|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <math.h>
#include "filesystem_tools.h"
#include "cmdlib.h"
#include "scriplib.h"
#include "mathlib/mathlib.h"
#define EXTERN
#include "studio.h"
#include "motionmapper.h"
#include "tier1/strtools.h"
#include "tier0/icommandline.h"
#include "utldict.h"
#include <windows.h>
#include "UtlBuffer.h"
#include "utlsymbol.h"
bool g_quiet = false; bool g_verbose = false; char g_outfile[1024]; bool uselogfile = false;
char g_szFilename[1024]; FILE *g_fpInput; char g_szLine[4096]; int g_iLinecount;
bool g_bZBrush = false; bool g_bGaveMissingBoneWarning = false;
//-----------------------------------------------------------------------------
// Purpose:
// Input : depth -
// *fmt -
// ... -
//-----------------------------------------------------------------------------
void vprint( int depth, const char *fmt, ... ) { char string[ 8192 ]; va_list va; va_start( va, fmt ); V_vsprintf_safe( string, fmt, va ); va_end( va );
FILE *fp = NULL;
if ( uselogfile ) { fp = fopen( "log.txt", "ab" ); }
while ( depth-- > 0 ) { vprint( 0, " " ); OutputDebugString( " " ); if ( fp ) { fprintf( fp, " " ); } }
::printf( "%s", string ); OutputDebugString( string );
if ( fp ) { char *p = string; while ( *p ) { if ( *p == '\n' ) { fputc( '\r', fp ); } fputc( *p, fp ); p++; } fclose( fp ); } }
int k_memtotal; void *kalloc( int num, int size ) { // vprint( 0, "calloc( %d, %d )\n", num, size );
// vprint( 0, "%d ", num * size );
k_memtotal += num * size; return calloc( num, size ); }
void kmemset( void *ptr, int value, int size ) { // vprint( 0, "kmemset( %x, %d, %d )\n", ptr, value, size );
memset( ptr, value, size ); return; }
static bool g_bFirstWarning = true;
void MdlWarning( const char *fmt, ... ) { va_list args; static char output[1024];
if (g_quiet) { if (g_bFirstWarning) { vprint( 0, "%s :\n", fullpath ); g_bFirstWarning = false; } vprint( 0, "\t"); }
vprint( 0, "WARNING: "); va_start( args, fmt ); vprint( 0, fmt, args ); }
void MdlError( char const *fmt, ... ) { va_list args;
if (g_quiet) { if (g_bFirstWarning) { vprint( 0, "%s :\n", fullpath ); g_bFirstWarning = false; } vprint( 0, "\t"); }
vprint( 0, "ERROR: "); va_start( args, fmt ); vprint( 0, fmt, args );
exit( -1 ); }
int OpenGlobalFile( char *src ) { int time1; char filename[1024];
// local copy of string
strcpy( filename, ExpandPath( src ) );
// Ummm, path sanity checking
int pathLength; int numBasePaths = CmdLib_GetNumBasePaths(); // This is kinda gross. . . doing the same work in cmdlib on SafeOpenRead.
if( CmdLib_HasBasePath( filename, pathLength ) ) { char tmp[1024]; int i; for( i = 0; i < numBasePaths; i++ ) { strcpy( tmp, CmdLib_GetBasePath( i ) ); strcat( tmp, filename + pathLength ); time1 = FileTime( tmp ); if( time1 != -1 ) { if ((g_fpInput = fopen(tmp, "r")) == 0) { MdlWarning( "reader: could not open file '%s'\n", src ); return 0; } else { return 1; } } } return 0; } else { time1 = FileTime (filename); if (time1 == -1) return 0;
// Whoohooo, FOPEN!
if ((g_fpInput = fopen(filename, "r")) == 0) { MdlWarning( "reader: could not open file '%s'\n", src ); return 0; }
return 1; } }
bool IsEnd( char const* pLine ) { if (strncmp( "end", pLine, 3 ) != 0) return false; return (pLine[3] == '\0') || (pLine[3] == '\n'); }
//Wrong name for the use of it.
void scale_vertex( Vector &org ) { org[0] = org[0] * g_currentscale; org[1] = org[1] * g_currentscale; org[2] = org[2] * g_currentscale; }
void clip_rotations( RadianEuler& rot ) { int j; // clip everything to : -M_PI <= x < M_PI
for (j = 0; j < 3; j++) { while (rot[j] >= M_PI) rot[j] -= M_PI*2; while (rot[j] < -M_PI) rot[j] += M_PI*2; } }
void clip_rotations( Vector& rot ) { int j; // clip everything to : -180 <= x < 180
for (j = 0; j < 3; j++) { while (rot[j] >= 180) rot[j] -= 180*2; while (rot[j] < -180) rot[j] += 180*2; } }
void Build_Reference( s_source_t *psource) { int i, parent; Vector angle;
for (i = 0; i < psource->numbones; i++) { matrix3x4_t m; AngleMatrix( psource->rawanim[0][i].rot, m ); m[0][3] = psource->rawanim[0][i].pos[0]; m[1][3] = psource->rawanim[0][i].pos[1]; m[2][3] = psource->rawanim[0][i].pos[2];
parent = psource->localBone[i].parent; if (parent == -1) { // scale the done pos.
// calc rotational matrices
MatrixCopy( m, psource->boneToPose[i] ); } else { // calc compound rotational matrices
// FIXME : Hey, it's orthogical so inv(A) == transpose(A)
ConcatTransforms( psource->boneToPose[parent], m, psource->boneToPose[i] ); } // vprint( 0, "%3d %f %f %f\n", i, psource->bonefixup[i].worldorg[0], psource->bonefixup[i].worldorg[1], psource->bonefixup[i].worldorg[2] );
/*
AngleMatrix( angle, m ); vprint( 0, "%8.4f %8.4f %8.4f\n", m[0][0], m[1][0], m[2][0] ); vprint( 0, "%8.4f %8.4f %8.4f\n", m[0][1], m[1][1], m[2][1] ); vprint( 0, "%8.4f %8.4f %8.4f\n", m[0][2], m[1][2], m[2][2] ); */ } }
int Grab_Nodes( s_node_t *pnodes ) { //
// s_node_t structure: index is index!!
//
int index; char name[1024]; int parent; int numbones = 0;
// Init parent to none
for (index = 0; index < MAXSTUDIOSRCBONES; index++) { pnodes[index].parent = -1; }
// March through nodes lines
while (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) != NULL) { g_iLinecount++; // get tokens
if (sscanf( g_szLine, "%d \"%[^\"]\" %d", &index, name, &parent ) == 3) { // check for duplicated bones
/*
if (strlen(pnodes[index].name) != 0) { MdlError( "bone \"%s\" exists more than once\n", name ); } */ // copy name to struct array
V_strcpy_safe( pnodes[index].name, name ); // set parent into struct array
pnodes[index].parent = parent; // increment numbones
if (index > numbones) { numbones = index; } } else { return numbones + 1; } } MdlError( "Unexpected EOF at line %d\n", g_iLinecount ); return 0; }
void Grab_Vertexanimation( s_source_t *psource ) { char cmd[1024]; int index; Vector pos; Vector normal; int t = -1; int count = 0; static s_vertanim_t tmpvanim[MAXSTUDIOVERTS*4];
while (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) != NULL) { g_iLinecount++; if (sscanf( g_szLine, "%d %f %f %f %f %f %f", &index, &pos[0], &pos[1], &pos[2], &normal[0], &normal[1], &normal[2] ) == 7) { if (psource->startframe < 0) { MdlError( "Missing frame start(%d) : %s", g_iLinecount, g_szLine ); }
if (t < 0) { MdlError( "VTA Frame Sync (%d) : %s", g_iLinecount, g_szLine ); }
tmpvanim[count].vertex = index; VectorCopy( pos, tmpvanim[count].pos ); VectorCopy( normal, tmpvanim[count].normal ); count++;
if (index >= psource->numvertices) psource->numvertices = index + 1; } else { // flush data
if (count) { psource->numvanims[t] = count;
psource->vanim[t] = (s_vertanim_t *)kalloc( count, sizeof( s_vertanim_t ) );
memcpy( psource->vanim[t], tmpvanim, count * sizeof( s_vertanim_t ) ); } else if (t > 0) { psource->numvanims[t] = 0; }
// next command
if (sscanf( g_szLine, "%1023s %d", cmd, &index )) { if (strcmp( cmd, "time" ) == 0) { t = index; count = 0;
if (t < psource->startframe) { MdlError( "Frame MdlError(%d) : %s", g_iLinecount, g_szLine ); } if (t > psource->endframe) { MdlError( "Frame MdlError(%d) : %s", g_iLinecount, g_szLine ); }
t -= psource->startframe; } else if (strcmp( cmd, "end") == 0) { psource->numframes = psource->endframe - psource->startframe + 1; return; } else { MdlError( "MdlError(%d) : %s", g_iLinecount, g_szLine ); }
} else { MdlError( "MdlError(%d) : %s", g_iLinecount, g_szLine ); } } } MdlError( "unexpected EOF: %s\n", psource->filename ); }
void Grab_Animation( s_source_t *psource ) { Vector pos; RadianEuler rot; char cmd[1024]; int index; int t = -99999999; int size;
// Init startframe
psource->startframe = -1;
// size per frame
size = psource->numbones * sizeof( s_bone_t );
// march through animation
while (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) != NULL) { // linecount
g_iLinecount++; // split if big enoough
if (sscanf( g_szLine, "%d %f %f %f %f %f %f", &index, &pos[0], &pos[1], &pos[2], &rot[0], &rot[1], &rot[2] ) == 7) { // startframe is sanity check for having determined time
if (psource->startframe < 0) { MdlError( "Missing frame start(%d) : %s", g_iLinecount, g_szLine ); }
// scale if pertinent
scale_vertex( pos ); VectorCopy( pos, psource->rawanim[t][index].pos ); VectorCopy( rot, psource->rawanim[t][index].rot );
clip_rotations( rot ); // !!!
} else if (sscanf( g_szLine, "%1023s %d", cmd, &index )) { // get time
if (strcmp( cmd, "time" ) == 0) { // again time IS an index
t = index; if (psource->startframe == -1) { psource->startframe = t; } // sanity check time (little funny logic here, see previous IF)
if (t < psource->startframe) { MdlError( "Frame MdlError(%d) : %s", g_iLinecount, g_szLine ); } // bump up endframe?
if (t > psource->endframe) { psource->endframe = t; } // make t into pure index
t -= psource->startframe;
// check for memory allocation
if (psource->rawanim[t] == NULL) { // Allocate 1 frame of full bonecount
psource->rawanim[t] = (s_bone_t *)kalloc( 1, size );
// duplicate previous frames keys?? preventative sanity?
if (t > 0 && psource->rawanim[t-1]) { for (int j = 0; j < psource->numbones; j++) { VectorCopy( psource->rawanim[t-1][j].pos, psource->rawanim[t][j].pos ); VectorCopy( psource->rawanim[t-1][j].rot, psource->rawanim[t][j].rot ); } } } else { // MdlError( "%s has duplicated frame %d\n", psource->filename, t );
} } else if (strcmp( cmd, "end") == 0) { psource->numframes = psource->endframe - psource->startframe + 1;
for (t = 0; t < psource->numframes; t++) { if (psource->rawanim[t] == NULL) { MdlError( "%s is missing frame %d\n", psource->filename, t + psource->startframe ); } }
Build_Reference( psource ); return; } else { MdlError( "MdlError(%d) : %s", g_iLinecount, g_szLine ); } } else { MdlError( "MdlError(%d) : %s", g_iLinecount, g_szLine ); } }
MdlError( "unexpected EOF: %s\n", psource->filename ); }
int lookup_index( s_source_t *psource, int material, Vector& vertex, Vector& normal, Vector2D texcoord ) { int i;
for (i = 0; i < numvlist; i++) { if (v_listdata[i].m == material && DotProduct( g_normal[i], normal ) > normal_blend && VectorCompare( g_vertex[i], vertex ) && g_texcoord[i][0] == texcoord[0] && g_texcoord[i][1] == texcoord[1]) { v_listdata[i].lastref = numvlist; return i; } } if (i >= MAXSTUDIOVERTS) { MdlError( "too many indices in source: \"%s\"\n", psource->filename); }
VectorCopy( vertex, g_vertex[i] ); VectorCopy( normal, g_normal[i] ); Vector2Copy( texcoord, g_texcoord[i] );
v_listdata[i].v = i; v_listdata[i].m = material; v_listdata[i].n = i; v_listdata[i].t = i;
v_listdata[i].firstref = numvlist; v_listdata[i].lastref = numvlist;
numvlist = i + 1; return i; }
void ParseFaceData( s_source_t *psource, int material, s_face_t *pFace ) { int index[3]; int i, j; Vector p; Vector normal; Vector2D t; int iCount, bones[MAXSTUDIOSRCBONES]; float weights[MAXSTUDIOSRCBONES]; int bone;
for (j = 0; j < 3; j++) { memset( g_szLine, 0, sizeof( g_szLine ) );
if (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) == NULL) { MdlError("%s: error on g_szLine %d: %s", g_szFilename, g_iLinecount, g_szLine ); }
iCount = 0;
g_iLinecount++; i = sscanf( g_szLine, "%d %f %f %f %f %f %f %f %f %d %d %f %d %f %d %f %d %f", &bone, &p[0], &p[1], &p[2], &normal[0], &normal[1], &normal[2], &t[0], &t[1], &iCount, &bones[0], &weights[0], &bones[1], &weights[1], &bones[2], &weights[2], &bones[3], &weights[3] ); if (i < 9) continue;
if (bone < 0 || bone >= psource->numbones) { MdlError("bogus bone index\n%d %s :\n%s", g_iLinecount, g_szFilename, g_szLine ); }
//Scale face pos
scale_vertex( p ); // continue parsing more bones.
