we've got at least this much memory
void EnsureCapacity( int num );
// Memory deallocation
void Purge();
// Purge all but the given number of elements
void Purge( int numElements );
// is the memory externally allocated?
bool IsExternallyAllocated() const;
// is the memory read only?
bool IsReadOnly() const;
// Set the size by which the memory grows
void SetGrowSize( int size );
protected: void ValidateGrowSize() { #ifdef _X360
if ( m_nGrowSize && m_nGrowSize != EXTERNAL_BUFFER_MARKER ) { // Max grow size at 128 bytes on XBOX
const int MAX_GROW = 128; if ( m_nGrowSize * sizeof(T) > MAX_GROW ) { m_nGrowSize = max( 1, MAX_GROW / sizeof(T) ); } } #endif
}
enum { EXTERNAL_BUFFER_MARKER = -1, EXTERNAL_CONST_BUFFER_MARKER = -2, };
T* m_pMemory; int m_nAllocationCount; int m_nGrowSize; };
//-----------------------------------------------------------------------------
// The CUtlMemory class:
// A growable memory class which doubles in size by default.
//-----------------------------------------------------------------------------
template< class T, size_t SIZE, class I = int > class CUtlMemoryFixedGrowable : public CUtlMemory< T, I > { typedef CUtlMemory< T, I > BaseClass;
public: CUtlMemoryFixedGrowable( int nGrowSize = 0, int nInitSize = SIZE ) : BaseClass( m_pFixedMemory, SIZE ) { Assert( nInitSize == 0 || nInitSize == SIZE ); m_nMallocGrowSize = nGrowSize; }
void Grow( int nCount = 1 ) { if ( this->IsExternallyAllocated() ) { this->ConvertToGrowableMemory( m_nMallocGrowSize ); } BaseClass::Grow( nCount ); }
void EnsureCapacity( int num ) { if ( CUtlMemory<T>::m_nAllocationCount >= num ) return;
if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated
this->ConvertToGrowableMemory( m_nMallocGrowSize ); }
BaseClass::EnsureCapacity( num ); }
private: int m_nMallocGrowSize; T m_pFixedMemory[ SIZE ]; };
//-----------------------------------------------------------------------------
// The CUtlMemoryFixed class:
// A fixed memory class
//-----------------------------------------------------------------------------
template< typename T, size_t SIZE, int nAlignment = 0 > class CUtlMemoryFixed { public: // constructor, destructor
CUtlMemoryFixed( int nGrowSize = 0, int nInitSize = 0 ) { Assert( nInitSize == 0 || nInitSize == SIZE ); } CUtlMemoryFixed( T* pMemory, int numElements ) { Assert( 0 ); }
// Can we use this index?
// Use unsigned math to improve performance
bool IsIdxValid( int i ) const { return (size_t)i < SIZE; }
// Specify the invalid ('null') index that we'll only return on failure
static const int INVALID_INDEX = -1; // For use with COMPILE_TIME_ASSERT
static int InvalidIndex() { return INVALID_INDEX; }
// Gets the base address
T* Base() { if ( nAlignment == 0 ) return (T*)(&m_Memory[0]); else return (T*)AlignValue( &m_Memory[0], nAlignment ); } const T* Base() const { if ( nAlignment == 0 ) return (T*)(&m_Memory[0]); else return (T*)AlignValue( &m_Memory[0], nAlignment ); }
// element access
// Use unsigned math and inlined checks to improve performance.
