|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "cbase.h"
#include "ivp_surbuild_pointsoup.hxx"
#include "ivp_surbuild_ledge_soup.hxx"
#include "ivp_surman_polygon.hxx"
#include "ivp_compact_surface.hxx"
#include "ivp_compact_ledge.hxx"
#include "ivp_compact_ledge_solver.hxx"
#include "ivp_halfspacesoup.hxx"
#include "ivp_surbuild_halfspacesoup.hxx"
#include "ivp_template_surbuild.hxx"
#include "hk_mopp/ivp_surbuild_mopp.hxx"
#include "hk_mopp/ivp_surman_mopp.hxx"
#include "hk_mopp/ivp_compact_mopp.hxx"
#include "ivp_surbuild_polygon_convex.hxx"
#include "ivp_templates_intern.hxx"
#include "cmodel.h"
#include "physics_trace.h"
#include "vcollide_parse_private.h"
#include "physics_virtualmesh.h"
#include "mathlib/polyhedron.h"
#include "tier1/byteswap.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class CPhysCollideCompactSurface; struct bboxcache_t { Vector mins; Vector maxs; CPhysCollideCompactSurface *pCollide; };
class CPhysicsCollision : public IPhysicsCollision { public: CPhysicsCollision() { } CPhysConvex *ConvexFromVerts( Vector **pVerts, int vertCount ); CPhysConvex *ConvexFromVertsFast( Vector **pVerts, int vertCount ); CPhysConvex *ConvexFromPlanes( float *pPlanes, int planeCount, float mergeDistance ); CPhysConvex *ConvexFromConvexPolyhedron( const CPolyhedron &ConvexPolyhedron ); void ConvexesFromConvexPolygon( const Vector &vPolyNormal, const Vector *pPoints, int iPointCount, CPhysConvex **pOutput ); CPhysConvex *RebuildConvexFromPlanes( CPhysConvex *pConvex, float mergeDistance ); float ConvexVolume( CPhysConvex *pConvex ); float ConvexSurfaceArea( CPhysConvex *pConvex ); CPhysCollide *ConvertConvexToCollide( CPhysConvex **pConvex, int convexCount ); CPhysCollide *ConvertConvexToCollideParams( CPhysConvex **pConvex, int convexCount, const convertconvexparams_t &convertParams );
CPolyhedron *PolyhedronFromConvex( CPhysConvex * const pConvex, bool bUseTempPolyhedron ); int GetConvexesUsedInCollideable( const CPhysCollide *pCollideable, CPhysConvex **pOutputArray, int iOutputArrayLimit );
// store game-specific data in a convex solid
void SetConvexGameData( CPhysConvex *pConvex, unsigned int gameData ); void ConvexFree( CPhysConvex *pConvex ); CPhysPolysoup *PolysoupCreate( void ); void PolysoupDestroy( CPhysPolysoup *pSoup ); void PolysoupAddTriangle( CPhysPolysoup *pSoup, const Vector &a, const Vector &b, const Vector &c, int materialIndex7bits ); CPhysCollide *ConvertPolysoupToCollide( CPhysPolysoup *pSoup, bool useMOPP = true );
int CollideSize( CPhysCollide *pCollide ); int CollideWrite( char *pDest, CPhysCollide *pCollide, bool bSwap = false ); // Get the AABB of an oriented collide
virtual void CollideGetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ); virtual Vector CollideGetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ); // compute the volume of a collide
virtual float CollideVolume( CPhysCollide *pCollide ); virtual float CollideSurfaceArea( CPhysCollide *pCollide );
// Free a collide that was created with ConvertConvexToCollide()
// UNDONE: Move this up near the other Collide routines when the version is changed
virtual void DestroyCollide( CPhysCollide *pCollide );
CPhysCollide *BBoxToCollide( const Vector &mins, const Vector &maxs ); CPhysConvex *BBoxToConvex( const Vector &mins, const Vector &maxs );
// loads a set of solids into a vcollide_t
virtual void VCollideLoad( vcollide_t *pOutput, int solidCount, const char *pBuffer, int size, bool swap ); // destroyts the set of solids created by VCollideLoad
virtual void VCollideUnload( vcollide_t *pVCollide );
// Trace an AABB against a collide
void TraceBox( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ); void TraceBox( const Ray_t &ray, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ); void TraceBox( const Ray_t &ray, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ); // Trace one collide against another
void TraceCollide( const Vector &start, const Vector &end, const CPhysCollide *pSweepCollide, const QAngle &sweepAngles, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ); bool IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone );
// begins parsing a vcollide. NOTE: This keeps pointers to the text
// If you delete the text and call members of IVPhysicsKeyParser, it will crash
virtual IVPhysicsKeyParser *VPhysicsKeyParserCreate( const char *pKeyData ); // Free the parser created by VPhysicsKeyParserCreate
virtual void VPhysicsKeyParserDestroy( IVPhysicsKeyParser *pParser );
// creates a list of verts from a collision mesh
int CreateDebugMesh( const CPhysCollide *pCollisionModel, Vector **outVerts ); // destroy the list of verts created by CreateDebugMesh
void DestroyDebugMesh( int vertCount, Vector *outVerts ); // create a queryable version of the collision model
ICollisionQuery *CreateQueryModel( CPhysCollide *pCollide ); // destroy the queryable version
void DestroyQueryModel( ICollisionQuery *pQuery );
virtual IPhysicsCollision *ThreadContextCreate( void ); virtual void ThreadContextDestroy( IPhysicsCollision *pThreadContex ); virtual unsigned int ReadStat( int statID ) { return 0; } virtual void CollideGetMassCenter( CPhysCollide *pCollide, Vector *pOutMassCenter ); virtual void CollideSetMassCenter( CPhysCollide *pCollide, const Vector &massCenter );
virtual int CollideIndex( const CPhysCollide *pCollide ); virtual Vector CollideGetOrthographicAreas( const CPhysCollide *pCollide ); virtual void OutputDebugInfo( const CPhysCollide *pCollide ); virtual CPhysCollide *CreateVirtualMesh(const virtualmeshparams_t ¶ms) { return ::CreateVirtualMesh(params); } virtual bool GetBBoxCacheSize( int *pCachedSize, int *pCachedCount );
virtual bool SupportsVirtualMesh() { return true; }
virtual CPhysCollide *UnserializeCollide( char *pBuffer, int size, int index ); virtual void CollideSetOrthographicAreas( CPhysCollide *pCollide, const Vector &areas );
private: void InitBBoxCache(); bool IsBBoxCache( CPhysCollide *pCollide ); void AddBBoxCache( CPhysCollideCompactSurface *pCollide, const Vector &mins, const Vector &maxs ); CPhysCollideCompactSurface *GetBBoxCache( const Vector &mins, const Vector &maxs ); CPhysCollideCompactSurface *FastBboxCollide( const CPhysCollideCompactSurface *pCollide, const Vector &mins, const Vector &maxs );