// FIXME: don't we have a built in parser that'll do this?
if (iCount > 4) { int k; int ctr = 0; char *token; for (k = 0; k < 18; k++) { while (g_szLine[ctr] == ' ') { ctr++; } token = strtok( &g_szLine[ctr], " " ); ctr += strlen( token ) + 1; } for (k = 4; k < iCount && k < MAXSTUDIOSRCBONES; k++) { while (g_szLine[ctr] == ' ') { ctr++; } token = strtok( &g_szLine[ctr], " " ); ctr += strlen( token ) + 1;
bones[k] = atoi(token);
token = strtok( &g_szLine[ctr], " " ); ctr += strlen( token ) + 1; weights[k] = atof(token); } // vprint( 0, "%d ", iCount );
//vprint( 0, "\n");
//exit(1);
}
// adjust_vertex( p );
// scale_vertex( p );
// move vertex position to object space.
// VectorSubtract( p, psource->bonefixup[bone].worldorg, tmp );
// VectorTransform(tmp, psource->bonefixup[bone].im, p );
// move normal to object space.
// VectorCopy( normal, tmp );
// VectorTransform(tmp, psource->bonefixup[bone].im, normal );
// VectorNormalize( normal );
// invert v
t[1] = 1.0 - t[1];
index[j] = lookup_index( psource, material, p, normal, t );
if (i == 9 || iCount == 0) { g_bone[index[j]].numbones = 1; g_bone[index[j]].bone[0] = bone; g_bone[index[j]].weight[0] = 1.0; } else { iCount = SortAndBalanceBones( iCount, MAXSTUDIOBONEWEIGHTS, bones, weights );
g_bone[index[j]].numbones = iCount; for (i = 0; i < iCount; i++) { g_bone[index[j]].bone[i] = bones[i]; g_bone[index[j]].weight[i] = weights[i]; } } }
// pFace->material = material; // BUG
pFace->a = index[0]; pFace->b = index[1]; pFace->c = index[2]; Assert( ((pFace->a & 0xF0000000) == 0) && ((pFace->b & 0xF0000000) == 0) && ((pFace->c & 0xF0000000) == 0) );
if (flip_triangles) { j = pFace->b; pFace->b = pFace->c; pFace->c = j; } }
int use_texture_as_material( int textureindex ) { if (g_texture[textureindex].material == -1) { // vprint( 0, "%d %d %s\n", textureindex, g_nummaterials, g_texture[textureindex].name );
g_material[g_nummaterials] = textureindex; g_texture[textureindex].material = g_nummaterials++; }
return g_texture[textureindex].material; }
int material_to_texture( int material ) { int i; for (i = 0; i < g_numtextures; i++) { if (g_texture[i].material == material) { return i; } } return -1; }
int lookup_texture( char *texturename, int maxlen ) { int i;
Q_StripExtension( texturename, texturename, maxlen );
for (i = 0; i < g_numtextures; i++) { if (stricmp( g_texture[i].name, texturename ) == 0) { return i; } }
if (i >= MAXSTUDIOSKINS) MdlError("Too many materials used, max %d\n", ( int )MAXSTUDIOSKINS );
// vprint( 0, "texture %d = %s\n", i, texturename );
V_strcpy_safe( g_texture[i].name, texturename );
g_texture[i].material = -1; /*
if (stristr( texturename, "chrome" ) != NULL) { texture[i].flags = STUDIO_NF_FLATSHADE | STUDIO_NF_CHROME; } else { texture[i].flags = 0; } */ g_numtextures++; return i; }
int SortAndBalanceBones( int iCount, int iMaxCount, int bones[], float weights[] ) { int i;
// collapse duplicate bone weights
for (i = 0; i < iCount-1; i++) { int j; for (j = i + 1; j < iCount; j++) { if (bones[i] == bones[j]) { weights[i] += weights[j]; weights[j] = 0.0; } } }
// do sleazy bubble sort
int bShouldSort; do { bShouldSort = false; for (i = 0; i < iCount-1; i++) { if (weights[i+1] > weights[i]) { int j = bones[i+1]; bones[i+1] = bones[i]; bones[i] = j; float w = weights[i+1]; weights[i+1] = weights[i]; weights[i] = w; bShouldSort = true; } } } while (bShouldSort);
// throw away all weights less than 1/20th
while (iCount > 1 && weights[iCount-1] < 0.05) { iCount--; }
// clip to the top iMaxCount bones
if (iCount > iMaxCount) { iCount = iMaxCount; }
float t = 0; for (i = 0; i < iCount; i++) { t += weights[i]; }
if (t <= 0.0) { // missing weights?, go ahead and evenly share?
// FIXME: shouldn't this error out?
t = 1.0 / iCount;
for (i = 0; i < iCount; i++) { weights[i] = t; } } else { // scale to sum to 1.0
t = 1.0 / t;
for (i = 0; i < iCount; i++) { weights[i] = weights[i] * t; } }
return iCount; }
int vlistCompare( const void *elem1, const void *elem2 ) { v_unify_t *u1 = &v_listdata[*(int *)elem1]; v_unify_t *u2 = &v_listdata[*(int *)elem2];
// sort by material
if (u1->m < u2->m) return -1; if (u1->m > u2->m) return 1;
// sort by last used
if (u1->lastref < u2->lastref) return -1; if (u1->lastref > u2->lastref) return 1;
return 0; }
int faceCompare( const void *elem1, const void *elem2 ) { int i1 = *(int *)elem1; int i2 = *(int *)elem2;
// sort by material
if (g_face[i1].material < g_face[i2].material) return -1; if (g_face[i1].material > g_face[i2].material) return 1;
// sort by original usage
if (i1 < i2) return -1; if (i1 > i2) return 1;
return 0; }
#define SMALL_FLOAT 1e-12
// NOTE: This routine was taken (and modified) from NVidia's BlinnReflection demo
// Creates basis vectors, based on a vertex and index list.
// See the NVidia white paper 'GDC2K PerPixel Lighting' for a description
// of how this computation works
static void CalcTriangleTangentSpace( s_source_t *pSrc, int v1, int v2, int v3, Vector &sVect, Vector &tVect ) { /*
static bool firstTime = true; static FILE *fp = NULL; if( firstTime ) { firstTime = false; fp = fopen( "crap.out", "w" ); } */ /* Compute the partial derivatives of X, Y, and Z with respect to S and T. */ Vector2D t0( pSrc->texcoord[v1][0], pSrc->texcoord[v1][1] ); Vector2D t1( pSrc->texcoord[v2][0], pSrc->texcoord[v2][1] ); Vector2D t2( pSrc->texcoord[v3][0], pSrc->texcoord[v3][1] ); Vector p0( pSrc->vertex[v1][0], pSrc->vertex[v1][1], pSrc->vertex[v1][2] ); Vector p1( pSrc->vertex[v2][0], pSrc->vertex[v2][1], pSrc->vertex[v2][2] ); Vector p2( pSrc->vertex[v3][0], pSrc->vertex[v3][1], pSrc->vertex[v3][2] );
sVect.Init( 0.0f, 0.0f, 0.0f ); tVect.Init( 0.0f, 0.0f, 0.0f );
// x, s, t
Vector edge01 = Vector( p1.x - p0.x, t1.x - t0.x, t1.y - t0.y ); Vector edge02 = Vector( p2.x - p0.x, t2.x - t0.x, t2.y - t0.y );
Vector cross; CrossProduct( edge01, edge02, cross ); if( fabs( cross.x ) > SMALL_FLOAT ) { sVect.x += -cross.y / cross.x; tVect.x += -cross.z / cross.x; }
// y, s, t
edge01 = Vector( p1.y - p0.y, t1.x - t0.x, t1.y - t0.y ); edge02 = Vector( p2.y - p0.y, t2.x - t0.x, t2.y - t0.y );
CrossProduct( edge01, edge02, cross ); if( fabs( cross.x ) > SMALL_FLOAT ) { sVect.y += -cross.y / cross.x; tVect.y += -cross.z / cross.x; } // z, s, t
edge01 = Vector( p1.z - p0.z, t1.x - t0.x, t1.y - t0.y ); edge02 = Vector( p2.z - p0.z, t2.x - t0.x, t2.y - t0.y );
CrossProduct( edge01, edge02, cross ); if( fabs( cross.x ) > SMALL_FLOAT ) { sVect.z += -cross.y / cross.x; tVect.z += -cross.z / cross.x; }
// Normalize sVect and tVect
VectorNormalize( sVect ); VectorNormalize( tVect );
/*
// Calculate flat normal
Vector flatNormal; edge01 = p1 - p0; edge02 = p2 - p0; CrossProduct( edge02, edge01, flatNormal ); VectorNormalize( flatNormal ); // Get the average position
Vector avgPos = ( p0 + p1 + p2 ) / 3.0f;
// Draw the svect
Vector endS = avgPos + sVect * .2f; fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 1.0 0.0 0.0\n", endS[0], endS[1], endS[2] ); fvprint( 0, fp, "%f %f %f 1.0 0.0 0.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the tvect
Vector endT = avgPos + tVect * .2f; fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 0.0 1.0 0.0\n", endT[0], endT[1], endT[2] ); fvprint( 0, fp, "%f %f %f 0.0 1.0 0.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the normal
Vector endN = avgPos + flatNormal * .2f; fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 0.0 0.0 1.0\n", endN[0], endN[1], endN[2] ); fvprint( 0, fp, "%f %f %f 0.0 0.0 1.0\n", avgPos[0], avgPos[1], avgPos[2] ); // Draw the wireframe of the triangle in white.
fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p0[0], p0[1], p0[2] ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p1[0], p1[1], p1[2] ); fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p1[0], p1[1], p1[2] ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p2[0], p2[1], p2[2] ); fvprint( 0, fp, "2\n" ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p2[0], p2[1], p2[2] ); fvprint( 0, fp, "%f %f %f 1.0 1.0 1.0\n", p0[0], p0[1], p0[2] );
// Draw a slightly shrunken version of the geometry to hide surfaces
Vector tmp0 = p0 - flatNormal * .1f; Vector tmp1 = p1 - flatNormal * .1f; Vector tmp2 = p2 - flatNormal * .1f; fvprint( 0, fp, "3\n" ); fvprint( 0, fp, "%f %f %f 0.1 0.1 0.1\n", tmp0[0], tmp0[1], tmp0[2] ); fvprint( 0, fp, "%f %f %f 0.1 0.1 0.1\n", tmp1[0], tmp1[1], tmp1[2] ); fvprint( 0, fp, "%f %f %f 0.1 0.1 0.1\n", tmp2[0], tmp2[1], tmp2[2] ); fflush( fp ); */ }
typedef CUtlVector<int> CIntVector;
void CalcModelTangentSpaces( s_source_t *pSrc ) { // Build a map from vertex to a list of triangles that share the vert.
int meshID; for( meshID = 0; meshID < pSrc->nummeshes; meshID++ ) { s_mesh_t *pMesh = &pSrc->mesh[pSrc->meshindex[meshID]]; CUtlVector<CIntVector> vertToTriMap; vertToTriMap.AddMultipleToTail( pMesh->numvertices ); int triID; for( triID = 0; triID < pMesh->numfaces; triID++ ) { s_face_t *pFace = &pSrc->face[triID + pMesh->faceoffset]; vertToTriMap[pFace->a].AddToTail( triID ); vertToTriMap[pFace->b].AddToTail( triID ); vertToTriMap[pFace->c].AddToTail( triID ); }
// Calculate the tangent space for each triangle.