T& operator[]( int i ) { Assert( (size_t)i < SIZE ); return Base()[i]; } const T& operator[]( int i ) const { Assert( (size_t)i < SIZE ); return Base()[i]; } T& Element( int i ) { Assert( (size_t)i < SIZE ); return Base()[i]; } const T& Element( int i ) const { Assert( (size_t)i < SIZE ); return Base()[i]; }
// Attaches the buffer to external memory....
void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); }
// Size
int NumAllocated() const { return SIZE; } int Count() const { return SIZE; }
// Grows the memory, so that at least allocated + num elements are allocated
void Grow( int num = 1 ) { Assert( 0 ); }
// Makes sure we've got at least this much memory
void EnsureCapacity( int num ) { Assert( num <= SIZE ); }
// Memory deallocation
void Purge() {}
// Purge all but the given number of elements (NOT IMPLEMENTED IN CUtlMemoryFixed)
void Purge( int numElements ) { Assert( 0 ); }
// is the memory externally allocated?
bool IsExternallyAllocated() const { return false; }
// Set the size by which the memory grows
void SetGrowSize( int size ) {}
class Iterator_t { public: Iterator_t( int i ) : index( i ) {} int index; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( IsIdxValid( 0 ) ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( IsIdxValid( it.index + 1 ) ? it.index + 1 : InvalidIndex() ); } int GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( int i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); }
private: char m_Memory[ SIZE*sizeof(T) + nAlignment ]; };
#if defined(POSIX)
// From Chris Green: Memory is a little fuzzy but I believe this class did
// something fishy with respect to msize and alignment that was OK under our
// allocator, the glibc allocator, etc but not the valgrind one (which has no
// padding because it detects all forms of head/tail overwrite, including
// writing 1 byte past a 1 byte allocation).
#define REMEMBER_ALLOC_SIZE_FOR_VALGRIND 1
#endif
//-----------------------------------------------------------------------------
// The CUtlMemoryConservative class:
// A dynamic memory class that tries to minimize overhead (itself small, no custom grow factor)
//-----------------------------------------------------------------------------
template< typename T > class CUtlMemoryConservative {
public: // constructor, destructor
CUtlMemoryConservative( int nGrowSize = 0, int nInitSize = 0 ) : m_pMemory( NULL ) { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND
m_nCurAllocSize = 0; #endif
} CUtlMemoryConservative( T* pMemory, int numElements ) { Assert( 0 ); } ~CUtlMemoryConservative() { if ( m_pMemory ) free( m_pMemory ); }
// Can we use this index?
bool IsIdxValid( int i ) const { return ( IsDebug() ) ? ( i >= 0 && i < NumAllocated() ) : ( i >= 0 ); } static int InvalidIndex() { return -1; }
// Gets the base address
T* Base() { return m_pMemory; } const T* Base() const { return m_pMemory; }
// element access
T& operator[]( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& operator[]( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } T& Element( int i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& Element( int i ) const { Assert( IsIdxValid(i) ); return Base()[i]; }
// Attaches the buffer to external memory....
void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); }
// Size
FORCEINLINE void RememberAllocSize( size_t sz ) { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND
m_nCurAllocSize = sz; #endif
}
size_t AllocSize( void ) const { #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND
return m_nCurAllocSize; #else
return ( m_pMemory ) ? g_pMemAlloc->GetSize( m_pMemory ) : 0; #endif
}
int NumAllocated() const { return AllocSize() / sizeof( T ); } int Count() const { return NumAllocated(); }
FORCEINLINE void ReAlloc( size_t sz ) { m_pMemory = (T*)realloc( m_pMemory, sz ); RememberAllocSize( sz ); } // Grows the memory, so that at least allocated + num elements are allocated
void Grow( int num = 1 ) { int nCurN = NumAllocated(); ReAlloc( ( nCurN + num ) * sizeof( T ) ); }
// Makes sure we've got at least this much memory
void EnsureCapacity( int num ) { size_t nSize = sizeof( T ) * MAX( num, Count() ); ReAlloc( nSize ); }
// Memory deallocation
void Purge() { free( m_pMemory ); RememberAllocSize( 0 ); m_pMemory = NULL; }
// Purge all but the given number of elements
void Purge( int numElements ) { ReAlloc( numElements * sizeof(T) ); }
// is the memory externally allocated?