private: CPhysicsTrace m_traceapi; CUtlVector<bboxcache_t> m_bboxCache; byte m_bboxVertMap[8]; };
CPhysicsCollision g_PhysicsCollision; IPhysicsCollision *physcollision = &g_PhysicsCollision; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CPhysicsCollision, IPhysicsCollision, VPHYSICS_COLLISION_INTERFACE_VERSION, g_PhysicsCollision );
//-----------------------------------------------------------------------------
// Abstract compact_surface vs. compact_mopp
//-----------------------------------------------------------------------------
#define IVP_COMPACT_SURFACE_ID MAKEID('I','V','P','S')
#define IVP_COMPACT_SURFACE_ID_SWAPPED MAKEID('S','P','V','I')
#define IVP_COMPACT_MOPP_ID MAKEID('M','O','P','P')
#define VPHYSICS_COLLISION_ID MAKEID('V','P','H','Y')
#define VPHYSICS_COLLISION_VERSION 0x0100
// You can disable all of the havok Mopp collision model building by undefining this symbol
#define ENABLE_IVP_MOPP 0
struct physcollideheader_t { DECLARE_BYTESWAP_DATADESC(); int vphysicsID; short version; short modelType;
void Defaults( short inputModelType ) { vphysicsID = VPHYSICS_COLLISION_ID; version = VPHYSICS_COLLISION_VERSION; modelType = inputModelType; } };
struct compactsurfaceheader_t : public physcollideheader_t { DECLARE_BYTESWAP_DATADESC(); int surfaceSize; Vector dragAxisAreas; int axisMapSize;
void CompactSurface( const IVP_Compact_Surface *pSurface, const Vector &orthoAreas ) { Defaults( COLLIDE_POLY ); surfaceSize = pSurface->byte_size; dragAxisAreas = orthoAreas; axisMapSize = 0; // NOTE: not yet supported
} };
BEGIN_BYTESWAP_DATADESC( physcollideheader_t ) DEFINE_FIELD( vphysicsID, FIELD_INTEGER ), DEFINE_FIELD( version, FIELD_SHORT), DEFINE_FIELD( modelType, FIELD_SHORT ), END_BYTESWAP_DATADESC()
BEGIN_BYTESWAP_DATADESC_( compactsurfaceheader_t, physcollideheader_t ) DEFINE_FIELD( surfaceSize, FIELD_INTEGER ), DEFINE_FIELD( dragAxisAreas, FIELD_VECTOR ), DEFINE_FIELD( axisMapSize, FIELD_INTEGER ), END_BYTESWAP_DATADESC()
#if ENABLE_IVP_MOPP
struct moppheader_t : public physcollideheader_t { int moppSize; void Mopp( const IVP_Compact_Mopp *pMopp ) { Defaults( COLLIDE_MOPP ); moppSize = pMopp->byte_size; } }; #endif
#if ENABLE_IVP_MOPP
class CPhysCollideMopp : public CPhysCollide { public: CPhysCollideMopp( const moppheader_t *pHeader ); CPhysCollideMopp( IVP_Compact_Mopp *pMopp ); CPhysCollideMopp( const char *pBuffer, unsigned int size ); ~CPhysCollideMopp();
void Init( const char *pBuffer, unsigned int size );
// IPhysCollide
virtual int GetVCollideIndex() const { return 0; } virtual IVP_SurfaceManager *CreateSurfaceManager( short & ) const; virtual void GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const; virtual unsigned int GetSerializationSize() const; virtual Vector GetMassCenter() const; virtual void SetMassCenter( const Vector &massCenter ); virtual unsigned int SerializeToBuffer( char *pDest, bool bSwap = false ) const; virtual void OutputDebugInfo() const;
private: IVP_Compact_Mopp *m_pMopp; }; #endif
class CPhysCollideCompactSurface : public CPhysCollide { public: ~CPhysCollideCompactSurface(); CPhysCollideCompactSurface( const char *pBuffer, unsigned int size, int index, bool swap = false ); CPhysCollideCompactSurface( const compactsurfaceheader_t *pHeader, int index, bool swap = false ); CPhysCollideCompactSurface( IVP_Compact_Surface *pSurface ); void Init( const char *pBuffer, unsigned int size, int index, bool swap = false );
// IPhysCollide
virtual int GetVCollideIndex() const { return m_pCompactSurface->dummy[0]; } virtual IVP_SurfaceManager *CreateSurfaceManager( short & ) const; virtual void GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const; virtual unsigned int GetSerializationSize() const; virtual Vector GetMassCenter() const; virtual void SetMassCenter( const Vector &massCenter ); virtual unsigned int SerializeToBuffer( char *pDest, bool bSwap = false ) const; virtual Vector GetOrthographicAreas() const; void SetOrthographicAreas( const Vector &areas ); virtual void ComputeOrthographicAreas( float epsilon ); virtual void OutputDebugInfo() const;
const IVP_Compact_Surface *GetCompactSurface() const { return m_pCompactSurface; } virtual const collidemap_t *GetCollideMap() const { return m_pCollideMap; }
private:
struct hullinfo_t { hullinfo_t() { hasOuterHull = false; convexCount = 0; } bool hasOuterHull; int convexCount; };
void ComputeHullInfo_r( hullinfo_t *pOut, const IVP_Compact_Ledgetree_Node *node ) const; void InitCollideMap();
IVP_Compact_Surface *m_pCompactSurface; Vector m_orthoAreas; collidemap_t *m_pCollideMap; };
static const IVP_Compact_Surface *ConvertPhysCollideToCompactSurface( const CPhysCollide *pCollide ) { return pCollide->GetCompactSurface(); }
IVP_SurfaceManager *CreateSurfaceManager( const CPhysCollide *pCollisionModel, short &collideType ) { return pCollisionModel ? pCollisionModel->CreateSurfaceManager( collideType ) : NULL; }
void OutputCollideDebugInfo( const CPhysCollide *pCollisionModel ) { pCollisionModel->OutputDebugInfo(); }
CPhysCollide *CPhysCollide::UnserializeFromBuffer( const char *pBuffer, unsigned int size, int index, bool swap ) { const physcollideheader_t *pHeader = reinterpret_cast<const physcollideheader_t *>(pBuffer); if ( pHeader->vphysicsID == VPHYSICS_COLLISION_ID ) { Assert(pHeader->version == VPHYSICS_COLLISION_VERSION); switch( pHeader->modelType ) { case COLLIDE_POLY: return new CPhysCollideCompactSurface( (compactsurfaceheader_t *)pHeader, index, swap ); case COLLIDE_MOPP: #if ENABLE_IVP_MOPP
return new CPhysCollideMopp( (moppheader_t *)pHeader ); #else
DevMsg( 2, "Null physics model\n"); return NULL; #endif
default: Assert(0); return NULL; } } const IVP_Compact_Surface *pSurface = reinterpret_cast<const IVP_Compact_Surface *>(pBuffer); if ( pSurface->dummy[2] == IVP_COMPACT_MOPP_ID ) { #if ENABLE_IVP_MOPP
return new CPhysCollideMopp( pBuffer, size ); #else
Assert(0); return NULL; #endif
} if ( pSurface->dummy[2] == IVP_COMPACT_SURFACE_ID || pSurface->dummy[2] == IVP_COMPACT_SURFACE_ID_SWAPPED || pSurface->dummy[2] == 0 ) { if ( pSurface->dummy[2] == 0 ) { // UNDONE: Print a name here?