CUtlVector<Vector> triSVect; CUtlVector<Vector> triTVect; triSVect.AddMultipleToTail( pMesh->numfaces ); triTVect.AddMultipleToTail( pMesh->numfaces ); for( triID = 0; triID < pMesh->numfaces; triID++ ) { s_face_t *pFace = &pSrc->face[triID + pMesh->faceoffset]; CalcTriangleTangentSpace( pSrc, pMesh->vertexoffset + pFace->a, pMesh->vertexoffset + pFace->b, pMesh->vertexoffset + pFace->c, triSVect[triID], triTVect[triID] ); }
// calculate an average tangent space for each vertex.
int vertID; for( vertID = 0; vertID < pMesh->numvertices; vertID++ ) { const Vector &normal = pSrc->normal[vertID+pMesh->vertexoffset]; Vector4D &finalSVect = pSrc->tangentS[vertID+pMesh->vertexoffset]; Vector sVect, tVect;
sVect.Init( 0.0f, 0.0f, 0.0f ); tVect.Init( 0.0f, 0.0f, 0.0f ); for( triID = 0; triID < vertToTriMap[vertID].Size(); triID++ ) { sVect += triSVect[vertToTriMap[vertID][triID]]; tVect += triTVect[vertToTriMap[vertID][triID]]; }
// In the case of zbrush, everything needs to be treated as smooth.
if( g_bZBrush ) { int vertID2; Vector vertPos1( pSrc->vertex[vertID][0], pSrc->vertex[vertID][1], pSrc->vertex[vertID][2] ); for( vertID2 = 0; vertID2 < pMesh->numvertices; vertID2++ ) { if( vertID2 == vertID ) { continue; } Vector vertPos2( pSrc->vertex[vertID2][0], pSrc->vertex[vertID2][1], pSrc->vertex[vertID2][2] ); if( vertPos1 == vertPos2 ) { int triID2; for( triID2 = 0; triID2 < vertToTriMap[vertID2].Size(); triID2++ ) { sVect += triSVect[vertToTriMap[vertID2][triID2]]; tVect += triTVect[vertToTriMap[vertID2][triID2]]; } } } }
// make an orthonormal system.
// need to check if we are left or right handed.
Vector tmpVect; CrossProduct( sVect, tVect, tmpVect ); bool leftHanded = DotProduct( tmpVect, normal ) < 0.0f; if( !leftHanded ) { CrossProduct( normal, sVect, tVect ); CrossProduct( tVect, normal, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = 1.0f; } else { CrossProduct( sVect, normal, tVect ); CrossProduct( normal, tVect, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = -1.0f; } } } }
void BuildIndividualMeshes( s_source_t *psource ) { int i, j, k; // sort new vertices by materials, last used
static int v_listsort[MAXSTUDIOVERTS]; // map desired order to vlist entry
static int v_ilistsort[MAXSTUDIOVERTS]; // map vlist entry to desired order
for (i = 0; i < numvlist; i++) { v_listsort[i] = i; } qsort( v_listsort, numvlist, sizeof( int ), vlistCompare ); for (i = 0; i < numvlist; i++) { v_ilistsort[v_listsort[i]] = i; }
// allocate memory
psource->numvertices = numvlist; psource->localBoneweight = (s_boneweight_t *)kalloc( psource->numvertices, sizeof( s_boneweight_t ) ); psource->globalBoneweight = NULL; psource->vertexInfo = (s_vertexinfo_t *)kalloc( psource->numvertices, sizeof( s_vertexinfo_t ) ); psource->vertex = new Vector[psource->numvertices]; psource->normal = new Vector[psource->numvertices]; psource->tangentS = new Vector4D[psource->numvertices]; psource->texcoord = (Vector2D *)kalloc( psource->numvertices, sizeof( Vector2D ) );
// create arrays of unique vertexes, normals, texcoords.
for (i = 0; i < psource->numvertices; i++) { j = v_listsort[i];
VectorCopy( g_vertex[v_listdata[j].v], psource->vertex[i] ); VectorCopy( g_normal[v_listdata[j].n], psource->normal[i] ); Vector2Copy( g_texcoord[v_listdata[j].t], psource->texcoord[i] );
psource->localBoneweight[i].numbones = g_bone[v_listdata[j].v].numbones; int k; for( k = 0; k < MAXSTUDIOBONEWEIGHTS; k++ ) { psource->localBoneweight[i].bone[k] = g_bone[v_listdata[j].v].bone[k]; psource->localBoneweight[i].weight[k] = g_bone[v_listdata[j].v].weight[k]; }
// store a bunch of other info
psource->vertexInfo[i].material = v_listdata[j].m;
psource->vertexInfo[i].firstref = v_listdata[j].firstref; psource->vertexInfo[i].lastref = v_listdata[j].lastref; // vprint( 0, "%4d : %2d : %6.2f %6.2f %6.2f\n", i, psource->boneweight[i].bone[0], psource->vertex[i][0], psource->vertex[i][1], psource->vertex[i][2] );
}
// sort faces by materials, last used.
static int facesort[MAXSTUDIOTRIANGLES]; // map desired order to src_face entry
static int ifacesort[MAXSTUDIOTRIANGLES]; // map src_face entry to desired order
for (i = 0; i < g_numfaces; i++) { facesort[i] = i; } qsort( facesort, g_numfaces, sizeof( int ), faceCompare ); for (i = 0; i < g_numfaces; i++) { ifacesort[facesort[i]] = i; }
psource->numfaces = g_numfaces; // find first occurance for each material
for (k = 0; k < MAXSTUDIOSKINS; k++) { psource->mesh[k].numvertices = 0; psource->mesh[k].vertexoffset = psource->numvertices;
psource->mesh[k].numfaces = 0; psource->mesh[k].faceoffset = g_numfaces; }
// find first and count of indices per material
for (i = 0; i < psource->numvertices; i++) { k = psource->vertexInfo[i].material; psource->mesh[k].numvertices++; if (psource->mesh[k].vertexoffset > i) psource->mesh[k].vertexoffset = i; }
// find first and count of faces per material
for (i = 0; i < psource->numfaces; i++) { k = g_face[facesort[i]].material;
psource->mesh[k].numfaces++; if (psource->mesh[k].faceoffset > i) psource->mesh[k].faceoffset = i; }
/*
for (k = 0; k < MAXSTUDIOSKINS; k++) { vprint( 0, "%d : %d:%d %d:%d\n", k, psource->mesh[k].numvertices, psource->mesh[k].vertexoffset, psource->mesh[k].numfaces, psource->mesh[k].faceoffset ); } */
// create remapped faces
psource->face = (s_face_t *)kalloc( psource->numfaces, sizeof( s_face_t )); for (k = 0; k < MAXSTUDIOSKINS; k++) { if (psource->mesh[k].numfaces) { psource->meshindex[psource->nummeshes] = k;
for (i = psource->mesh[k].faceoffset; i < psource->mesh[k].numfaces + psource->mesh[k].faceoffset; i++) { j = facesort[i];
psource->face[i].a = v_ilistsort[g_src_uface[j].a] - psource->mesh[k].vertexoffset; psource->face[i].b = v_ilistsort[g_src_uface[j].b] - psource->mesh[k].vertexoffset; psource->face[i].c = v_ilistsort[g_src_uface[j].c] - psource->mesh[k].vertexoffset; Assert( ((psource->face[i].a & 0xF0000000) == 0) && ((psource->face[i].b & 0xF0000000) == 0) && ((psource->face[i].c & 0xF0000000) == 0) ); // vprint( 0, "%3d : %4d %4d %4d\n", i, psource->face[i].a, psource->face[i].b, psource->face[i].c );
}
psource->nummeshes++; } }
CalcModelTangentSpaces( psource ); }
void Grab_Triangles( s_source_t *psource ) { int i; Vector vmin, vmax;
vmin[0] = vmin[1] = vmin[2] = 99999; vmax[0] = vmax[1] = vmax[2] = -99999;
g_numfaces = 0; numvlist = 0; //
// load the base triangles
//
int texture; int material; char texturename[64];
while (1) { if (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) == NULL) break;
g_iLinecount++;
// check for end
if (IsEnd( g_szLine )) break;
// Look for extra junk that we may want to avoid...
int nLineLength = strlen( g_szLine ); if (nLineLength >= 64) { MdlWarning("Unexpected data at line %d, (need a texture name) ignoring...\n", g_iLinecount ); continue; }
// strip off trailing smag
V_strcpy_safe( texturename, g_szLine ); for (i = strlen( texturename ) - 1; i >= 0 && ! isgraph( texturename[i] ); i--) { } texturename[i + 1] = '\0';
// funky texture overrides
for (i = 0; i < numrep; i++) { if (sourcetexture[i][0] == '\0') { strcpy( texturename, defaulttexture[i] ); break; } if (stricmp( texturename, sourcetexture[i]) == 0) { strcpy( texturename, defaulttexture[i] ); break; } }
if (texturename[0] == '\0') { // weird source problem, skip them
fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); g_iLinecount += 3; continue; }
if (stricmp( texturename, "null.bmp") == 0 || stricmp( texturename, "null.tga") == 0) { // skip all faces with the null texture on them.
fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); fgets( g_szLine, sizeof( g_szLine ), g_fpInput ); g_iLinecount += 3; continue; }
texture = lookup_texture( texturename, sizeof( texturename ) ); psource->texmap[texture] = texture; // hack, make it 1:1
material = use_texture_as_material( texture );
s_face_t f; ParseFaceData( psource, material, &f ); g_src_uface[g_numfaces] = f; g_face[g_numfaces].material = material; g_numfaces++; }
BuildIndividualMeshes( psource ); }
//--------------------------------------------------------------------
// Load a SMD file
//--------------------------------------------------------------------
int Load_SMD ( s_source_t *psource ) { char cmd[1024]; int option;
// Open file
if (!OpenGlobalFile( psource->filename )) return 0;
// verbose
if( !g_quiet ) { printf ("SMD MODEL %s\n", psource->filename); }
//March through lines
g_iLinecount = 0; while (fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) != NULL) { g_iLinecount++; int numRead = sscanf( g_szLine, "%s %d", cmd, &option );
// Blank line
if ((numRead == EOF) || (numRead == 0)) continue;
if (strcmp( cmd, "version" ) == 0) { if (option != 1) { MdlError("bad version\n"); } } // Get hierarchy?
else if (strcmp( cmd, "nodes" ) == 0) { psource->numbones = Grab_Nodes( psource->localBone ); } // Get animation??
else if (strcmp( cmd, "skeleton" ) == 0) { Grab_Animation( psource ); } // Geo?
else if (strcmp( cmd, "triangles" ) == 0) { Grab_Triangles( psource ); } // Geo animation
else if (strcmp( cmd, "vertexanimation" ) == 0) { Grab_Vertexanimation( psource ); } else { MdlWarning("unknown studio command\n" ); } } fclose( g_fpInput );
is_v1support = true;
return 1; }
//-----------------------------------------------------------------------------
// Checks to see if the model source was already loaded
//-----------------------------------------------------------------------------
static s_source_t *FindCachedSource( char const* name, char const* xext ) { int i;
if( xext[0] ) { // we know what extension is necessary. . look for it.
sprintf (g_szFilename, "%s%s.%s", cddir[numdirs], name, xext ); for (i = 0; i < g_numsources; i++) { if (stricmp( g_szFilename, g_source[i]->filename ) == 0) return g_source[i]; } } else { // we don't know what extension to use, so look for all of 'em.
sprintf (g_szFilename, "%s%s.vrm", cddir[numdirs], name ); for (i = 0; i < g_numsources; i++) { if (stricmp( g_szFilename, g_source[i]->filename ) == 0) return g_source[i]; } sprintf (g_szFilename, "%s%s.smd", cddir[numdirs], name ); for (i = 0; i < g_numsources; i++) { if (stricmp( g_szFilename, g_source[i]->filename ) == 0) return g_source[i]; } /*
sprintf (g_szFilename, "%s%s.vta", cddir[numdirs], name ); for (i = 0; i < g_numsources; i++) { if (stricmp( g_szFilename, g_source[i]->filename ) == 0) return g_source[i]; } */ }
// Not found
return 0; }
static void FlipFacing( s_source_t *pSrc ) { unsigned short tmp;
int i, j; for( i = 0; i < pSrc->nummeshes; i++ ) { s_mesh_t *pMesh = &pSrc->mesh[i]; for( j = 0; j < pMesh->numfaces; j++ ) { s_face_t &f = pSrc->face[pMesh->faceoffset + j]; tmp = f.b; f.b = f.c; f.c = tmp; } } }
//-----------------------------------------------------------------------------
// Loads an animation source
//-----------------------------------------------------------------------------
s_source_t *Load_Source( char const *name, const char *ext, bool reverse, bool isActiveModel ) { // Sanity check number of source files
if ( g_numsources >= MAXSTUDIOSEQUENCES ) MdlError( "Load_Source( %s ) - overflowed g_numsources.", name );
// Sanity check file and init
Assert(name); int namelen = strlen(name) + 1; char* pTempName = (char*)_alloca( namelen ); char xext[32]; int result = false;
// Local copy of filename
strcpy( pTempName, name ); // Sanity check file extension?