bool IsExternallyAllocated() const { return false; }
// Set the size by which the memory grows
void SetGrowSize( int size ) {}
class Iterator_t { public: Iterator_t( int i, int _limit ) : index( i ), limit( _limit ) {} int index; int limit; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { int limit = NumAllocated(); return Iterator_t( limit ? 0 : InvalidIndex(), limit ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( ( it.index + 1 < it.limit ) ? it.index + 1 : InvalidIndex(), it.limit ); } int GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( int i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ) && ( it.index < it.limit ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex(), 0 ); }
private: T *m_pMemory; #ifdef REMEMBER_ALLOC_SIZE_FOR_VALGRIND
size_t m_nCurAllocSize; #endif
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template< class T, class I > CUtlMemory<T,I>::CUtlMemory( int nGrowSize, int nInitAllocationCount ) : m_pMemory(0), m_nAllocationCount( nInitAllocationCount ), m_nGrowSize( nGrowSize ) { ValidateGrowSize(); Assert( nGrowSize >= 0 ); if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } }
template< class T, class I > CUtlMemory<T,I>::CUtlMemory( T* pMemory, int numElements ) : m_pMemory(pMemory), m_nAllocationCount( numElements ) { // Special marker indicating externally supplied modifyable memory
m_nGrowSize = EXTERNAL_BUFFER_MARKER; }
template< class T, class I > CUtlMemory<T,I>::CUtlMemory( const T* pMemory, int numElements ) : m_pMemory( (T*)pMemory ), m_nAllocationCount( numElements ) { // Special marker indicating externally supplied modifyable memory
m_nGrowSize = EXTERNAL_CONST_BUFFER_MARKER; }
template< class T, class I > CUtlMemory<T,I>::~CUtlMemory() { Purge(); }
template< class T, class I > void CUtlMemory<T,I>::Init( int nGrowSize /*= 0*/, int nInitSize /*= 0*/ ) { Purge();
m_nGrowSize = nGrowSize; m_nAllocationCount = nInitSize; ValidateGrowSize(); Assert( nGrowSize >= 0 ); if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } }
//-----------------------------------------------------------------------------
// Fast swap
//-----------------------------------------------------------------------------
template< class T, class I > void CUtlMemory<T,I>::Swap( CUtlMemory<T,I> &mem ) { V_swap( m_nGrowSize, mem.m_nGrowSize ); V_swap( m_pMemory, mem.m_pMemory ); V_swap( m_nAllocationCount, mem.m_nAllocationCount ); }
//-----------------------------------------------------------------------------
// Switches the buffer from an external memory buffer to a reallocatable buffer
//-----------------------------------------------------------------------------
template< class T, class I > void CUtlMemory<T,I>::ConvertToGrowableMemory( int nGrowSize ) { if ( !IsExternallyAllocated() ) return;
m_nGrowSize = nGrowSize; if (m_nAllocationCount) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS();
int nNumBytes = m_nAllocationCount * sizeof(T); T *pMemory = (T*)malloc( nNumBytes ); memcpy( (void*)pMemory, (void*)m_pMemory, nNumBytes ); m_pMemory = pMemory; } else { m_pMemory = NULL; } }
//-----------------------------------------------------------------------------
// Attaches the buffer to external memory....
