Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

230 lines
7.8 KiB

  1. /*
  2. * jfdctfst.c
  3. *
  4. * Copyright (C) 1994-1996, Thomas G. Lane.
  5. * Modified 2003-2009 by Guido Vollbeding.
  6. * This file is part of the Independent JPEG Group's software.
  7. * For conditions of distribution and use, see the accompanying README file.
  8. *
  9. * This file contains a fast, not so accurate integer implementation of the
  10. * forward DCT (Discrete Cosine Transform).
  11. *
  12. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  13. * on each column. Direct algorithms are also available, but they are
  14. * much more complex and seem not to be any faster when reduced to code.
  15. *
  16. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  17. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  18. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  19. * JPEG textbook (see REFERENCES section in file README). The following code
  20. * is based directly on figure 4-8 in P&M.
  21. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  22. * possible to arrange the computation so that many of the multiplies are
  23. * simple scalings of the final outputs. These multiplies can then be
  24. * folded into the multiplications or divisions by the JPEG quantization
  25. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  26. * to be done in the DCT itself.
  27. * The primary disadvantage of this method is that with fixed-point math,
  28. * accuracy is lost due to imprecise representation of the scaled
  29. * quantization values. The smaller the quantization table entry, the less
  30. * precise the scaled value, so this implementation does worse with high-
  31. * quality-setting files than with low-quality ones.
  32. */
  33. #define JPEG_INTERNALS
  34. #include "jinclude.h"
  35. #include "jpeglib.h"
  36. #include "jdct.h" /* Private declarations for DCT subsystem */
  37. #ifdef DCT_IFAST_SUPPORTED
  38. /*
  39. * This module is specialized to the case DCTSIZE = 8.
  40. */
  41. #if DCTSIZE != 8
  42. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  43. #endif
  44. /* Scaling decisions are generally the same as in the LL&M algorithm;
  45. * see jfdctint.c for more details. However, we choose to descale
  46. * (right shift) multiplication products as soon as they are formed,
  47. * rather than carrying additional fractional bits into subsequent additions.
  48. * This compromises accuracy slightly, but it lets us save a few shifts.
  49. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  50. * everywhere except in the multiplications proper; this saves a good deal
  51. * of work on 16-bit-int machines.
  52. *
  53. * Again to save a few shifts, the intermediate results between pass 1 and
  54. * pass 2 are not upscaled, but are represented only to integral precision.
  55. *
  56. * A final compromise is to represent the multiplicative constants to only
  57. * 8 fractional bits, rather than 13. This saves some shifting work on some
  58. * machines, and may also reduce the cost of multiplication (since there
  59. * are fewer one-bits in the constants).
  60. */
  61. #define CONST_BITS 8
  62. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  63. * causing a lot of useless floating-point operations at run time.
  64. * To get around this we use the following pre-calculated constants.
  65. * If you change CONST_BITS you may want to add appropriate values.
  66. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  67. */
  68. #if CONST_BITS == 8
  69. #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
  70. #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
  71. #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
  72. #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
  73. #else
  74. #define FIX_0_382683433 FIX(0.382683433)
  75. #define FIX_0_541196100 FIX(0.541196100)
  76. #define FIX_0_707106781 FIX(0.707106781)
  77. #define FIX_1_306562965 FIX(1.306562965)
  78. #endif
  79. /* We can gain a little more speed, with a further compromise in accuracy,
  80. * by omitting the addition in a descaling shift. This yields an incorrectly
  81. * rounded result half the time...
  82. */
  83. #ifndef USE_ACCURATE_ROUNDING
  84. #undef DESCALE
  85. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  86. #endif
  87. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  88. * descale to yield a DCTELEM result.
  89. */
  90. #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  91. /*
  92. * Perform the forward DCT on one block of samples.
  93. */
  94. GLOBAL(void)
  95. jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
  96. {
  97. DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  98. DCTELEM tmp10, tmp11, tmp12, tmp13;
  99. DCTELEM z1, z2, z3, z4, z5, z11, z13;
  100. DCTELEM *dataptr;
  101. JSAMPROW elemptr;
  102. int ctr;
  103. SHIFT_TEMPS
  104. /* Pass 1: process rows. */
  105. dataptr = data;
  106. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  107. elemptr = sample_data[ctr] + start_col;
  108. /* Load data into workspace */
  109. tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
  110. tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
  111. tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
  112. tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
  113. tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
  114. tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
  115. tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
  116. tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
  117. /* Even part */
  118. tmp10 = tmp0 + tmp3; /* phase 2 */
  119. tmp13 = tmp0 - tmp3;
  120. tmp11 = tmp1 + tmp2;
  121. tmp12 = tmp1 - tmp2;
  122. /* Apply unsigned->signed conversion */
  123. dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
  124. dataptr[4] = tmp10 - tmp11;
  125. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  126. dataptr[2] = tmp13 + z1; /* phase 5 */
  127. dataptr[6] = tmp13 - z1;
  128. /* Odd part */
  129. tmp10 = tmp4 + tmp5; /* phase 2 */
  130. tmp11 = tmp5 + tmp6;
  131. tmp12 = tmp6 + tmp7;
  132. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  133. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  134. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  135. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  136. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  137. z11 = tmp7 + z3; /* phase 5 */
  138. z13 = tmp7 - z3;
  139. dataptr[5] = z13 + z2; /* phase 6 */
  140. dataptr[3] = z13 - z2;
  141. dataptr[1] = z11 + z4;
  142. dataptr[7] = z11 - z4;
  143. dataptr += DCTSIZE; /* advance pointer to next row */
  144. }
  145. /* Pass 2: process columns. */
  146. dataptr = data;
  147. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  148. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  149. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  150. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  151. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  152. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  153. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  154. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  155. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  156. /* Even part */
  157. tmp10 = tmp0 + tmp3; /* phase 2 */
  158. tmp13 = tmp0 - tmp3;
  159. tmp11 = tmp1 + tmp2;
  160. tmp12 = tmp1 - tmp2;
  161. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  162. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  163. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  164. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  165. dataptr[DCTSIZE*6] = tmp13 - z1;
  166. /* Odd part */
  167. tmp10 = tmp4 + tmp5; /* phase 2 */
  168. tmp11 = tmp5 + tmp6;
  169. tmp12 = tmp6 + tmp7;
  170. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  171. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  172. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  173. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  174. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  175. z11 = tmp7 + z3; /* phase 5 */
  176. z13 = tmp7 - z3;
  177. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  178. dataptr[DCTSIZE*3] = z13 - z2;
  179. dataptr[DCTSIZE*1] = z11 + z4;
  180. dataptr[DCTSIZE*7] = z11 - z4;
  181. dataptr++; /* advance pointer to next column */
  182. }
  183. }
  184. #endif /* DCT_IFAST_SUPPORTED */