Q_ExtractFileExtension( pTempName, xext, sizeof( xext ) ); if (xext[0] == '\0') { V_strcpy_safe( xext, ext ); } else { Q_StripExtension( pTempName, pTempName, namelen ); }
// Cached source, ie: already loaded model, legacy
// s_source_t* pSource = FindCachedSource( pTempName, xext );
// if (pSource)
// {
// if (isActiveModel)
// pSource->isActiveModel = true;
// return pSource;
// }
// allocate space and whatnot
g_source[g_numsources] = (s_source_t *)kalloc( 1, sizeof( s_source_t ) ); V_strcpy_safe( g_source[g_numsources]->filename, g_szFilename );
// legacy stuff
if (isActiveModel) { g_source[g_numsources]->isActiveModel = true; }
// more ext sanity check
if ( ( !result && xext[0] == '\0' ) || stricmp( xext, "smd" ) == 0) { Q_snprintf( g_szFilename, sizeof(g_szFilename), "%s%s.smd", cddir[numdirs], pTempName ); V_strcpy_safe( g_source[g_numsources]->filename, g_szFilename ); // Import part, load smd file
result = Load_SMD( g_source[g_numsources] ); }
/*
if ( ( !result && xext[0] == '\0' ) || stricmp( xext, "dmx" ) == 0) { Q_snprintf( g_szFilename, sizeof(g_szFilename), "%s%s.dmx", cddir[numdirs], pTempName ); V_strcpy_safe( g_source[g_numsources]->filename, g_szFilename );
// Import part, load smd file
result = Load_DMX( g_source[g_numsources] ); } */
// Oops
if ( !result) { MdlError( "could not load file '%s'\n", g_source[g_numsources]->filename ); }
// bump up number of sources
g_numsources++; if( reverse ) { FlipFacing( g_source[g_numsources-1] ); } return g_source[g_numsources-1]; }
void SaveNodes( s_source_t *source, CUtlBuffer& buf ) { if ( source->numbones <= 0 ) return;
buf.Printf( "nodes\n" );
for ( int i = 0; i < source->numbones; ++i ) { s_node_t *bone = &source->localBone[ i ];
buf.Printf( "%d \"%s\" %d\n", i, bone->name, bone->parent ); }
buf.Printf( "end\n" ); }
// FIXME: since we don't us a .qc, we could have problems with scaling, etc.???
void descale_vertex( Vector &org ) { float invscale = 1.0f / g_currentscale;
org[0] = org[0] * invscale; org[1] = org[1] * invscale; org[2] = org[2] * invscale; }
void SaveAnimation( s_source_t *source, CUtlBuffer& buf ) { if ( source->numbones <= 0 ) return;
buf.Printf( "skeleton\n" );
for ( int frame = 0; frame < source->numframes; ++frame ) { buf.Printf( "time %i\n", frame + source->startframe );
for ( int i = 0; i < source->numbones; ++i ) { s_bone_t *prev = NULL; if ( frame > 0 ) { if ( source->rawanim[ frame - 1 ] ) { prev = &source->rawanim[ frame - 1 ][ i ]; } }
Vector pos = source->rawanim[ frame ][ i ].pos; descale_vertex( pos ); RadianEuler rot = source->rawanim[ frame ][ i ].rot;
// If this is enabled, then we delta this pos vs the prev frame and don't write out a sample if it's the same value...
#if 0
if ( prev ) { Vector ppos = source->rawanim[ frame -1 ][ i ].pos; descale_vertex( pos ); RadianEuler prot = source->rawanim[ frame -1 ][ i ].rot;
// Only output it if there's a delta
if ( ( ppos != pos ) || Q_memcmp( &prot, &rot, sizeof( prot ) ) ) { buf.Printf ( "%d %f %f %f %f %f %f\n", i, // bone index
pos[ 0 ], pos[ 1 ], pos[ 2 ], rot[ 0 ], rot[ 1 ], rot[ 2 ] ); } } else #endif
{ buf.Printf ( "%d %f %f %f %f %f %f\n", i, // bone index
pos[ 0 ], pos[ 1 ], pos[ 2 ], rot[ 0 ], rot[ 1 ], rot[ 2 ] ); } } }
buf.Printf( "end\n" ); }
void Save_SMD( char const *filename, s_source_t *source ) { // Text buffer
CUtlBuffer buf( 0, 0, CUtlBuffer::TEXT_BUFFER );
buf.Printf( "version 1\n" );
SaveNodes( source, buf ); SaveAnimation( source, buf );
FileHandle_t fh = g_pFileSystem->Open( filename, "wb" ); if ( FILESYSTEM_INVALID_HANDLE != fh ) { g_pFileSystem->Write( buf.Base(), buf.TellPut(), fh ); g_pFileSystem->Close( fh ); } }
//--------------------------------------------------------------------
// mikes right handed row based linear algebra
//--------------------------------------------------------------------
struct M_matrix4x4_t { M_matrix4x4_t() { m_flMatVal[0][0] = 1.0; m_flMatVal[0][1] = 0.0; m_flMatVal[0][2] = 0.0; m_flMatVal[0][3] = 0.0; m_flMatVal[1][0] = 0.0; m_flMatVal[1][1] = 1.0; m_flMatVal[1][2] = 0.0; m_flMatVal[1][3] = 0.0; m_flMatVal[2][0] = 0.0; m_flMatVal[2][1] = 0.0; m_flMatVal[2][2] = 1.0; m_flMatVal[2][3] = 0.0; m_flMatVal[3][0] = 0.0; m_flMatVal[3][1] = 0.0; m_flMatVal[3][2] = 0.0; m_flMatVal[3][3] = 1.0;
} // M_matrix3x4_t(
// float m00, float m01, float m02,
// float m10, float m11, float m12,
// float m20, float m21, float m22,
// float m30, float m31, float m32)
// {
// m_flMatVal[0][0] = m00; m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02;
// m_flMatVal[1][0] = m10; m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12;
// m_flMatVal[2][0] = m20; m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22;
// m_flMatVal[3][0] = m30; m_flMatVal[3][1] = m31; m_flMatVal[3][2] = m32;
// }
float *operator[]( int i ) { Assert(( i >= 0 ) && ( i < 4 )); return m_flMatVal[i]; } const float *operator[]( int i ) const { Assert(( i >= 0 ) && ( i < 4 )); return m_flMatVal[i]; } float *Base() { return &m_flMatVal[0][0]; } const float *Base() const { return &m_flMatVal[0][0]; }
float m_flMatVal[4][4]; };
void M_MatrixAngles( const M_matrix4x4_t& matrix, RadianEuler &angles, Vector &position) { float cX, sX, cY, sY, cZ, sZ;
sY = -matrix[0][2]; cY = sqrtf(1.0-(sY*sY));
if (cY != 0.0) { sX = matrix[1][2]; cX = matrix[2][2]; sZ = matrix[0][1]; cZ = matrix[0][0]; } else { sX = -matrix[2][1]; cX = matrix[1][1]; sZ = 0.0; cZ = 1.0; }
angles[0] = atan2f( sX, cX ); angles[2] = atan2f( sZ, cZ );
sX = sinf(angles[0]); cX = cosf(angles[0]);
if (sX > cX) cY = matrix[1][2] / sX; else cY = matrix[2][2] / cX;
angles[1] = atan2f( sY, cY );
position.x = matrix[3][0]; position.y = matrix[3][1]; position.z = matrix[3][2];
}
// void M_MatrixAngles( const M_matrix4x4_t& matrix, RadianEuler &angles, Vector &position)
// {
// float cX, sX, cY, sY, cZ, sZ;
// sY = matrix[2][0];
// cY = sqrtf(1.0-(sY*sY));
// if (cY != 0.0)
// {
// sX = -matrix[2][1];
// cX = matrix[2][2];
// sZ = -matrix[1][0];
// cZ = matrix[0][0];
// }
// else
// {
// sX = matrix[0][1];
// cX = matrix[1][1];
// sZ = 0.0;
// cZ = 1.0;
// }
// angles[0] = atan2f( sX, cX );
// angles[2] = atan2f( sZ, cZ );
// sX = sinf(angles[0]);
// cX = cosf(angles[0]);
// if (sX > cX)
// cY = -matrix[2][1] / sX;
// else
// cY = matrix[2][2] / cX;
// angles[1] = atan2f( sY, cY );
// angles[0] = angles[0];
// angles[1] = angles[1];
// angles[2] = angles[2];
// position.x = matrix[3][0];
// position.y = matrix[3][1];
// position.z = matrix[3][2];
// }
void M_MatrixCopy( const M_matrix4x4_t& in, M_matrix4x4_t& out ) { // Assert( s_bMathlibInitialized );
memcpy( out.Base(), in.Base(), sizeof( float ) * 4 * 4 ); } void M_RotateZMatrix(float radian, M_matrix4x4_t &resultMatrix) {
resultMatrix[0][0] = cosf(radian); resultMatrix[0][1] = sin(radian); resultMatrix[0][2] = 0.0; resultMatrix[1][0] =-sin(radian); resultMatrix[1][1] = cos(radian); resultMatrix[1][2] = 0.0; resultMatrix[2][0] = 0.0; resultMatrix[2][1] = 0.0; resultMatrix[2][2] = 1.0; }
// !!! THIS SHIT DOESN'T WORK!! WHY? HAS I EVER?
void M_AngleAboutAxis(Vector &axis, float radianAngle, M_matrix4x4_t &result) { float c = cosf(radianAngle); float s = sinf(radianAngle); float t = 1.0 - c; // axis.normalize();
result[0][0] = t * axis[0] * axis[0] + c; result[0][1] = t * axis[0] * axis[1] - s * axis[2]; result[0][2] = t * axis[0] * axis[2] + s * axis[1]; result[1][0] = t * axis[0] * axis[1] + s * axis[2]; result[1][1] = t * axis[1] * axis[1] + c; result[1][2] = t * axis[1] * axis[2] - s * axis[0]; result[2][0] = t * axis[1] * axis[2] - s; result[2][1] = t * axis[1] * axis[2] + s * axis[1]; result[2][2] = t * axis[2] * axis[2] + c * axis[0];
}
void M_MatrixInvert( const M_matrix4x4_t& in, M_matrix4x4_t& out ) { // Assert( s_bMathlibInitialized );
if ( &in == &out ) { M_matrix4x4_t in2; M_MatrixCopy( in, in2 ); M_MatrixInvert( in2, out ); return; } float tmp[3];
// I'm guessing this only works on a 3x4 orthonormal matrix
out[0][0] = in[0][0]; out[1][0] = in[0][1]; out[2][0] = in[0][2];
out[0][1] = in[1][0]; out[1][1] = in[1][1]; out[2][1] = in[1][2];
out[0][2] = in[2][0]; out[1][2] = in[2][1]; out[2][2] = in[2][2];
tmp[0] = in[3][0]; tmp[1] = in[3][1]; tmp[2] = in[3][2];
float v1[3], v2[3], v3[3]; v1[0] = out[0][0]; v1[1] = out[1][0]; v1[2] = out[2][0]; v2[0] = out[0][1]; v2[1] = out[1][1]; v2[2] = out[2][1]; v3[0] = out[0][2]; v3[1] = out[1][2]; v3[2] = out[2][2];
out[3][0] = -DotProduct( tmp, v1 ); out[3][1] = -DotProduct( tmp, v2 ); out[3][2] = -DotProduct( tmp, v3 );
// Trivial case
// if (IS_IDENTITY(matrix))
// return SbMatrix::identity();
// // Affine case...