//-----------------------------------------------------------------------------
template< class T, class I > void CUtlMemory<T,I>::SetExternalBuffer( T* pMemory, int numElements ) { // Blow away any existing allocated memory
Purge();
m_pMemory = pMemory; m_nAllocationCount = numElements;
// Indicate that we don't own the memory
m_nGrowSize = EXTERNAL_BUFFER_MARKER; }
template< class T, class I > void CUtlMemory<T,I>::SetExternalBuffer( const T* pMemory, int numElements ) { // Blow away any existing allocated memory
Purge();
m_pMemory = const_cast<T*>( pMemory ); m_nAllocationCount = numElements;
// Indicate that we don't own the memory
m_nGrowSize = EXTERNAL_CONST_BUFFER_MARKER; }
template< class T, class I > void CUtlMemory<T,I>::AssumeMemory( T* pMemory, int numElements ) { // Blow away any existing allocated memory
Purge();
// Simply take the pointer but don't mark us as external
m_pMemory = pMemory; m_nAllocationCount = numElements; }
//-----------------------------------------------------------------------------
// element access
//-----------------------------------------------------------------------------
template< class T, class I > inline T& CUtlMemory<T,I>::operator[]( I i ) { // Avoid function calls in the asserts to improve debug build performance
Assert( m_nGrowSize != EXTERNAL_CONST_BUFFER_MARKER ); //Assert( !IsReadOnly() );
Assert( (uint32)i < (uint32)m_nAllocationCount ); return m_pMemory[(uint32)i]; }
template< class T, class I > inline const T& CUtlMemory<T,I>::operator[]( I i ) const { // Avoid function calls in the asserts to improve debug build performance
Assert( (uint32)i < (uint32)m_nAllocationCount ); return m_pMemory[(uint32)i]; }
template< class T, class I > inline T& CUtlMemory<T,I>::Element( I i ) { // Avoid function calls in the asserts to improve debug build performance
Assert( m_nGrowSize != EXTERNAL_CONST_BUFFER_MARKER ); //Assert( !IsReadOnly() );
Assert( (uint32)i < (uint32)m_nAllocationCount ); return m_pMemory[(uint32)i]; }
template< class T, class I > inline const T& CUtlMemory<T,I>::Element( I i ) const { // Avoid function calls in the asserts to improve debug build performance
Assert( (uint32)i < (uint32)m_nAllocationCount ); return m_pMemory[(uint32)i]; }
//-----------------------------------------------------------------------------
// is the memory externally allocated?
//-----------------------------------------------------------------------------
template< class T, class I > bool CUtlMemory<T,I>::IsExternallyAllocated() const { return (m_nGrowSize < 0); }
//-----------------------------------------------------------------------------
// is the memory read only?
//-----------------------------------------------------------------------------
template< class T, class I > bool CUtlMemory<T,I>::IsReadOnly() const { return (m_nGrowSize == EXTERNAL_CONST_BUFFER_MARKER); }
template< class T, class I > void CUtlMemory<T,I>::SetGrowSize( int nSize ) { Assert( !IsExternallyAllocated() ); Assert( nSize >= 0 ); m_nGrowSize = nSize; ValidateGrowSize(); }
//-----------------------------------------------------------------------------
// Gets the base address (can change when adding elements!)
//-----------------------------------------------------------------------------
template< class T, class I > inline T* CUtlMemory<T,I>::Base() { Assert( !IsReadOnly() ); return m_pMemory; }
template< class T, class I > inline const T *CUtlMemory<T,I>::Base() const { return m_pMemory; }
//-----------------------------------------------------------------------------
// Size
//-----------------------------------------------------------------------------
template< class T, class I > inline int CUtlMemory<T,I>::NumAllocated() const { return m_nAllocationCount; }
template< class T, class I > inline int CUtlMemory<T,I>::Count() const { return m_nAllocationCount; }
//-----------------------------------------------------------------------------
// Is element index valid?
//-----------------------------------------------------------------------------
template< class T, class I > inline bool CUtlMemory<T,I>::IsIdxValid( I i ) const { // If we always cast 'i' and 'm_nAllocationCount' to unsigned then we can
// do our range checking with a single comparison instead of two. This gives
// a modest speedup in debug builds.
return (uint32)i < (uint32)m_nAllocationCount; }
//-----------------------------------------------------------------------------
// Grows the memory
//-----------------------------------------------------------------------------
inline int UtlMemory_CalcNewAllocationCount( int nAllocationCount, int nGrowSize, int nNewSize, int nBytesItem ) { if ( nGrowSize ) { nAllocationCount = ((1 + ((nNewSize - 1) / nGrowSize)) * nGrowSize); } else { if ( !nAllocationCount ) { // Compute an allocation which is at least as big as a cache line...