DevMsg( 1, "Old format .PHY file loaded!!!\n" ); } return new CPhysCollideCompactSurface( pBuffer, size, index, swap ); }
Assert(0); return NULL; }
#if ENABLE_IVP_MOPP
void CPhysCollideMopp::Init( const char *pBuffer, unsigned int size ) { m_pMopp = (IVP_Compact_Mopp *)ivp_malloc_aligned( size, 32 ); memcpy( m_pMopp, pBuffer, size ); }
CPhysCollideMopp::CPhysCollideMopp( const char *pBuffer, unsigned int size ) { Init( pBuffer, size ); }
CPhysCollideMopp::CPhysCollideMopp( const moppheader_t *pHeader ) { Init( (const char *)(pHeader+1), pHeader->moppSize ); }
CPhysCollideMopp::CPhysCollideMopp( IVP_Compact_Mopp *pMopp ) { m_pMopp = pMopp; pMopp->dummy = IVP_COMPACT_MOPP_ID; }
CPhysCollideMopp::~CPhysCollideMopp() { ivp_free_aligned(m_pMopp); }
void CPhysCollideMopp::GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const { IVP_Compact_Ledge_Solver::get_all_ledges( m_pMopp, &ledges ); }
IVP_SurfaceManager *CPhysCollideMopp::CreateSurfaceManager( short &collideType ) const { collideType = COLLIDE_MOPP; return new IVP_SurfaceManager_Mopp( m_pMopp ); }
unsigned int CPhysCollideMopp::GetSerializationSize() const { return m_pMopp->byte_size + sizeof(moppheader_t); }
unsigned int CPhysCollideMopp::SerializeToBuffer( char *pDest, bool bSwap ) const { moppheader_t header; header.Mopp( m_pMopp ); memcpy( pDest, &header, sizeof(header) ); pDest += sizeof(header); memcpy( pDest, m_pMopp, m_pMopp->byte_size ); return GetSerializationSize(); }
Vector CPhysCollideMopp::GetMassCenter() const { Vector massCenterHL; ConvertPositionToHL( m_pMopp->mass_center, massCenterHL ); return massCenterHL; }
void CPhysCollideMopp::SetMassCenter( const Vector &massCenterHL ) { ConvertPositionToIVP( massCenterHL, m_pMopp->mass_center ); }
void CPhysCollideMopp::OutputDebugInfo() const { Msg("CollisionModel: MOPP\n"); } #endif
void CPhysCollideCompactSurface::InitCollideMap() { m_pCollideMap = NULL; if ( m_pCompactSurface ) { IVP_U_BigVector<IVP_Compact_Ledge> ledges; GetAllLedges( ledges ); // don't make these for really large models because there's a linear search involved in using this atm.
if ( !ledges.len() || ledges.len() > 32 ) return; int allocSize = sizeof(collidemap_t) + ((ledges.len()-1) * sizeof(leafmap_t)); m_pCollideMap = (collidemap_t *)malloc(allocSize); m_pCollideMap->leafCount = ledges.len(); for ( int i = 0; i < ledges.len(); i++ ) { InitLeafmap( ledges.element_at(i), &m_pCollideMap->leafmap[i] ); } } }
void CPhysCollideCompactSurface::Init( const char *pBuffer, unsigned int size, int index, bool bSwap ) { m_pCompactSurface = (IVP_Compact_Surface *)ivp_malloc_aligned( size, 32 ); memcpy( m_pCompactSurface, pBuffer, size ); if ( bSwap ) { m_pCompactSurface->byte_swap_all(); } m_pCompactSurface->dummy[0] = index; m_orthoAreas.Init(1,1,1); InitCollideMap(); }
CPhysCollideCompactSurface::CPhysCollideCompactSurface( const char *pBuffer, unsigned int size, int index, bool swap ) { Init( pBuffer, size, index, swap ); } CPhysCollideCompactSurface::CPhysCollideCompactSurface( const compactsurfaceheader_t *pHeader, int index, bool swap ) { Init( (const char *)(pHeader+1), pHeader->surfaceSize, index, swap ); m_orthoAreas = pHeader->dragAxisAreas; }
CPhysCollideCompactSurface::CPhysCollideCompactSurface( IVP_Compact_Surface *pSurface ) { m_pCompactSurface = pSurface; pSurface->dummy[2] = IVP_COMPACT_SURFACE_ID; m_pCompactSurface->dummy[0] = 0; m_orthoAreas.Init(1,1,1); InitCollideMap(); }
CPhysCollideCompactSurface::~CPhysCollideCompactSurface() { ivp_free_aligned(m_pCompactSurface); if ( m_pCollideMap ) { free(m_pCollideMap); } }
IVP_SurfaceManager *CPhysCollideCompactSurface::CreateSurfaceManager( short &collideType ) const { collideType = COLLIDE_POLY; return new IVP_SurfaceManager_Polygon( m_pCompactSurface ); }
void CPhysCollideCompactSurface::GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const { IVP_Compact_Ledge_Solver::get_all_ledges( m_pCompactSurface, &ledges ); }
unsigned int CPhysCollideCompactSurface::GetSerializationSize() const { return m_pCompactSurface->byte_size + sizeof(compactsurfaceheader_t); }
unsigned int CPhysCollideCompactSurface::SerializeToBuffer( char *pDest, bool bSwap ) const { compactsurfaceheader_t header; header.CompactSurface( m_pCompactSurface, m_orthoAreas ); if ( bSwap ) { CByteswap swap; swap.ActivateByteSwapping( true ); swap.SwapFieldsToTargetEndian( &header ); } memcpy( pDest, &header, sizeof(header) ); pDest += sizeof(header); int surfaceSize = m_pCompactSurface->byte_size; int serializationSize = GetSerializationSize(); if ( bSwap ) { m_pCompactSurface->byte_swap_all(); } memcpy( pDest, m_pCompactSurface, surfaceSize ); return serializationSize; }
Vector CPhysCollideCompactSurface::GetMassCenter() const { Vector massCenterHL; ConvertPositionToHL( m_pCompactSurface->mass_center, massCenterHL ); return massCenterHL; }
void CPhysCollideCompactSurface::SetMassCenter( const Vector &massCenterHL ) { ConvertPositionToIVP( massCenterHL, m_pCompactSurface->mass_center ); }
Vector CPhysCollideCompactSurface::GetOrthographicAreas() const { return m_orthoAreas; }
void CPhysCollideCompactSurface::SetOrthographicAreas( const Vector &areas ) { m_orthoAreas = areas; }
void CPhysCollideCompactSurface::ComputeOrthographicAreas( float epsilon ) { Vector mins, maxs, areas;
physcollision->CollideGetAABB( &mins, &maxs, this, vec3_origin, vec3_angle ); float side = sqrt( epsilon ); if ( side < 1e-4f ) side = 1e-4f; Vector size = maxs-mins;
m_orthoAreas.Init(1,1,1); trace_t tr; for ( int axis = 0; axis < 3; axis++ ) { int u = (axis+1)%3; int v = (axis+2)%3; int hits = 0; int total = 0; float halfSide = side * 0.5; for ( float u0 = mins[u] + halfSide; u0 < maxs[u]; u0 += side ) { for ( float v0 = mins[v] + halfSide; v0 < maxs[v]; v0 += side ) { Vector start, end; start[axis] = mins[axis]-1; end[axis] = maxs[axis]+1; start[u] = u0; end[u] = u0; start[v] = v0; end[v] = v0;