// // SbMatrix affineAnswer;
// // if ( affine_inverse( SbMatrix(matrix), affineAnswer ) )
// // return affineAnswer;
// int index[4];
// float d, invmat[4][4], temp;
// SbMatrix inverse = *this;
// if(inverse.LUDecomposition(index, d)) {
// invmat[0][0] = 1.0;
// invmat[0][1] = 0.0;
// invmat[0][2] = 0.0;
// invmat[0][3] = 0.0;
// inverse.LUBackSubstitution(index, invmat[0]);
// invmat[1][0] = 0.0;
// invmat[1][1] = 1.0;
// invmat[1][2] = 0.0;
// invmat[1][3] = 0.0;
// inverse.LUBackSubstitution(index, invmat[1]);
// invmat[2][0] = 0.0;
// invmat[2][1] = 0.0;
// invmat[2][2] = 1.0;
// invmat[2][3] = 0.0;
// inverse.LUBackSubstitution(index, invmat[2]);
// invmat[3][0] = 0.0;
// invmat[3][1] = 0.0;
// invmat[3][2] = 0.0;
// invmat[3][3] = 1.0;
// inverse.LUBackSubstitution(index, invmat[3]);
// #define SWAP(i,j) \ // temp = invmat[i][j]; \ // invmat[i][j] = invmat[j][i]; \ // invmat[j][i] = temp;
// SWAP(1,0);
// SWAP(2,0);
// SWAP(2,1);
// SWAP(3,0);
// SWAP(3,1);
// SWAP(3,2);
// #undef SWAP
// }
}
/*
================ M_ConcatTransforms ================ */ void M_ConcatTransforms (const M_matrix4x4_t &in1, const M_matrix4x4_t &in2, M_matrix4x4_t &out) { // Assert( s_bMathlibInitialized );
// if ( &in1 == &out )
// {
// matrix3x4_t in1b;
// MatrixCopy( in1, in1b );
// ConcatTransforms( in1b, in2, out );
// return;
// }
// if ( &in2 == &out )
// {
// matrix3x4_t in2b;
// MatrixCopy( in2, in2b );
// ConcatTransforms( in1, in2b, out );
// return;
// }
#define MULT(i,j) (in1[i][0]*in2[0][j] + \
in1[i][1]*in2[1][j] + \ in1[i][2]*in2[2][j] + \ in1[i][3]*in2[3][j])
out[0][0] = MULT(0,0); out[0][1] = MULT(0,1); out[0][2] = MULT(0,2); out[0][3] = MULT(0,3); out[1][0] = MULT(1,0); out[1][1] = MULT(1,1); out[1][2] = MULT(1,2); out[1][3] = MULT(1,3); out[2][0] = MULT(2,0); out[2][1] = MULT(2,1); out[2][2] = MULT(2,2); out[2][3] = MULT(2,3); out[3][0] = MULT(3,0); out[3][1] = MULT(3,1); out[3][2] = MULT(3,2); out[3][3] = MULT(3,3);
#undef MULT
}
void M_AngleMatrix( RadianEuler const &angles, const Vector &position, M_matrix4x4_t& matrix ) { // Assert( s_bMathlibInitialized );
float sx, sy, sz, cx, cy, cz;
sx = sinf(angles[0]); cx = cosf(angles[0]); sy = sinf(angles[1]); cy = cosf(angles[1]); sz = sinf(angles[2]); cz = cosf(angles[2]); // SinCos( angles[0], &sx, &cx ); // 2
// SinCos( angles[1], &sy, &cy ); // 1
// SinCos( angles[2], &sz, &cz ); // 0
M_matrix4x4_t mx, my, mz, temp1; // rotation about x
mx[1][1] = cx; mx[1][2] = sx; mx[2][1] = -sx; mx[2][2] = cx; // rotation about y
my[0][0] = cy; my[0][2] = -sy; my[2][0] = sy; my[2][2] = cy; // rotation about z
mz[0][0] = cz; mz[0][1] = sz; mz[1][0] = -sz; mz[1][1] = cz;
// z * y * x
M_ConcatTransforms(mx, my, temp1); M_ConcatTransforms(temp1, mz, matrix);
// put position in
matrix[3][0] = position.x; matrix[3][1] = position.y; matrix[3][2] = position.z;
}
//-----------------------------------------------------------------------------
// Motion mapper functions
//-----------------------------------------------------------------------------
#define BONEAXIS 0
#define BONEDIR 0
#define BONESIDE 1
#define BONEUP 2
#define WORLDUP 2
#define PRINTMAT(m) \
printf("\n%f %f %f %f\n", m[0][0], m[0][1], m[0][2], m[0][3]); \ printf("%f %f %f %f\n", m[1][0], m[1][1], m[1][2], m[1][3]); \ printf("%f %f %f %f\n", m[2][0], m[2][1], m[2][2], m[2][3]); \ printf("%f %f %f %f\n", m[3][0], m[3][1], m[3][2], m[3][3]);
struct s_planeConstraint_t { char jointNameString[1024]; float floor; int axis; };
struct s_iksolve_t { char jointNameString[1024]; int reverseSolve; float extremityScale; Vector limbRootOffsetScale; int doRelativeLock; char relativeLockNameString[1024]; float relativeLockScale; };
struct s_jointScale_t { char jointNameString[1024]; float scale; }; struct s_template_t { char rootScaleJoint[1024]; float rootScaleAmount; int numIKSolves; s_iksolve_t *ikSolves[128]; int numJointScales; s_jointScale_t *jointScales[128]; int numPlaneConstraints; s_planeConstraint_t *planeConstraints[128]; float toeFloorZ; int doSkeletonScale; float skeletonScale;
};
//-----------------------------------------------------------------------------
// Load a template file into structure
//-----------------------------------------------------------------------------
s_template_t *New_Template() { s_template_t *pTemplate = (s_template_t *)kalloc(1, sizeof(s_template_t)); pTemplate->rootScaleAmount = 1.0; pTemplate->numIKSolves = 0; pTemplate->numJointScales = 0; pTemplate->toeFloorZ = 2.802277; pTemplate->numPlaneConstraints = 0; pTemplate->doSkeletonScale = 0; pTemplate->skeletonScale = 1.0; return pTemplate; } s_iksolve_t *New_IKSolve() { s_iksolve_t *pIKSolve = (s_iksolve_t *)kalloc(1, sizeof(s_iksolve_t)); pIKSolve->reverseSolve = 0; pIKSolve->extremityScale = 1.0; pIKSolve->limbRootOffsetScale[0] = pIKSolve->limbRootOffsetScale[1] = pIKSolve->limbRootOffsetScale[2] = 0.0; pIKSolve->doRelativeLock = 0; pIKSolve->relativeLockScale = 1.0; return pIKSolve; }
s_planeConstraint_t *New_planeConstraint(float floor) { s_planeConstraint_t *pConstraint = (s_planeConstraint_t *)kalloc(1, sizeof(s_planeConstraint_t)); pConstraint->floor = floor; pConstraint->axis = 2; return pConstraint; }
void Set_DefaultTemplate(s_template_t *pTemplate) { pTemplate->numJointScales = 0; strcpy(pTemplate->rootScaleJoint, "ValveBiped.Bip01_L_Foot"); pTemplate->rootScaleAmount = 1.0;
pTemplate->numIKSolves = 4; pTemplate->ikSolves[0] = New_IKSolve(); pTemplate->ikSolves[1] = New_IKSolve(); pTemplate->ikSolves[2] = New_IKSolve(); pTemplate->ikSolves[3] = New_IKSolve();
pTemplate->numPlaneConstraints = 2; pTemplate->planeConstraints[0] = New_planeConstraint(pTemplate->toeFloorZ); strcpy(pTemplate->planeConstraints[0]->jointNameString, "ValveBiped.Bip01_L_Toe0"); pTemplate->planeConstraints[1] = New_planeConstraint(pTemplate->toeFloorZ); strcpy(pTemplate->planeConstraints[1]->jointNameString, "ValveBiped.Bip01_R_Toe0");
strcpy(pTemplate->ikSolves[0]->jointNameString, "ValveBiped.Bip01_L_Foot"); pTemplate->ikSolves[0]->reverseSolve = 0; pTemplate->ikSolves[0]->extremityScale = 1.0; pTemplate->ikSolves[0]->limbRootOffsetScale[0] = 1.0; pTemplate->ikSolves[0]->limbRootOffsetScale[1] = 1.0; pTemplate->ikSolves[0]->limbRootOffsetScale[2] = 0.0;
strcpy(pTemplate->ikSolves[1]->jointNameString, "ValveBiped.Bip01_R_Foot"); pTemplate->ikSolves[1]->reverseSolve = 0; pTemplate->ikSolves[1]->extremityScale = 1.0; pTemplate->ikSolves[1]->limbRootOffsetScale[0] = 1.0; pTemplate->ikSolves[1]->limbRootOffsetScale[1] = 1.0; pTemplate->ikSolves[1]->limbRootOffsetScale[2] = 0.0;
strcpy(pTemplate->ikSolves[2]->jointNameString, "ValveBiped.Bip01_R_Hand"); pTemplate->ikSolves[2]->reverseSolve = 1; pTemplate->ikSolves[2]->extremityScale = 1.0; pTemplate->ikSolves[2]->limbRootOffsetScale[0] = 0.0; pTemplate->ikSolves[2]->limbRootOffsetScale[1] = 0.0; pTemplate->ikSolves[2]->limbRootOffsetScale[2] = 1.0;
strcpy(pTemplate->ikSolves[3]->jointNameString, "ValveBiped.Bip01_L_Hand"); pTemplate->ikSolves[3]->reverseSolve = 1; pTemplate->ikSolves[3]->extremityScale = 1.0; pTemplate->ikSolves[3]->limbRootOffsetScale[0] = 0.0; pTemplate->ikSolves[3]->limbRootOffsetScale[1] = 0.0; pTemplate->ikSolves[3]->limbRootOffsetScale[2] = 1.0; // pTemplate->ikSolves[3]->doRelativeLock = 1;
// strcpy(pTemplate->ikSolves[3]->relativeLockNameString, "ValveBiped.Bip01_R_Hand");
// pTemplate->ikSolves[3]->relativeLockScale = 1.0;
}
void split(char *str, char *sep, char **sp) { char *r = strtok(str, sep); while(r != NULL) { *sp = r; sp++; r = strtok(NULL, sep); } *sp = NULL; }
int checkCommand(char *str, char *cmd, int numOptions, int numSplit) { if(strcmp(str, cmd) == 0) { if(numOptions <= numSplit) return 1; else { printf("Error: Number or argument mismatch in template file cmd %s, requires %i, found %i\n", cmd, numOptions, numSplit); return 0; } } return 0; }
s_template_t *Load_Template(char *name ) {
// Sanity check file and init
Assert(name);
s_template_t *pTemplate = New_Template();
// Open file
if (!OpenGlobalFile( name )) return 0;
//March through lines
g_iLinecount = 0; while(fgets( g_szLine, sizeof( g_szLine ), g_fpInput ) != NULL) { g_iLinecount++; if(g_szLine[0] == '#') continue; char *endP = strrchr(g_szLine, '\n'); if(endP != NULL) *endP = '\0';
char *sp[128]; char **spp = sp; char sep[] = " "; split(g_szLine, sep, sp); int numSplit = 0; while(*spp != NULL) { spp++; numSplit++; } if(numSplit < 1 || *sp[0] == '\n') continue;
// int numRead = sscanf( g_szLine, "%s %s %s", cmd, &option, &option2 );
// // Blank line
// if ((numRead == EOF) || (numRead == 0))
// continue;
// commands
char *cmd; int numOptions = numSplit - 1; cmd = sp[0]; if(checkCommand(cmd, "twoJointIKSolve", 1, numOptions)) { printf("\nCreating two joint IK solve %s\n", sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves] = New_IKSolve(); strcpy(pTemplate->ikSolves[pTemplate->numIKSolves]->jointNameString, sp[1]); pTemplate->numIKSolves++; } else if(checkCommand(cmd, "oneJointPlaneConstraint", 1, numOptions)) { printf("\nCreating one joint plane constraint %s\n", sp[1]); pTemplate->planeConstraints[pTemplate->numPlaneConstraints] = New_planeConstraint(pTemplate->toeFloorZ); strcpy(pTemplate->planeConstraints[pTemplate->numPlaneConstraints]->jointNameString, sp[1]); pTemplate->numPlaneConstraints++;
} else if(checkCommand(cmd, "reverseSolve", 1, numOptions)) { printf("reverseSolve: %s\n", sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->reverseSolve = atoi(sp[1]); } else if(checkCommand(cmd, "extremityScale", 1, numOptions)) { printf("extremityScale: %s\n", sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->extremityScale = atof(sp[1]); } else if(checkCommand(cmd, "limbRootOffsetScale", 3, numOptions)) { printf("limbRootOffsetScale: %s %s %s\n", sp[1], sp[2], sp[3]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->limbRootOffsetScale[0] = atof(sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->limbRootOffsetScale[1] = atof(sp[2]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->limbRootOffsetScale[2] = atof(sp[3]); } else if(checkCommand(cmd, "toeFloorZ", 1, numOptions)) { printf("toeFloorZ: %s\n", sp[1]); pTemplate->toeFloorZ = atof(sp[1]); } else if(checkCommand(cmd, "relativeLock", 2, numOptions)) { printf("relativeLock: %s\n", sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->doRelativeLock = 1; strcpy(pTemplate->ikSolves[pTemplate->numIKSolves - 1]->relativeLockNameString, sp[1]); pTemplate->ikSolves[pTemplate->numIKSolves - 1]->relativeLockScale = atof(sp[2]);