nAllocationCount = (31 + nBytesItem) / nBytesItem; }
while (nAllocationCount < nNewSize) { #ifndef _X360
nAllocationCount *= 2; #else
int nNewAllocationCount = ( nAllocationCount * 9) / 8; // 12.5 %
if ( nNewAllocationCount > nAllocationCount ) nAllocationCount = nNewAllocationCount; else nAllocationCount *= 2; #endif
} }
return nAllocationCount; }
template< class T, class I > void CUtlMemory<T,I>::Grow( int num ) { Assert( num > 0 );
if ( IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated
Assert(0); return; }
// Make sure we have at least numallocated + num allocations.
// Use the grow rules specified for this memory (in m_nGrowSize)
int nAllocationRequested = m_nAllocationCount + num;
UTLMEMORY_TRACK_FREE();
int nNewAllocationCount = UtlMemory_CalcNewAllocationCount( m_nAllocationCount, m_nGrowSize, nAllocationRequested, sizeof(T) );
// if m_nAllocationRequested wraps index type I, recalculate
if ( ( int )( I )nNewAllocationCount < nAllocationRequested ) { if ( ( int )( I )nNewAllocationCount == 0 && ( int )( I )( nNewAllocationCount - 1 ) >= nAllocationRequested ) { --nNewAllocationCount; // deal w/ the common case of m_nAllocationCount == MAX_USHORT + 1
} else { if ( ( int )( I )nAllocationRequested != nAllocationRequested ) { // we've been asked to grow memory to a size s.t. the index type can't address the requested amount of memory
Assert( 0 ); return; } while ( ( int )( I )nNewAllocationCount < nAllocationRequested ) { nNewAllocationCount = ( nNewAllocationCount + nAllocationRequested ) / 2; } } }
m_nAllocationCount = nNewAllocationCount;
UTLMEMORY_TRACK_ALLOC();
if (m_pMemory) { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); Assert( m_pMemory ); } else { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); Assert( m_pMemory ); } }
//-----------------------------------------------------------------------------
// Makes sure we've got at least this much memory
//-----------------------------------------------------------------------------
template< class T, class I > inline void CUtlMemory<T,I>::EnsureCapacity( int num ) { if (m_nAllocationCount >= num) return;
if ( IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated
Assert(0); return; }
UTLMEMORY_TRACK_FREE();
m_nAllocationCount = num;
UTLMEMORY_TRACK_ALLOC();
if (m_pMemory) { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); } else { MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)malloc( m_nAllocationCount * sizeof(T) ); } }
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template< class T, class I > void CUtlMemory<T,I>::Purge() { if ( !IsExternallyAllocated() ) { if (m_pMemory) { UTLMEMORY_TRACK_FREE(); free( (void*)m_pMemory ); m_pMemory = 0; } m_nAllocationCount = 0; } }
template< class T, class I > void CUtlMemory<T,I>::Purge( int numElements ) { Assert( numElements >= 0 );
if( numElements > m_nAllocationCount ) { // Ensure this isn't a grow request in disguise.
Assert( numElements <= m_nAllocationCount ); return; }
// If we have zero elements, simply do a purge:
if( numElements == 0 ) { Purge(); return; }
if ( IsExternallyAllocated() ) { // Can't shrink a buffer whose memory was externally allocated, fail silently like purge
return; }
// If the number of elements is the same as the allocation count, we are done.
if( numElements == m_nAllocationCount ) { return; }
if( !m_pMemory ) { // Allocation count is non zero, but memory is null.
Assert( m_pMemory ); return; }
UTLMEMORY_TRACK_FREE();
m_nAllocationCount = numElements; UTLMEMORY_TRACK_ALLOC();
// Allocation count > 0, shrink it down.
MEM_ALLOC_CREDIT_CLASS(); m_pMemory = (T*)realloc( m_pMemory, m_nAllocationCount * sizeof(T) ); }
//-----------------------------------------------------------------------------
// The CUtlMemory class:
// A growable memory class which doubles in size by default.