physcollision->TraceBox( start, end, vec3_origin, vec3_origin, this, vec3_origin, vec3_angle, &tr ); if ( tr.DidHit() ) { hits++; } total++; } } if ( total <= 0 ) total = 1; m_orthoAreas[axis] = (float)hits / (float)total; } }
void CPhysCollideCompactSurface::ComputeHullInfo_r( hullinfo_t *pOut, const IVP_Compact_Ledgetree_Node *node ) const { if ( !node->is_terminal() ) { if ( node->get_compact_hull() ) pOut->hasOuterHull = true;
ComputeHullInfo_r( pOut, node->left_son() ); ComputeHullInfo_r( pOut, node->right_son() ); } else { // terminal node, add one ledge
pOut->convexCount++; } }
void CPhysCollideCompactSurface::OutputDebugInfo() const { hullinfo_t info;
ComputeHullInfo_r( &info, m_pCompactSurface->get_compact_ledge_tree_root() ); const char *pOuterHull = info.hasOuterHull ? "with" : "no"; Msg("CollisionModel: Compact Surface: %d convex pieces %s outer hull\n", info.convexCount, pOuterHull ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: Create a convex element from a point cloud
// Input : **pVerts - array of points
// vertCount - length of array
// Output : opaque pointer to convex element
//-----------------------------------------------------------------------------
CPhysConvex *CPhysicsCollision::ConvexFromVertsFast( Vector **pVerts, int vertCount ) { IVP_U_Vector<IVP_U_Point> points; int i;
for ( i = 0; i < vertCount; i++ ) { IVP_U_Point *tmp = new IVP_U_Point; ConvertPositionToIVP( *pVerts[i], *tmp );
BEGIN_IVP_ALLOCATION(); points.add( tmp ); END_IVP_ALLOCATION(); }
BEGIN_IVP_ALLOCATION(); IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Pointsoup::convert_pointsoup_to_compact_ledge( &points ); END_IVP_ALLOCATION();
for ( i = 0; i < points.len(); i++ ) { delete points.element_at(i); } points.clear();
return reinterpret_cast<CPhysConvex *>(pLedge); }
CPhysConvex *CPhysicsCollision::RebuildConvexFromPlanes( CPhysConvex *pConvex, float mergeTolerance ) { if ( !pConvex ) return NULL; IVP_Compact_Ledge *pLedge = (IVP_Compact_Ledge *)pConvex; int triangleCount = pLedge->get_n_triangles(); IVP_Compact_Triangle *pTri = pLedge->get_first_triangle(); IVP_U_Hesse plane; IVP_Halfspacesoup halfspaces; for ( int j = 0; j < triangleCount; j++ ) { const IVP_Compact_Edge *pEdge = pTri->get_edge( 0 ); const IVP_U_Float_Point *p0 = IVP_Compact_Ledge_Solver::give_object_coords(pEdge, pLedge); const IVP_U_Float_Point *p2 = IVP_Compact_Ledge_Solver::give_object_coords(pEdge->get_next(), pLedge); const IVP_U_Float_Point *p1 = IVP_Compact_Ledge_Solver::give_object_coords(pEdge->get_prev(), pLedge); plane.calc_hesse(p0, p2, p1); float testLen = plane.real_length(); // if the triangle is less than 1mm on each side then skip it
if ( testLen > 1e-6f ) { plane.normize(); halfspaces.add_halfspace( &plane ); } pTri = pTri->get_next_tri(); } IVP_Compact_Ledge *pLedgeOut = IVP_SurfaceBuilder_Halfspacesoup::convert_halfspacesoup_to_compact_ledge( &halfspaces, mergeTolerance ); return reinterpret_cast<CPhysConvex *>( pLedgeOut ); }
CPhysConvex *CPhysicsCollision::ConvexFromVerts( Vector **pVerts, int vertCount ) { CPhysConvex *pConvex = ConvexFromVertsFast( pVerts, vertCount ); CPhysConvex *pReturn = RebuildConvexFromPlanes( pConvex, 0.01f ); // remove interior coplanar verts!
if ( pReturn ) { ConvexFree( pConvex ); return pReturn; } return pConvex; }
// produce a convex element from planes (csg of planes)
CPhysConvex *CPhysicsCollision::ConvexFromPlanes( float *pPlanes, int planeCount, float mergeDistance ) { // NOTE: We're passing in planes with outward-facing normals
// Ipion expects inward facing ones; we'll need to reverse plane directon
struct listplane_t { float normal[3]; float dist; };
listplane_t *pList = (listplane_t *)pPlanes; IVP_U_Hesse plane; IVP_Halfspacesoup halfspaces;
mergeDistance = ConvertDistanceToIVP( mergeDistance );
for ( int i = 0; i < planeCount; i++ ) { Vector tmp( -pList[i].normal[0], -pList[i].normal[1], -pList[i].normal[2] ); ConvertPlaneToIVP( tmp, -pList[i].dist, plane ); halfspaces.add_halfspace( &plane ); } IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Halfspacesoup::convert_halfspacesoup_to_compact_ledge( &halfspaces, mergeDistance ); return reinterpret_cast<CPhysConvex *>( pLedge ); }
CPhysConvex *CPhysicsCollision::ConvexFromConvexPolyhedron( const CPolyhedron &ConvexPolyhedron ) { IVP_Template_Polygon polyTemplate(ConvexPolyhedron.iVertexCount, ConvexPolyhedron.iLineCount, ConvexPolyhedron.iPolygonCount );
//convert/copy coordinates
for( int i = 0; i != ConvexPolyhedron.iVertexCount; ++i ) ConvertPositionToIVP( ConvexPolyhedron.pVertices[i], polyTemplate.points[i] );
//copy lines
for( int i = 0; i != ConvexPolyhedron.iLineCount; ++i ) polyTemplate.lines[i].set( ConvexPolyhedron.pLines[i].iPointIndices[0], ConvexPolyhedron.pLines[i].iPointIndices[1] );
//copy polygons
for( int i = 0; i != ConvexPolyhedron.iPolygonCount; ++i ) { polyTemplate.surfaces[i].init_surface( ConvexPolyhedron.pPolygons[i].iIndexCount ); //num vertices in a convex polygon == num lines
polyTemplate.surfaces[i].templ_poly = &polyTemplate;
ConvertPositionToIVP( ConvexPolyhedron.pPolygons[i].polyNormal, polyTemplate.surfaces[i].normal );
Polyhedron_IndexedLineReference_t *pLineReferences = &ConvexPolyhedron.pIndices[ConvexPolyhedron.pPolygons[i].iFirstIndex]; for( int j = 0; j != ConvexPolyhedron.pPolygons[i].iIndexCount; ++j ) { polyTemplate.surfaces[i].lines[j] = pLineReferences[j].iLineIndex; polyTemplate.surfaces[i].revert_line[j] = pLineReferences[j].iEndPointIndex; } }
//final conversion
IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Polygon_Convex::convert_template_to_ledge(&polyTemplate);
//cleanup
for( int i = 0; i != ConvexPolyhedron.iPolygonCount; ++i ) polyTemplate.surfaces[i].close_surface();