} else if(checkCommand(cmd, "rootScaleJoint", 1, numOptions)) { printf("\nrootScaleJoint: %s\n", sp[1]); strcpy(pTemplate->rootScaleJoint, sp[1]); } else if(checkCommand(cmd, "rootScaleAmount", 1, numOptions)) { printf("rootScaleAmount: %s\n", sp[1]); pTemplate->rootScaleAmount = atof(sp[1]); } else if(checkCommand(cmd, "jointScale", 2, numOptions)) { printf("\nCreating joint scale %s of %s\n", sp[1], sp[2]); pTemplate->jointScales[pTemplate->numJointScales] = (s_jointScale_t *)kalloc(1, sizeof(s_jointScale_t)); strcpy(pTemplate->jointScales[pTemplate->numJointScales]->jointNameString, sp[1]); pTemplate->jointScales[pTemplate->numJointScales]->scale = atof(sp[2]); pTemplate->numJointScales++; } else if(checkCommand(cmd, "skeletonScale", 2, numOptions)) { printf("\nCreating skeleton scale of %s\n", sp[1]); pTemplate->doSkeletonScale = 1; pTemplate->skeletonScale = atof(sp[1]); } else { MdlWarning("unknown studio command\n" ); } } fclose( g_fpInput ); return pTemplate; }
//-----------------------------------------------------------------------------
// get node index from node string name
//-----------------------------------------------------------------------------
int GetNodeIndex(s_source_t *psource, char *nodeName) { for(int i = 0; i < psource->numbones; i++) { if(strcmp(nodeName, psource->localBone[i].name) == 0) { return i; } } return -1; }
//-----------------------------------------------------------------------------
// get node index from node string name
//-----------------------------------------------------------------------------
void GetNodePath(s_source_t *psource, int startIndex, int endIndex, int *path) { *path = endIndex; s_node_t *nodes; nodes = psource->localBone; while(*path != startIndex) { int parent = nodes[*path].parent; path++; *path = parent; } path++; *path = -1; }
void SumBonePathTranslations(int *indexPath, s_bone_t *boneArray, Vector &resultVector, int rootOffset = 0) {
// walk the path
int *pathPtr = indexPath; // M_matrix4x4_t matrixCum;
// find length of path
int length = 0; while(*pathPtr != -1) { length++; pathPtr++; }
int l = length - (1 + rootOffset);
resultVector[0] = 0.0; resultVector[1] = 0.0; resultVector[2] = 0.0; for(int i = l; i > -1; i--) { s_bone_t *thisBone = boneArray + indexPath[i]; resultVector += thisBone->pos; } }
void CatBonePath(int *indexPath, s_bone_t *boneArray, M_matrix4x4_t &resultMatrix, int rootOffset = 0) {
// walk the path
int *pathPtr = indexPath; // M_matrix4x4_t matrixCum;
// find length of path
int length = 0; while(*pathPtr != -1) { length++; pathPtr++; }
int l = length - (1 + rootOffset);
for(int i = l; i > -1; i--) { s_bone_t *thisBone = boneArray + indexPath[i]; // printf("bone index: %i %i\n", i, indexPath[i]);
// printf("pos: %f %f %f, rot: %f %f %f\n", thisBone->pos.x, thisBone->pos.y, thisBone->pos.z, thisBone->rot.x, thisBone->rot.y, thisBone->rot.z);
M_matrix4x4_t thisMatrix; M_AngleMatrix(thisBone->rot, thisBone->pos, thisMatrix); // PRINTMAT(thisMatrix)
M_matrix4x4_t tempCum; M_MatrixCopy(resultMatrix, tempCum); M_ConcatTransforms(thisMatrix, tempCum, resultMatrix); } // PRINTMAT(matrixCum);
// M_MatrixAngles(matrixCum, resultBone.rot, resultBone.pos);
// printf("pos: %f %f %f, rot: %f %f %f\n", resultBone.pos.x,resultBone.pos.y, resultBone.pos.z, RAD2DEG(resultBone.rot.x),RAD2DEG(resultBone.rot.y),RAD2DEG(resultBone.rot.z));
} // int ConformSources(s_source_t *pSource, s_source_t *pTarget)
// {
// if(pSource->numbones != *pTarget->numbones)
// {
// printf("ERROR: The number of bones in the target file must match the source file.");
// return 1;
// }
// if(pSource->numframes != pTarget->numframes)
// {
// printf("Note: Source and target frame lengths do not match");
// for(int t = 0; t < pTarget->numframes; t++)
// {
// free(pTarget->rawanim[t]);
// }
// pTarget->numframes = pSource->numframes;
// int size = pTarget->numbones * sizeof( s_bone_t );
// for(t = 0; t < pTarget->numframes; t++)
// {
// pTarget->rawanim[t] = (s_bone_t *) kalloc(1, size);
// memcpy((void *) pSource->rawanim[t], (void *) pTarget->rawanim[t], size
// }
// }
// pTarget->startframe = pSource->startframe;
// pTarget->endframe = pSource->endframe;
void ScaleJointsFrame(s_source_t *pSkeleton, s_jointScale_t *jointScale, int t) { int numBones = pSkeleton->numbones;
for(int i = 0; i < numBones; i++) { s_node_t pNode = pSkeleton->localBone[i]; s_bone_t *pSkelBone = &pSkeleton->rawanim[t][i]; if(strcmp(jointScale->jointNameString, pNode.name) == 0) { // printf("Scaling joint %s\n", pNode.name);
pSkelBone->pos = pSkelBone->pos * jointScale->scale; } } } void ScaleJoints(s_source_t *pSkeleton, s_jointScale_t *jointScale) { int numFrames = pSkeleton->numframes; for(int t = 0; t < numFrames; t++) { ScaleJointsFrame(pSkeleton, jointScale, t); } }
void ScaleSkeletonFrame(s_source_t *pSkeleton, float scale, int t) { int numBones = pSkeleton->numbones;
for(int i = 0; i < numBones; i++) { s_bone_t *pSkelBone = &pSkeleton->rawanim[t][i]; pSkelBone->pos = pSkelBone->pos * scale; } } void ScaleSkeleton(s_source_t *pSkeleton, float scale) { int numFrames = pSkeleton->numframes; for(int t = 0; t < numFrames; t++) { ScaleSkeletonFrame(pSkeleton, scale, t); } }
void CombineSkeletonAnimationFrame(s_source_t *pSkeleton, s_source_t *pAnimation, s_bone_t **ppAnim, int t) { int numBones = pAnimation->numbones; int size = numBones * sizeof( s_bone_t ); ppAnim[t] = (s_bone_t *) kalloc(1, size); for(int i = 0; i < numBones; i++) { s_node_t pNode = pAnimation->localBone[i]; s_bone_t pAnimBone = pAnimation->rawanim[t][i]; if(pNode.parent > -1) { if ( i < pSkeleton->numbones ) { s_bone_t pSkelBone = pSkeleton->rawanim[0][i]; ppAnim[t][i].pos = pSkelBone.pos; } else { if ( !g_bGaveMissingBoneWarning ) { g_bGaveMissingBoneWarning = true; Warning( "Warning: Target skeleton has less bones than source animation. Reverting to source data for extra bones.\n" ); } ppAnim[t][i].pos = pAnimBone.pos; } } else { ppAnim[t][i].pos = pAnimBone.pos; } ppAnim[t][i].rot = pAnimBone.rot; } } void CombineSkeletonAnimation(s_source_t *pSkeleton, s_source_t *pAnimation, s_bone_t **ppAnim) { int numFrames = pAnimation->numframes; for(int t = 0; t < numFrames; t++) { CombineSkeletonAnimationFrame(pSkeleton, pAnimation, ppAnim, t); } }
//--------------------------------------------------------------------
// MotionMap
//--------------------------------------------------------------------
s_source_t *MotionMap( s_source_t *pSource, s_source_t *pTarget, s_template_t *pTemplate ) {
// scale skeleton
if(pTemplate->doSkeletonScale) { ScaleSkeleton(pTarget, pTemplate->skeletonScale); }
// scale joints
for(int j = 0; j < pTemplate->numJointScales; j++) { s_jointScale_t *pJointScale = pTemplate->jointScales[j]; ScaleJoints(pTarget, pJointScale); }
// root stuff
char rootString[128] = "ValveBiped.Bip01";
// !!! PARAMETER
int rootIndex = GetNodeIndex(pSource, rootString); int rootScaleIndex = GetNodeIndex(pSource, pTemplate->rootScaleJoint); int rootScalePath[512]; if(rootScaleIndex > -1) { GetNodePath(pSource, rootIndex, rootScaleIndex, rootScalePath); } else { printf("Error: Can't find node\n"); exit(0); } float rootScaleLengthSrc = pSource->rawanim[0][rootScaleIndex].pos[BONEDIR]; float rootScaleParentLengthSrc = pSource->rawanim[0][rootScalePath[1]].pos[BONEDIR]; float rootScaleSrc = rootScaleLengthSrc + rootScaleParentLengthSrc; float rootScaleLengthTgt = pTarget->rawanim[0][rootScaleIndex].pos[BONEDIR]; float rootScaleParentLengthTgt = pTarget->rawanim[0][rootScalePath[1]].pos[BONEDIR]; float rootScaleTgt = rootScaleLengthTgt + rootScaleParentLengthTgt; float rootScaleFactor = rootScaleTgt / rootScaleSrc;
if(g_verbose) printf("Root Scale Factor: %f\n", rootScaleFactor);
// root scale origin
float toeFloorZ = pTemplate->toeFloorZ; Vector rootScaleOrigin = pSource->rawanim[0][rootIndex].pos; rootScaleOrigin[2] = toeFloorZ;
// setup workspace
s_bone_t *combinedRefAnimation[MAXSTUDIOANIMFRAMES]; s_bone_t *combinedAnimation[MAXSTUDIOANIMFRAMES]; s_bone_t *sourceAnimation[MAXSTUDIOANIMFRAMES]; CombineSkeletonAnimation(pTarget, pSource, combinedAnimation); CombineSkeletonAnimation(pTarget, pSource, combinedRefAnimation);
// do source and target sanity checking
int sourceNumFrames = pSource->numframes;
// iterate through limb solves
for(int t = 0; t < sourceNumFrames; t++) { // setup pTarget for skeleton comparison
pTarget->rawanim[t] = combinedRefAnimation[t];
printf("Note: Processing frame: %i\n", t); for(int ii = 0; ii < pTemplate->numIKSolves; ii++) { s_iksolve_t *thisSolve = pTemplate->ikSolves[ii]; char *thisJointNameString = thisSolve->jointNameString; int thisJointIndex = GetNodeIndex(pSource, thisJointNameString); // init paths to feet
int thisJointPathInRoot[512]; // get paths to feet
if(thisJointIndex > -1) { GetNodePath(pSource, rootIndex, thisJointIndex, thisJointPathInRoot); } else { printf("Error: Can't find node: %s\n" , thisJointNameString); exit(0); } // leg "root" or thigh pointers
//int gParentIndex = thisJointPathInRoot[2];
int *gParentPath = thisJointPathInRoot + 2; //----------------------------------------------------------------
// get limb lengths
//----------------------------------------------------------------
float thisJointLengthSrc = pSource->rawanim[0][thisJointIndex].pos[BONEDIR]; float parentJointLengthSrc = pSource->rawanim[0][thisJointPathInRoot[1]].pos[BONEDIR]; float thisLimbLengthSrc = thisJointLengthSrc + parentJointLengthSrc; float thisJointLengthTgt = pTarget->rawanim[0][thisJointIndex].pos[BONEDIR]; float parentJointLengthTgt = pTarget->rawanim[0][thisJointPathInRoot[1]].pos[BONEDIR]; float thisLimbLengthTgt = thisJointLengthTgt + parentJointLengthTgt; // Factor leg length delta
float thisLimbLength = thisLimbLengthSrc - thisLimbLengthTgt; float thisLimbLengthFactor = thisLimbLengthTgt / thisLimbLengthSrc; if(g_verbose) printf("limb length %s: %i: %f, factor %f\n", thisJointNameString, thisJointIndex, thisLimbLength, thisLimbLengthFactor); // calculate joint grandparent offset
// Note: because there's no reference pose this doesn't take rotation into account.