//-----------------------------------------------------------------------------
template< class T, int nAlignment > class CUtlMemoryAligned : public CUtlMemory<T> { public: // constructor, destructor
CUtlMemoryAligned( int nGrowSize = 0, int nInitSize = 0 ); CUtlMemoryAligned( T* pMemory, int numElements ); CUtlMemoryAligned( const T* pMemory, int numElements ); ~CUtlMemoryAligned();
// Attaches the buffer to external memory....
void SetExternalBuffer( T* pMemory, int numElements ); void SetExternalBuffer( const T* pMemory, int numElements );
// Grows the memory, so that at least allocated + num elements are allocated
void Grow( int num = 1 );
// Makes sure we've got at least this much memory
void EnsureCapacity( int num );
// Memory deallocation
void Purge();
// Purge all but the given number of elements (NOT IMPLEMENTED IN CUtlMemoryAligned)
void Purge( int numElements ) { Assert( 0 ); }
private: void *Align( const void *pAddr ); };
//-----------------------------------------------------------------------------
// Aligns a pointer
//-----------------------------------------------------------------------------
template< class T, int nAlignment > void *CUtlMemoryAligned<T, nAlignment>::Align( const void *pAddr ) { size_t nAlignmentMask = nAlignment - 1; return (void*)( ((size_t)pAddr + nAlignmentMask) & (~nAlignmentMask) ); }
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template< class T, int nAlignment > CUtlMemoryAligned<T, nAlignment>::CUtlMemoryAligned( int nGrowSize, int nInitAllocationCount ) { CUtlMemory<T>::m_pMemory = 0; CUtlMemory<T>::m_nAllocationCount = nInitAllocationCount; CUtlMemory<T>::m_nGrowSize = nGrowSize; this->ValidateGrowSize();
// Alignment must be a power of two
COMPILE_TIME_ASSERT( (nAlignment & (nAlignment-1)) == 0 ); Assert( (nGrowSize >= 0) && (nGrowSize != CUtlMemory<T>::EXTERNAL_BUFFER_MARKER) ); if ( CUtlMemory<T>::m_nAllocationCount ) { UTLMEMORY_TRACK_ALLOC(); MEM_ALLOC_CREDIT_CLASS(); CUtlMemory<T>::m_pMemory = (T*)_aligned_malloc( nInitAllocationCount * sizeof(T), nAlignment ); } }
template< class T, int nAlignment > CUtlMemoryAligned<T, nAlignment>::CUtlMemoryAligned( T* pMemory, int numElements ) { // Special marker indicating externally supplied memory
CUtlMemory<T>::m_nGrowSize = CUtlMemory<T>::EXTERNAL_BUFFER_MARKER;
CUtlMemory<T>::m_pMemory = (T*)Align( pMemory ); CUtlMemory<T>::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory<T>::m_pMemory ) / sizeof(T); }
template< class T, int nAlignment > CUtlMemoryAligned<T, nAlignment>::CUtlMemoryAligned( const T* pMemory, int numElements ) { // Special marker indicating externally supplied memory
CUtlMemory<T>::m_nGrowSize = CUtlMemory<T>::EXTERNAL_CONST_BUFFER_MARKER;
CUtlMemory<T>::m_pMemory = (T*)Align( pMemory ); CUtlMemory<T>::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory<T>::m_pMemory ) / sizeof(T); }
template< class T, int nAlignment > CUtlMemoryAligned<T, nAlignment>::~CUtlMemoryAligned() { Purge(); }
//-----------------------------------------------------------------------------
// Attaches the buffer to external memory....