return reinterpret_cast<CPhysConvex *>(pLedge); }
struct PolyhedronMesh_Triangle { struct { int iPointIndices[2]; } Edges[3]; };
//TODO: Optimize the returned polyhedron to get away from the triangulated mesh
CPolyhedron *CPhysicsCollision::PolyhedronFromConvex( CPhysConvex * const pConvex, bool bUseTempPolyhedron ) { IVP_Compact_Ledge *pLedge = (IVP_Compact_Ledge *)pConvex; int iTriangles = pLedge->get_n_triangles();
PolyhedronMesh_Triangle *pTriangles = (PolyhedronMesh_Triangle *)stackalloc( iTriangles * sizeof( PolyhedronMesh_Triangle ) ); int iHighestPointIndex = 0; const IVP_Compact_Triangle *pTri = pLedge->get_first_triangle(); for( int i = 0; i != iTriangles; ++i ) { //reverse point ordering while creating edges
pTriangles[i].Edges[2].iPointIndices[1] = pTriangles[i].Edges[0].iPointIndices[0] = pTri->get_edge( 2 )->get_start_point_index(); pTriangles[i].Edges[0].iPointIndices[1] = pTriangles[i].Edges[1].iPointIndices[0] = pTri->get_edge( 1 )->get_start_point_index(); pTriangles[i].Edges[1].iPointIndices[1] = pTriangles[i].Edges[2].iPointIndices[0] = pTri->get_edge( 0 )->get_start_point_index();
for( int j = 0; j != 3; ++j ) { //get_n_points() has a whole bunch of ifdefs that apparently disable it in this case, detect number of points
if( pTriangles[i].Edges[j].iPointIndices[0] > iHighestPointIndex ) iHighestPointIndex = pTriangles[i].Edges[j].iPointIndices[0]; } pTri = pTri->get_next_tri(); }
++iHighestPointIndex;
//apparently points might be shared between ledges and not all points will be used. So now we get to compress them into a smaller set
int *pPointRemapping = (int *)stackalloc( iHighestPointIndex * sizeof( int ) ); memset( pPointRemapping, 0, iHighestPointIndex * sizeof( int ) ); for( int i = 0; i != iTriangles; ++i ) { for( int j = 0; j != 3; ++j ) ++(pPointRemapping[pTriangles[i].Edges[j].iPointIndices[0]]); }
int iInsertIndex = 0;
for( int i = 0; i != iHighestPointIndex; ++i ) { if( pPointRemapping[i] ) { pPointRemapping[i] = iInsertIndex; ++iInsertIndex; } else { pPointRemapping[i] = -1; } }
const int iNumPoints = iInsertIndex;
for( int i = 0; i != iTriangles; ++i ) { for( int j = 0; j != 3; ++j ) { for( int k = 0; k != 2; ++k ) pTriangles[i].Edges[j].iPointIndices[k] = pPointRemapping[pTriangles[i].Edges[j].iPointIndices[k]]; } }
bool *bLinks = (bool *)stackalloc( iNumPoints * iNumPoints * sizeof( bool ) ); memset( bLinks, 0, iNumPoints * iNumPoints * sizeof( bool ) );
int iLinkCount = 0; for( int i = 0; i != iTriangles; ++i ) { for( int j = 0; j != 3; ++j ) { const int *pIndices = pTriangles[i].Edges[j].iPointIndices; int iLow = ((pIndices[0] > pIndices[1])?1:(0)); ++iLinkCount; //this will technically make the link count double the actual number
bLinks[(pIndices[iLow] * iNumPoints) + pIndices[1-iLow]] = true; } }
iLinkCount /= 2; //cut the link count in half since we overcounted
CPolyhedron *pReturn; if( bUseTempPolyhedron ) pReturn = GetTempPolyhedron( iNumPoints, iLinkCount, iLinkCount * 2, iTriangles ); else pReturn = CPolyhedron_AllocByNew::Allocate( iNumPoints, iLinkCount, iLinkCount * 2, iTriangles );
//copy/convert vertices
const IVP_Compact_Poly_Point *pLedgePoints = pLedge->get_point_array(); Vector *pWriteVertices = pReturn->pVertices; for( int i = 0; i != iHighestPointIndex; ++i ) { if( pPointRemapping[i] != -1 ) ConvertPositionToHL( pLedgePoints[i], pWriteVertices[pPointRemapping[i]] ); }
//convert lines
iInsertIndex = 0; for( int i = 0; i != iNumPoints; ++i ) { for( int j = i + 1; j != iNumPoints; ++j ) { if( bLinks[(i * iNumPoints) + j] ) { pReturn->pLines[iInsertIndex].iPointIndices[0] = i; pReturn->pLines[iInsertIndex].iPointIndices[1] = j; ++iInsertIndex; } } }
int *pStartIndices = (int *)stackalloc( iNumPoints * sizeof( int ) ); //for quicker lookup of which edges to use in polygons
pStartIndices[0] = 0; //the lowest index point drives links, so if the first point isn't the first link, then something is extremely messed up
Assert( pReturn->pLines[0].iPointIndices[0] == 0 ); iInsertIndex = 1; for( int i = 1; i != iNumPoints; ++i ) { for( int j = iInsertIndex; j != iLinkCount; ++j ) { if( pReturn->pLines[j].iPointIndices[0] == i ) { pStartIndices[i] = j; iInsertIndex = j + 1; break; } } }
//convert polygons and setup line references as a subtask
iInsertIndex = 0; for( int i = 0; i != iTriangles; ++i ) { pReturn->pPolygons[i].iFirstIndex = iInsertIndex; pReturn->pPolygons[i].iIndexCount = 3;
Vector *p1, *p2, *p3; p1 = &pReturn->pVertices[pTriangles[i].Edges[0].iPointIndices[0]]; p2 = &pReturn->pVertices[pTriangles[i].Edges[1].iPointIndices[0]]; p3 = &pReturn->pVertices[pTriangles[i].Edges[2].iPointIndices[0]];
Vector v1to2, v1to3;
v1to2 = *p2 - *p1; v1to3 = *p3 - *p1;
pReturn->pPolygons[i].polyNormal = v1to3.Cross( v1to2 ); pReturn->pPolygons[i].polyNormal.NormalizeInPlace();
for( int j = 0; j != 3; ++j, ++iInsertIndex ) { const int *pIndices = pTriangles[i].Edges[j].iPointIndices; int iLow = (pIndices[0] > pIndices[1])?1:0; int iLineIndex; for( iLineIndex = pStartIndices[pIndices[iLow]]; iLineIndex != iLinkCount; ++iLineIndex ) { if( (pReturn->pLines[iLineIndex].iPointIndices[0] == pIndices[iLow]) && (pReturn->pLines[iLineIndex].iPointIndices[1] == pIndices[1 - iLow]) ) { break; } }
pReturn->pIndices[iInsertIndex].iLineIndex = iLineIndex; pReturn->pIndices[iInsertIndex].iEndPointIndex = 1 - iLow; } }
return pReturn; }
int CPhysicsCollision::GetConvexesUsedInCollideable( const CPhysCollide *pCollideable, CPhysConvex **pOutputArray, int iOutputArrayLimit ) { IVP_U_BigVector<IVP_Compact_Ledge> ledges; pCollideable->GetAllLedges( ledges );
int iLedgeCount = ledges.len(); if( iLedgeCount > iOutputArrayLimit ) iLedgeCount = iOutputArrayLimit;
for( int i = 0; i != iLedgeCount; ++i ) { IVP_Compact_Ledge *pLedge = ledges.element_at(i); //doing as a 2 step since a single convert seems more error prone (without compile error) in this case