// This only works because of the assumption that joint translations aren't animated.
M_matrix4x4_t gParentGlobalMatSrc, gParentGlobalMatTgt; Vector gParentGlobalSrc, gParentGlobalTgt; // SumBonePathTranslations(gParentPath, pSource->rawanim[t], gParentGlobalSrc, 1);
// SumBonePathTranslations(gParentPath, pTarget->rawanim[t], gParentGlobalTgt, 1);
// get root path to source parent
CatBonePath(gParentPath, pSource->rawanim[t], gParentGlobalMatSrc, 1); // check against reference animation
CatBonePath(gParentPath, pTarget->rawanim[t], gParentGlobalMatTgt, 1);
gParentGlobalSrc[0] = gParentGlobalMatSrc[3][0]; gParentGlobalSrc[1] = gParentGlobalMatSrc[3][1]; gParentGlobalSrc[2] = gParentGlobalMatSrc[3][2]; gParentGlobalTgt[0] = gParentGlobalMatTgt[3][0]; gParentGlobalTgt[1] = gParentGlobalMatTgt[3][1]; gParentGlobalTgt[2] = gParentGlobalMatTgt[3][2];
Vector gParentDelta(gParentGlobalTgt - gParentGlobalSrc); if(g_verbose) printf("Grand parent delta: %f %f %f\n", gParentDelta[0], gParentDelta[1], gParentDelta[2]);
gParentDelta *= thisSolve->limbRootOffsetScale;
//----------------------------------------------------------------
// time takes effect here
// above waste is unavoidable?
//----------------------------------------------------------------
M_matrix4x4_t rootMat; M_AngleMatrix(pSource->rawanim[t][rootIndex].rot, pSource->rawanim[t][rootIndex].pos, rootMat); // OK, time to get it together
// 1) scale foot by legLengthFactor in the non-translated thigh space
// 2) translate foot by legRootDelta in the space of the root
// do we leave everything in the space of the root then? PROBABLY!!
M_matrix4x4_t thisJointMat, parentJointMat, thisJointInGParentMat; M_AngleMatrix(pSource->rawanim[t][thisJointPathInRoot[0]].rot, pSource->rawanim[t][thisJointPathInRoot[0]].pos, thisJointMat); M_AngleMatrix(pSource->rawanim[t][thisJointPathInRoot[1]].rot, pSource->rawanim[t][thisJointPathInRoot[1]].pos, parentJointMat); M_ConcatTransforms(thisJointMat, parentJointMat, thisJointInGParentMat); if(!thisSolve->doRelativeLock) { // scale around grand parent
float effectiveScaleFactor = ((thisLimbLengthFactor - 1.0) * thisSolve->extremityScale ) + 1.0; thisJointInGParentMat[3][0] *= effectiveScaleFactor; thisJointInGParentMat[3][1] *= effectiveScaleFactor; thisJointInGParentMat[3][2] *= effectiveScaleFactor; } // adjust into source root space
M_matrix4x4_t gParentInRootMat, thisJointInRootMat; CatBonePath(gParentPath, pSource->rawanim[t], gParentInRootMat, 1); M_ConcatTransforms(thisJointInGParentMat, gParentInRootMat, thisJointInRootMat); if(!thisSolve->doRelativeLock) { // adjust by difference of local root
thisJointInRootMat[3][0] += gParentDelta[0]; thisJointInRootMat[3][1] += gParentDelta[1]; thisJointInRootMat[3][2] += gParentDelta[2]; } else { char *relativeJointNameString = thisSolve->relativeLockNameString; int relativeJointIndex = GetNodeIndex(pSource, relativeJointNameString); // init paths to feet
int relativeJointPathInRoot[512]; // get paths to feet
if(relativeJointIndex > -1) { GetNodePath(pSource, rootIndex, relativeJointIndex, relativeJointPathInRoot); } else { printf("Error: Can't find node: %s\n" , relativeJointNameString); exit(0); } // get the source relative joint
M_matrix4x4_t relativeJointInRootMatSrc, relativeJointInRootMatSrcInverse, thisJointInRelativeSrcMat; CatBonePath(relativeJointPathInRoot, pSource->rawanim[t], relativeJointInRootMatSrc, 1); M_MatrixInvert(relativeJointInRootMatSrc, relativeJointInRootMatSrcInverse); M_ConcatTransforms(thisJointInRootMat, relativeJointInRootMatSrcInverse, thisJointInRelativeSrcMat); if(thisSolve->relativeLockScale != 1.0) { thisJointInRelativeSrcMat[3][0] *= thisSolve->relativeLockScale; thisJointInRelativeSrcMat[3][1] *= thisSolve->relativeLockScale; thisJointInRelativeSrcMat[3][2] *= thisSolve->relativeLockScale; } // swap momentarily to get new destination
// NOTE: the relative lock must have already been solved
sourceAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = combinedAnimation[t];
// get new relative location
M_matrix4x4_t relativeJointInRootMatTgt; CatBonePath(relativeJointPathInRoot, pSource->rawanim[t], relativeJointInRootMatTgt, 1); M_ConcatTransforms(thisJointInRelativeSrcMat, relativeJointInRootMatTgt, thisJointInRootMat);
// swap back just for cleanliness
// a little overkill as it's just swapped
// just leaving it here for clarity
combinedAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = sourceAnimation[t];
} //----------------------------------------------------------------
// swap animation
//----------------------------------------------------------------
sourceAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = combinedAnimation[t]; //----------------------------------------------------------------
// make thigh data global based on new skeleton
//----------------------------------------------------------------
// get thigh in global space
M_matrix4x4_t gParentInTgtRootMat, ggParentInTgtRootMat; // int *gParentPath = thisJointPathInRoot + 2;
CatBonePath(gParentPath, pSource->rawanim[t], gParentInTgtRootMat, 1); CatBonePath(gParentPath+1, pSource->rawanim[t], ggParentInTgtRootMat, 1); //----------------------------------------------------------------
// Calculate IK for legs
//----------------------------------------------------------------
float parentJointLength = pSource->rawanim[t][*(thisJointPathInRoot + 1)].pos[BONEDIR]; float thisJointLength = pSource->rawanim[t][thisJointIndex].pos[BONEDIR]; Vector thisLimbHypot; thisLimbHypot[0] = thisJointInRootMat[3][0] - gParentInTgtRootMat[3][0]; thisLimbHypot[1] = thisJointInRootMat[3][1] - gParentInTgtRootMat[3][1]; thisLimbHypot[2] = thisJointInRootMat[3][2] - gParentInTgtRootMat[3][2]; float thisLimbHypotLength = thisLimbHypot.Length(); // law of cosines!
float gParentCos = (thisLimbHypotLength*thisLimbHypotLength + parentJointLength*parentJointLength - thisJointLength*thisJointLength) / (2*parentJointLength*thisLimbHypotLength); float parentCos = (parentJointLength*parentJointLength + thisJointLength*thisJointLength - thisLimbHypotLength*thisLimbHypotLength) / (2*parentJointLength*thisJointLength); VectorNormalize(thisLimbHypot); Vector thisLimbHypotUnit = thisLimbHypot; M_matrix4x4_t gParentJointIKMat; Vector gParentJointIKRot, gParentJointIKOrth; gParentJointIKRot[0] = gParentInTgtRootMat[BONEUP][0]; gParentJointIKRot[1] = gParentInTgtRootMat[BONEUP][1]; gParentJointIKRot[2] = gParentInTgtRootMat[BONEUP][2]; VectorNormalize(gParentJointIKRot); gParentJointIKOrth = gParentJointIKRot.Cross(thisLimbHypotUnit); VectorNormalize(gParentJointIKOrth); gParentJointIKRot = thisLimbHypotUnit.Cross(gParentJointIKOrth); VectorNormalize(gParentJointIKRot); M_MatrixCopy(gParentInTgtRootMat, gParentJointIKMat); gParentJointIKMat[0][0] = thisLimbHypotUnit[0]; gParentJointIKMat[0][1] = thisLimbHypotUnit[1]; gParentJointIKMat[0][2] = thisLimbHypotUnit[2]; gParentJointIKMat[1][0] = gParentJointIKOrth[0]; gParentJointIKMat[1][1] = gParentJointIKOrth[1]; gParentJointIKMat[1][2] = gParentJointIKOrth[2]; gParentJointIKMat[2][0] = gParentJointIKRot[0]; gParentJointIKMat[2][1] = gParentJointIKRot[1]; gParentJointIKMat[2][2] = gParentJointIKRot[2]; M_matrix4x4_t gParentJointIKRotMat, gParentJointResultMat; float gParentDeg; if(thisSolve->reverseSolve) { gParentDeg = acos(gParentCos); } else { gParentDeg = -acos(gParentCos); }
// sanity check limb length
if(thisLimbHypotLength < thisLimbLengthTgt) { M_RotateZMatrix(gParentDeg, gParentJointIKRotMat); } M_ConcatTransforms(gParentJointIKRotMat, gParentJointIKMat, gParentJointResultMat); M_matrix4x4_t parentJointIKRotMat; //!!! shouldn't need the 180 degree addition, something in the law of cosines!!!