//-----------------------------------------------------------------------------
template< class T, int nAlignment > void CUtlMemoryAligned<T, nAlignment>::SetExternalBuffer( T* pMemory, int numElements ) { // Blow away any existing allocated memory
Purge();
CUtlMemory<T>::m_pMemory = (T*)Align( pMemory ); CUtlMemory<T>::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory<T>::m_pMemory ) / sizeof(T);
// Indicate that we don't own the memory
CUtlMemory<T>::m_nGrowSize = CUtlMemory<T>::EXTERNAL_BUFFER_MARKER; }
template< class T, int nAlignment > void CUtlMemoryAligned<T, nAlignment>::SetExternalBuffer( const T* pMemory, int numElements ) { // Blow away any existing allocated memory
Purge();
CUtlMemory<T>::m_pMemory = (T*)Align( pMemory ); CUtlMemory<T>::m_nAllocationCount = ( (int)(pMemory + numElements) - (int)CUtlMemory<T>::m_pMemory ) / sizeof(T);
// Indicate that we don't own the memory
CUtlMemory<T>::m_nGrowSize = CUtlMemory<T>::EXTERNAL_CONST_BUFFER_MARKER; }
//-----------------------------------------------------------------------------
// Grows the memory
//-----------------------------------------------------------------------------
template< class T, int nAlignment > void CUtlMemoryAligned<T, nAlignment>::Grow( int num ) { Assert( num > 0 );
if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated
Assert(0); return; }
UTLMEMORY_TRACK_FREE();
// Make sure we have at least numallocated + num allocations.
// Use the grow rules specified for this memory (in m_nGrowSize)
int nAllocationRequested = CUtlMemory<T>::m_nAllocationCount + num;
CUtlMemory<T>::m_nAllocationCount = UtlMemory_CalcNewAllocationCount( CUtlMemory<T>::m_nAllocationCount, CUtlMemory<T>::m_nGrowSize, nAllocationRequested, sizeof(T) );
UTLMEMORY_TRACK_ALLOC();
if ( CUtlMemory<T>::m_pMemory ) { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory<T>::m_pMemory = (T*)MemAlloc_ReallocAligned( CUtlMemory<T>::m_pMemory, CUtlMemory<T>::m_nAllocationCount * sizeof(T), nAlignment ); Assert( CUtlMemory<T>::m_pMemory ); } else { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory<T>::m_pMemory = (T*)MemAlloc_AllocAligned( CUtlMemory<T>::m_nAllocationCount * sizeof(T), nAlignment ); Assert( CUtlMemory<T>::m_pMemory ); } }
//-----------------------------------------------------------------------------
// Makes sure we've got at least this much memory
//-----------------------------------------------------------------------------
template< class T, int nAlignment > inline void CUtlMemoryAligned<T, nAlignment>::EnsureCapacity( int num ) { if ( CUtlMemory<T>::m_nAllocationCount >= num ) return;
if ( this->IsExternallyAllocated() ) { // Can't grow a buffer whose memory was externally allocated
Assert(0); return; }
UTLMEMORY_TRACK_FREE();
CUtlMemory<T>::m_nAllocationCount = num;
UTLMEMORY_TRACK_ALLOC();
if ( CUtlMemory<T>::m_pMemory ) { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory<T>::m_pMemory = (T*)MemAlloc_ReallocAligned( CUtlMemory<T>::m_pMemory, CUtlMemory<T>::m_nAllocationCount * sizeof(T), nAlignment ); } else { MEM_ALLOC_CREDIT_CLASS(); CUtlMemory<T>::m_pMemory = (T*)MemAlloc_AllocAligned( CUtlMemory<T>::m_nAllocationCount * sizeof(T), nAlignment ); } }
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template< class T, int nAlignment > void CUtlMemoryAligned<T, nAlignment>::Purge() { if ( !this->IsExternallyAllocated() ) { if ( CUtlMemory<T>::m_pMemory ) { UTLMEMORY_TRACK_FREE(); MemAlloc_FreeAligned( CUtlMemory<T>::m_pMemory ); CUtlMemory<T>::m_pMemory = 0; } CUtlMemory<T>::m_nAllocationCount = 0; } }
#include "tier0/memdbgoff.h"
#endif // UTLMEMORY_H
|