pOutputArray[i] = (CPhysConvex *)pLedge; }
return iLedgeCount; }
void CPhysicsCollision::ConvexesFromConvexPolygon( const Vector &vPolyNormal, const Vector *pPoints, int iPointCount, CPhysConvex **pOutput ) { IVP_U_Point *pIVP_Points = (IVP_U_Point *)stackalloc( sizeof( IVP_U_Point ) * iPointCount ); IVP_U_Point **pTriangulator = (IVP_U_Point **)stackalloc( sizeof( IVP_U_Point * ) * iPointCount ); IVP_U_Point **pRead = pTriangulator; IVP_U_Point **pWrite = pTriangulator;
//convert coordinates
{ for( int i = 0; i != iPointCount; ++i ) ConvertPositionToIVP( pPoints[i], pIVP_Points[i] ); }
int iOutputCount = 0;
//chunk this out like a triangle strip
int iForwardCounter = 1; int iReverseCounter = iPointCount - 1; //guaranteed to be >= 2 to start
*pWrite = &pIVP_Points[0]; ++pWrite; *pWrite = &pIVP_Points[iReverseCounter]; ++pWrite; --iReverseCounter;
do { //forward
*pWrite = &pIVP_Points[iForwardCounter]; ++iForwardCounter;
pOutput[iOutputCount] = reinterpret_cast<CPhysConvex *>(IVP_SurfaceBuilder_Pointsoup::convert_triangle_to_compace_ledge( pRead[0], pRead[1], pRead[2] )); Assert( pOutput[iOutputCount] ); ++iOutputCount; if( iForwardCounter > iReverseCounter ) break;
++pRead; ++pWrite;
//backward
*pWrite = &pIVP_Points[iReverseCounter]; --iReverseCounter;
pOutput[iOutputCount] = reinterpret_cast<CPhysConvex *>(IVP_SurfaceBuilder_Pointsoup::convert_triangle_to_compace_ledge( pRead[0], pRead[1], pRead[2] )); Assert( pOutput[iOutputCount] ); ++iOutputCount;
if( iForwardCounter > iReverseCounter ) break;
++pRead; ++pWrite; } while( true ); }
//-----------------------------------------------------------------------------
// Purpose: copies the first vert int pLedge to out
// Input : *pLedge - compact ledge
// *out - destination float array for the vert
//-----------------------------------------------------------------------------
static void LedgeInsidePoint( IVP_Compact_Ledge *pLedge, Vector& out ) { IVP_Compact_Triangle *pTri = pLedge->get_first_triangle(); const IVP_Compact_Edge *pEdge = pTri->get_edge( 0 ); const IVP_U_Float_Point *pPoint = pEdge->get_start_point( pLedge ); ConvertPositionToHL( *pPoint, out ); }
//-----------------------------------------------------------------------------
// Purpose: Calculate the volume of a tetrahedron with these vertices
// Input : p0 - points of tetrahedron
// p1 -
// p2 -
// p3 -
// Output : float (volume in units^3)
//-----------------------------------------------------------------------------
static float TetrahedronVolume( const Vector &p0, const Vector &p1, const Vector &p2, const Vector &p3 ) { Vector a, b, c, cross; float volume = 1.0f / 6.0f;
a = p1 - p0; b = p2 - p0; c = p3 - p0; cross = CrossProduct( b, c );
volume *= DotProduct( a, cross ); if ( volume < 0 ) return -volume; return volume; }
static float TriangleArea( const Vector &p0, const Vector &p1, const Vector &p2 ) { Vector e0 = p1 - p0; Vector e1 = p2 - p0; Vector cross;
CrossProduct( e0, e1, cross ); return 0.5 * cross.Length(); }
//-----------------------------------------------------------------------------
// Purpose: Tetrahedronalize this ledge and compute it's volume in BSP space
// Input : convex - the ledge
// Output : float - volume in HL units (in^3)
//-----------------------------------------------------------------------------
float CPhysicsCollision::ConvexVolume( CPhysConvex *pConvex ) { IVP_Compact_Ledge *pLedge = (IVP_Compact_Ledge *)pConvex; int triangleCount = pLedge->get_n_triangles();
IVP_Compact_Triangle *pTri = pLedge->get_first_triangle();
Vector vert; float volume = 0; // vert is in HL units
LedgeInsidePoint( pLedge, vert );
for ( int j = 0; j < triangleCount; j++ ) { Vector points[3]; for ( int k = 0; k < 3; k++ ) { const IVP_Compact_Edge *pEdge = pTri->get_edge( k ); const IVP_U_Float_Point *pPoint = pEdge->get_start_point( pLedge ); ConvertPositionToHL( *pPoint, points[k] ); } volume += TetrahedronVolume( vert, points[0], points[1], points[2] );
pTri = pTri->get_next_tri(); }
return volume; }
float CPhysicsCollision::ConvexSurfaceArea( CPhysConvex *pConvex ) { IVP_Compact_Ledge *pLedge = (IVP_Compact_Ledge *)pConvex; int triangleCount = pLedge->get_n_triangles();
IVP_Compact_Triangle *pTri = pLedge->get_first_triangle();
float area = 0;
for ( int j = 0; j < triangleCount; j++ ) { Vector points[3]; for ( int k = 0; k < 3; k++ ) { const IVP_Compact_Edge *pEdge = pTri->get_edge( k ); const IVP_U_Float_Point *pPoint = pEdge->get_start_point( pLedge ); ConvertPositionToHL( *pPoint, points[k] ); } area += TriangleArea( points[0], points[1], points[2] );
pTri = pTri->get_next_tri(); }
return area; }
// Convert an array of convex elements to a compiled collision model (this deletes the convex elements)
CPhysCollide *CPhysicsCollision::ConvertConvexToCollide( CPhysConvex **pConvex, int convexCount ) { convertconvexparams_t convertParams; convertParams.Defaults(); return ConvertConvexToCollideParams( pConvex, convexCount, convertParams ); }
CPhysCollide *CPhysicsCollision::ConvertConvexToCollideParams( CPhysConvex **pConvex, int convexCount, const convertconvexparams_t &convertParams ) { if ( !convexCount || !pConvex ) return NULL;
int validConvex = 0; BEGIN_IVP_ALLOCATION(); IVP_SurfaceBuilder_Ledge_Soup builder; IVP_Compact_Surface *pSurface = NULL;
for ( int i = 0; i < convexCount; i++ ) { if ( pConvex[i] ) { validConvex++; builder.insert_ledge( (IVP_Compact_Ledge *)pConvex[i] ); } } // if the outside code does something stupid, don't crash
if ( validConvex ) { IVP_Template_Surbuild_LedgeSoup params; params.force_convex_hull = (IVP_Compact_Ledge *)convertParams.pForcedOuterHull; params.build_root_convex_hull = convertParams.buildOuterConvexHull ? IVP_TRUE : IVP_FALSE;
// NOTE: THIS FREES THE LEDGES in pConvex!!!