float parentDeg; if(thisSolve->reverseSolve) { parentDeg = acos(parentCos)+M_PI; } else { parentDeg = -acos(parentCos)+M_PI; } // sanity check limb length
if(thisLimbHypotLength < thisLimbLengthTgt) { M_RotateZMatrix(parentDeg, parentJointIKRotMat); }
// Thighs
M_matrix4x4_t ggParentInTgtRootMatInverse, gParentJointLocalMat; M_MatrixInvert(ggParentInTgtRootMat, ggParentInTgtRootMatInverse); M_ConcatTransforms(gParentJointResultMat, ggParentInTgtRootMatInverse, gParentJointLocalMat); s_bone_t resultBone; // temp test stuff
// M_MatrixAngles(thisJointInRootMat, resultBone.rot, resultBone.pos);
// pSource->rawanim[t][thisJointIndex].rot = resultBone.rot;
// pSource->rawanim[t][thisJointIndex].pos = resultBone.pos;
// M_MatrixAngles(gParentInTgtRootMat, resultBone.rot, resultBone.pos);
// pSource->rawanim[t][gParentIndex].rot = resultBone.rot;
// pSource->rawanim[t][gParentIndex].pos = resultBone.pos;
M_MatrixAngles(gParentJointLocalMat, resultBone.rot, resultBone.pos); pSource->rawanim[t][*gParentPath].pos = resultBone.pos; pSource->rawanim[t][*gParentPath].rot = resultBone.rot; M_MatrixAngles(parentJointIKRotMat, resultBone.rot, resultBone.pos); pSource->rawanim[t][*(thisJointPathInRoot+1)].rot = resultBone.rot; M_matrix4x4_t parentJointGlobalMat, parentJointGlobalMatInverse, thisJointLocalMat; CatBonePath(thisJointPathInRoot+1, pSource->rawanim[t], parentJointGlobalMat, 1); M_MatrixInvert(parentJointGlobalMat, parentJointGlobalMatInverse); M_ConcatTransforms(thisJointInRootMat, parentJointGlobalMatInverse, thisJointLocalMat); M_MatrixAngles(thisJointLocalMat, resultBone.rot, resultBone.pos); pSource->rawanim[t][thisJointIndex].rot = resultBone.rot;
// swap animation back for next solve
combinedAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = sourceAnimation[t];
} // swap animation
sourceAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = combinedAnimation[t];
//----------------------------------------------------------------
// adjust root
//----------------------------------------------------------------
Vector originBonePos = pSource->rawanim[t][rootIndex].pos; Vector rootInScaleOrigin = originBonePos - rootScaleOrigin; float effectiveRootScale = ((rootScaleFactor - 1.0) * pTemplate->rootScaleAmount) + 1.0; Vector scaledRoot = rootInScaleOrigin * effectiveRootScale; pSource->rawanim[t][rootIndex].pos = rootScaleOrigin + scaledRoot;
//------------------------------------------------------------
// plane constraints
//------------------------------------------------------------
for(int ii = 0; ii < pTemplate->numPlaneConstraints; ii++) { s_planeConstraint_t *thisSolve = pTemplate->planeConstraints[ii]; char *thisJointNameString = thisSolve->jointNameString; if(g_verbose) printf("Executing plane constraint: %s\n", thisJointNameString); int thisJointIndex = GetNodeIndex(pSource, thisJointNameString); // init paths to feet
int thisJointPath[512]; // get paths to feet
if(thisJointIndex > -1) { GetNodePath(pSource, -1, thisJointIndex, thisJointPath); } else { printf("Error: Can't find node: %s\n" , thisJointNameString); exit(0); } int parentIndex = thisJointPath[1]; int *parentPath = thisJointPath + 1; M_matrix4x4_t thisJointGlobalMat, parentJointGlobalMat, gParentJointGlobalMat, gParentJointGlobalMatInverse; CatBonePath(thisJointPath, pSource->rawanim[t], thisJointGlobalMat, 0); CatBonePath(parentPath, pSource->rawanim[t], parentJointGlobalMat, 0); CatBonePath(parentPath+1, pSource->rawanim[t], gParentJointGlobalMat, 0); M_MatrixInvert(gParentJointGlobalMat, gParentJointGlobalMatInverse);
if(thisJointGlobalMat[3][thisSolve->axis] < thisSolve->floor) { // printf("-- broken plane: %f\n", thisJointGlobalMat[3][thisSolve->axis]);
if(parentJointGlobalMat[3][thisSolve->axis] < thisSolve->floor) { printf("Error: Constraint parent has broken the plane, this frame's plane constraint unsolvable!\n"); } else { Vector parentJointAtPlane(parentJointGlobalMat[3][0], parentJointGlobalMat[3][1], parentJointGlobalMat[3][2]); Vector parentPos(parentJointGlobalMat[3][0], parentJointGlobalMat[3][1], parentJointGlobalMat[3][2]); Vector thisJointAtPlane(thisJointGlobalMat[3][0], thisJointGlobalMat[3][1], thisJointGlobalMat[3][2]); Vector thisJointPos(thisJointGlobalMat[3][0], thisJointGlobalMat[3][1], thisJointGlobalMat[3][2]);
thisJointAtPlane[thisSolve->axis] = thisSolve->floor; parentJointAtPlane[thisSolve->axis] = thisSolve->floor;
float thisJointLength = pSource->rawanim[t][thisJointIndex].pos[BONEAXIS]; float parentLengthToPlane = parentPos[thisSolve->axis] - thisSolve->floor; float adjacent = sqrtf((thisJointLength * thisJointLength) - (parentLengthToPlane * parentLengthToPlane)); Vector parentDirection = thisJointAtPlane - parentJointAtPlane; VectorNormalize(parentDirection); Vector newJointPos = parentJointAtPlane + (parentDirection * adjacent);
Vector newParentDir = newJointPos - parentPos; Vector parentUp(parentJointGlobalMat[BONEUP][0], parentJointGlobalMat[BONEUP][1], parentJointGlobalMat[BONEUP][2]); VectorNormalize(newParentDir); VectorNormalize(parentUp); // Vector parentSide = newParentDir.Cross(parentUp);
Vector parentSide = parentUp.Cross(newParentDir); VectorNormalize(parentSide); parentUp = newParentDir.Cross(parentSide); // parentUp = parentSide.Cross(newParentDir);
VectorNormalize(parentUp); parentJointGlobalMat[BONEDIR][0] = newParentDir[0]; parentJointGlobalMat[BONEDIR][1] = newParentDir[1]; parentJointGlobalMat[BONEDIR][2] = newParentDir[2]; parentJointGlobalMat[BONEUP][0] = parentUp[0]; parentJointGlobalMat[BONEUP][1] = parentUp[1]; parentJointGlobalMat[BONEUP][2] = parentUp[2]; parentJointGlobalMat[BONESIDE][0] = parentSide[0]; parentJointGlobalMat[BONESIDE][1] = parentSide[1]; parentJointGlobalMat[BONESIDE][2] = parentSide[2]; M_matrix4x4_t newParentJointMat; M_ConcatTransforms(parentJointGlobalMat, gParentJointGlobalMatInverse, newParentJointMat); s_bone_t resultBone; M_MatrixAngles(newParentJointMat, resultBone.rot, resultBone.pos); pSource->rawanim[t][parentIndex].rot = resultBone.rot; } } }
// swap animation back for next solve
combinedAnimation[t] = pSource->rawanim[t]; pSource->rawanim[t] = sourceAnimation[t]; } for(int t = 0; t < sourceNumFrames; t++) { pTarget->rawanim[t] = combinedAnimation[t]; } pTarget->numframes = sourceNumFrames;
#if 0
// Process motion mapping into out and return that
s_source_t *out = new s_source_t;
return out; #else
// Just returns the start animation, to test the Save_SMD API.
return pTarget; #endif
}
char templates[] = "\n\
#\n\
# default template file is analogus to not specifying a template file at all\n\
#\n\
\n\ rootScaleJoint ValveBiped.Bip01_L_Foot\n\ rootScaleAmount 1.0\n\ toeFloorZ 2.7777\n\ \n\ twoJointIKSolve ValveBiped.Bip01_L_Foot\n\ reverseSolve 0\n\ extremityScale 1.0\n\ limbRootOffsetScale 1.0 1.0 0.0\n\ \n\ twoJointIKSolve ValveBiped.Bip01_R_Foot\n\ reverseSolve 0\n\ extremityScale 1.0\n\ limbRootOffsetScale 1.0 1.0 0.0\n\ \n\ oneJointPlaneConstraint ValveBiped.Bip01_L_Toe0\n\ \n\ oneJointPlaneConstraint ValveBiped.Bip01_R_Toe0\n\ \n\ twoJointIKSolve ValveBiped.Bip01_R_Hand\n\ reverseSolve 1\n\ extremityScale 1.0\n\ limbRootOffsetScale 0.0 0.0 1.0\n\ \n\ twoJointIKSolve ValveBiped.Bip01_L_Hand\n\ reverseSolve 1\n\ extremityScale 1.0\n\ limbRootOffsetScale 0.0 0.0 1.0\n\ \n\ ";
void UsageAndExit() { MdlError( "usage: motionmapper [-quiet] [-verbose] [-templateFile filename] [-printTemplates] sourceanim.smd targetskeleton.smd output.smd\n\
\tsourceanim: should contain ref pose and animation data\n\ \ttargetsekeleton: should contain new ref pose, animation data ignored/can be absent\n\ \toutput: animation from source mapped onto target skeleton (contains new ref pose)\n\ \t-templateFile filename : specifies a template file for guiding the mapping of motion\n\ \t-printTemplate: Causes motionmapper to output the contents of an example template file, which can be used in conjunction with the -templateFile argument to create various motion effects.\n\ \n"); }
void PrintHeader() { vprint( 0, "Valve Software - motionmapper.exe ((c) Valve Coroporation %s)\n", __DATE__ ); vprint( 0, "--- Maps motion from one animation/skeleton onto another skeleton ---\n" ); }
/*
============== main ============== */ int main (int argc, char **argv) { int i; int useTemplate = 0; char templateFileName[1024]; // Header
PrintHeader();
// Init command line stuff
CommandLine()->CreateCmdLine( argc, argv ); InstallSpewFunction();
// init math stuff
MathLib_Init( 2.2f, 2.2f, 0.0f, 2.0f, false, false, false, false ); g_currentscale = g_defaultscale = 1.0; g_defaultrotation = RadianEuler( 0, 0, M_PI / 2 );
// No args?
if (argc == 1) { UsageAndExit(); } // Init variable
g_quiet = false; // list template hooey
CUtlVector< CUtlSymbol > filenames;
// Get args
for (i = 1; i < argc; i++) { // Switches
if (argv[i][0] == '-') { if (!stricmp(argv[i], "-allowdebug")) { // Ignore, used by interface system to catch debug builds checked into release tree
continue; }
if (!stricmp(argv[i], "-quiet")) { g_quiet = true; g_verbose = false; continue; }
if (!stricmp(argv[i], "-verbose")) { g_quiet = false; g_verbose = true; continue; } if (!stricmp(argv[i], "-printTemplate")) { printf("%s\n", templates); exit(0); } if (!stricmp(argv[i], "-templateFile")) { if(i + 1 < argc) { strcpy( templateFileName, argv[i+1]); useTemplate = 1; printf("Note: %s passed as template file", templateFileName); } else { printf("Error: -templateFile requires an argument, none found!"); UsageAndExit(); } i++; continue; } } else { // more template stuff
CUtlSymbol sym = argv[ i ]; filenames.AddToTail( sym ); } }
// Enough file args?
if ( filenames.Count() != 3 ) { // misformed arguments
// otherwise generating unintended results
printf("Error: 3 file arguments required, %i found!", filenames.Count()); UsageAndExit(); }
// Filename arg indexes
int sourceanim = 0; int targetskel = 1; int outputanim = 2;
// Copy arg string to global variable
strcpy( g_outfile, filenames[ outputanim ].String() );
// Init filesystem hooey
CmdLib_InitFileSystem( g_outfile ); // ??
Q_FileBase( g_outfile, g_outfile, sizeof( g_outfile ) );
// Verbose stuff
if (!g_quiet) { vprint( 0, "%s, %s, %s, path %s\n", qdir, gamedir, g_outfile ); } // ??
Q_DefaultExtension(g_outfile, ".smd", sizeof( g_outfile ) ); // Verbose stuff
if (!g_quiet) { vprint( 0, "Source animation: %s\n", filenames[ sourceanim ].String() ); vprint( 0, "Target skeleton: %s\n", filenames[ targetskel ].String() );
vprint( 0, "Creating on \"%s\"\n", g_outfile); } // fullpath = EXTERNAL GLOBAL!!!???
strcpy( fullpath, g_outfile ); strcpy( fullpath, ExpandPath( fullpath ) ); strcpy( fullpath, ExpandArg( fullpath ) ); // Load source and target data
s_source_t *pSource = Load_Source( filenames[sourceanim].String(), "smd", false, false ); s_source_t *pTarget = Load_Source( filenames[targetskel].String(), "smd", false, false );
//
s_template_t *pTemplate = NULL; if(useTemplate) { pTemplate = Load_Template(templateFileName); } else { printf("Note: No template file specified, using defaults settings.\n"); pTemplate = New_Template(); Set_DefaultTemplate(pTemplate); }
// Process skeleton
s_source_t *pMappedAnimation = MotionMap( pSource, pTarget, pTemplate );
// Save output (ref skeleton & animation data);
Save_SMD( fullpath, pMappedAnimation );
Q_StripExtension( filenames[outputanim].String(), outname, sizeof( outname ) );
// Verbose stuff
if (!g_quiet) { vprint( 0, "\nCompleted \"%s\"\n", g_outfile); }
return 0; }
|