pSurface = builder.compile( ¶ms ); CPhysCollide *pCollide = new CPhysCollideCompactSurface( pSurface ); if ( convertParams.buildDragAxisAreas ) { pCollide->ComputeOrthographicAreas( convertParams.dragAreaEpsilon ); }
END_IVP_ALLOCATION(); return pCollide; }
END_IVP_ALLOCATION();
return NULL; }
static void InitBoxVerts( Vector *boxVerts, Vector **ppVerts, const Vector &mins, const Vector &maxs ) { for (int i = 0; i < 8; ++i) { boxVerts[i][0] = (i & 0x1) ? maxs[0] : mins[0]; boxVerts[i][1] = (i & 0x2) ? maxs[1] : mins[1]; boxVerts[i][2] = (i & 0x4) ? maxs[2] : mins[2]; if ( ppVerts ) { ppVerts[i] = &boxVerts[i]; } } }
#define FAST_BBOX 1
CPhysCollideCompactSurface *CPhysicsCollision::FastBboxCollide( const CPhysCollideCompactSurface *pCollide, const Vector &mins, const Vector &maxs ) { Vector boxVerts[8]; InitBoxVerts( boxVerts, NULL, mins, maxs ); // copy the compact ledge at bboxCache 0
// stuff the verts in there
const IVP_Compact_Surface *pSurface = ConvertPhysCollideToCompactSurface( pCollide ); Assert( pSurface ); const IVP_Compact_Ledgetree_Node *node = pSurface->get_compact_ledge_tree_root(); Assert( node->is_terminal() == IVP_TRUE ); const IVP_Compact_Ledge *pLedge = node->get_compact_ledge(); int ledgeSize = pLedge->get_size(); IVP_Compact_Ledge *pNewLedge = (IVP_Compact_Ledge *)ivp_malloc_aligned( ledgeSize, 16 ); memcpy( pNewLedge, pLedge, ledgeSize ); pNewLedge->set_client_data(0); IVP_Compact_Poly_Point *pPoints = pNewLedge->get_point_array(); for ( int i = 0; i < 8; i++ ) { IVP_U_Float_Hesse ivp; ConvertPositionToIVP( boxVerts[m_bboxVertMap[i]], ivp ); ivp.hesse_val = 0; pPoints[i].set4(&ivp); } CPhysConvex *pConvex = (CPhysConvex *)pNewLedge; return (CPhysCollideCompactSurface *)ConvertConvexToCollide( &pConvex, 1 ); }
void CPhysicsCollision::InitBBoxCache() { Vector boxVerts[8], *ppVerts[8]; Vector mins(-16,-16,0), maxs(16,16,72); // init with the player box
InitBoxVerts( boxVerts, ppVerts, mins, maxs ); // Generate a convex hull from the verts
CPhysConvex *pConvex = ConvexFromVertsFast( ppVerts, 8 ); IVP_Compact_Poly_Point *pPoints = reinterpret_cast<IVP_Compact_Ledge *>(pConvex)->get_point_array(); for ( int i = 0; i < 8; i++ ) { int nearest = -1; float minDist = 0.1; Vector tmp; ConvertPositionToHL( pPoints[i], tmp ); for ( int j = 0; j < 8; j++ ) { float dist = (boxVerts[j] - tmp).Length(); if ( dist < minDist ) { minDist = dist; nearest = j; } } m_bboxVertMap[i] = nearest;
#if _DEBUG
for ( int k = 0; k < i; k++ ) { Assert( m_bboxVertMap[k] != m_bboxVertMap[i] ); } #endif
// NOTE: If this is wrong, you can disable FAST_BBOX above to fix
AssertMsg( nearest != -1, "CPhysCollide: Vert map is wrong\n" ); } CPhysCollide *pCollide = ConvertConvexToCollide( &pConvex, 1 ); AddBBoxCache( (CPhysCollideCompactSurface *)pCollide, mins, maxs ); }
CPhysConvex *CPhysicsCollision::BBoxToConvex( const Vector &mins, const Vector &maxs ) { Vector boxVerts[8], *ppVerts[8]; InitBoxVerts( boxVerts, ppVerts, mins, maxs ); // Generate a convex hull from the verts
return ConvexFromVertsFast( ppVerts, 8 ); }
CPhysCollide *CPhysicsCollision::BBoxToCollide( const Vector &mins, const Vector &maxs ) { // can't create a collision model for an empty box !
if ( mins == maxs ) { Assert(0); return NULL; }
// find this bbox in the cache
CPhysCollide *pCollide = GetBBoxCache( mins, maxs ); if ( pCollide ) return pCollide;
// FAST_BBOX: uses an existing compact ledge as a template for fast generation
// building convex hulls from points is slow
#if FAST_BBOX
if ( m_bboxCache.Count() == 0 ) { InitBBoxCache(); } pCollide = FastBboxCollide( m_bboxCache[0].pCollide, mins, maxs ); #else
CPhysConvex *pConvex = BBoxToConvex( mins, maxs ); pCollide = ConvertConvexToCollide( &pConvex, 1 ); #endif
AddBBoxCache( (CPhysCollideCompactSurface *)pCollide, mins, maxs ); return pCollide; }
bool CPhysicsCollision::IsBBoxCache( CPhysCollide *pCollide ) { // UNDONE: Sort the list so it can be searched spatially instead of linearly?
for ( int i = m_bboxCache.Count()-1; i >= 0; i-- ) { if ( m_bboxCache[i].pCollide == pCollide ) return true; } return false; }
void CPhysicsCollision::AddBBoxCache( CPhysCollideCompactSurface *pCollide, const Vector &mins, const Vector &maxs ) { int index = m_bboxCache.AddToTail(); bboxcache_t *pCache = &m_bboxCache[index]; pCache->pCollide = pCollide; pCache->mins = mins; pCache->maxs = maxs; }
CPhysCollideCompactSurface *CPhysicsCollision::GetBBoxCache( const Vector &mins, const Vector &maxs ) { for ( int i = m_bboxCache.Count()-1; i >= 0; i-- ) { if ( m_bboxCache[i].mins == mins && m_bboxCache[i].maxs == maxs ) return m_bboxCache[i].pCollide; } return NULL; }
void CPhysicsCollision::ConvexFree( CPhysConvex *pConvex ) { if ( !pConvex ) return; ivp_free_aligned( pConvex ); }
// Get the size of the collision model for serialization
int CPhysicsCollision::CollideSize( CPhysCollide *pCollide ) { return pCollide->GetSerializationSize(); }
int CPhysicsCollision::CollideWrite( char *pDest, CPhysCollide *pCollide, bool bSwap ) { return pCollide->SerializeToBuffer( pDest, bSwap ); }
CPhysCollide *CPhysicsCollision::UnserializeCollide( char *pBuffer, int size, int index ) { return CPhysCollide::UnserializeFromBuffer( pBuffer, size, index ); }
class CPhysPolysoup { public: CPhysPolysoup(); #if ENABLE_IVP_MOPP
IVP_SurfaceBuilder_Mopp m_builder; #endif
IVP_SurfaceBuilder_Ledge_Soup m_builderSoup; IVP_U_Vector<IVP_U_Point> m_points; IVP_U_Point m_triangle[3];
bool m_isValid; };
CPhysPolysoup::CPhysPolysoup() { m_isValid = false; m_points.add( &m_triangle[0] ); m_points.add( &m_triangle[1] ); m_points.add( &m_triangle[2] ); }
CPhysPolysoup *CPhysicsCollision::PolysoupCreate( void ) { return new CPhysPolysoup; }
void CPhysicsCollision::PolysoupDestroy( CPhysPolysoup *pSoup ) { delete pSoup; }
void CPhysicsCollision::PolysoupAddTriangle( CPhysPolysoup *pSoup, const Vector &a, const Vector &b, const Vector &c, int materialIndex7bits ) { pSoup->m_isValid = true; ConvertPositionToIVP( a, pSoup->m_triangle[0] ); ConvertPositionToIVP( b, pSoup->m_triangle[1] ); ConvertPositionToIVP( c, pSoup->m_triangle[2] ); IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Pointsoup::convert_pointsoup_to_compact_ledge(&pSoup->m_points); if ( !pLedge ) { Warning("Degenerate Triangle\n"); Warning("(%.2f, %.2f, %.2f), ", a.x, a.y, a.z ); Warning("(%.2f, %.2f, %.2f), ", b.x, b.y, b.z ); Warning("(%.2f, %.2f, %.2f)\n", c.x, c.y, c.z ); return; } IVP_Compact_Triangle *pTriangle = pLedge->get_first_triangle(); pTriangle->set_material_index( materialIndex7bits ); #if ENABLE_IVP_MOPP
pSoup->m_builder.insert_ledge(pLedge); #endif
pSoup->m_builderSoup.insert_ledge(pLedge); }
CPhysCollide *CPhysicsCollision::ConvertPolysoupToCollide( CPhysPolysoup *pSoup, bool useMOPP ) { if ( !pSoup->m_isValid ) return NULL;
CPhysCollide *pCollide = NULL; #if ENABLE_IVP_MOPP
if ( useMOPP ) { IVP_Compact_Mopp *pSurface = pSoup->m_builder.compile(); pCollide = new CPhysCollideMopp( pSurface ); } else #endif
{ IVP_Compact_Surface *pSurface = pSoup->m_builderSoup.compile(); pCollide = new CPhysCollideCompactSurface( pSurface ); }
Assert(pCollide);
// There's a bug in IVP where the duplicated triangles (for 2D)
// don't get the materials set properly, so copy them
IVP_U_BigVector<IVP_Compact_Ledge> ledges; pCollide->GetAllLedges( ledges );
for ( int i = 0; i < ledges.len(); i++ ) { IVP_Compact_Ledge *pLedge = ledges.element_at( i ); int triangleCount = pLedge->get_n_triangles();
IVP_Compact_Triangle *pTri = pLedge->get_first_triangle(); int materialIndex = pTri->get_material_index(); if ( !materialIndex ) { for ( int j = 0; j < triangleCount; j++ ) { if ( pTri->get_material_index() != 0 ) { materialIndex = pTri->get_material_index(); } pTri = pTri->get_next_tri(); } } for ( int j = 0; j < triangleCount; j++ ) { pTri->set_material_index( materialIndex ); pTri = pTri->get_next_tri(); } }
return pCollide; }
int CPhysicsCollision::CreateDebugMesh( const CPhysCollide *pCollisionModel, Vector **outVerts ) { int i;
IVP_U_BigVector<IVP_Compact_Ledge> ledges; pCollisionModel->GetAllLedges( ledges );
int vertCount = 0; for ( i = 0; i < ledges.len(); i++ ) { IVP_Compact_Ledge *pLedge = ledges.element_at( i ); vertCount += pLedge->get_n_triangles() * 3; } Vector *verts = new Vector[ vertCount ]; int vertIndex = 0; for ( i = 0; i < ledges.len(); i++ ) { IVP_Compact_Ledge *pLedge = ledges.element_at( i ); int triangleCount = pLedge->get_n_triangles();
IVP_Compact_Triangle *pTri = pLedge->get_first_triangle(); for ( int j = 0; j < triangleCount; j++ ) { for ( int k = 2; k >= 0; k-- ) { const IVP_Compact_Edge *pEdge = pTri->get_edge( k ); const IVP_U_Float_Point *pPoint = pEdge->get_start_point( pLedge );
Vector* pVec = verts + vertIndex; ConvertPositionToHL( *pPoint, *pVec ); vertIndex++; } pTri = pTri->get_next_tri(); } }
*outVerts = verts; return vertCount; }
void CPhysicsCollision::DestroyDebugMesh( int vertCount, Vector *outVerts ) { delete[] outVerts; }
void CPhysicsCollision::SetConvexGameData( CPhysConvex *pConvex, unsigned int gameData ) { IVP_Compact_Ledge *pLedge = reinterpret_cast<IVP_Compact_Ledge *>( pConvex ); pLedge->set_client_data( gameData ); }
void CPhysicsCollision::TraceBox( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) { m_traceapi.SweepBoxIVP( start, end, mins, maxs, pCollide, collideOrigin, collideAngles, ptr ); }
void CPhysicsCollision::TraceBox( const Ray_t &ray, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) { TraceBox( ray, MASK_ALL, NULL, pCollide, collideOrigin, collideAngles, ptr ); }
void CPhysicsCollision::TraceBox( const Ray_t &ray, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) { m_traceapi.SweepBoxIVP( ray, contentsMask, pConvexInfo, pCollide, collideOrigin, collideAngles, ptr ); }
// Trace one collide against another
void CPhysicsCollision::TraceCollide( const Vector &start, const Vector &end, const CPhysCollide *pSweepCollide, const QAngle &sweepAngles, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) { m_traceapi.SweepIVP( start, end, pSweepCollide, sweepAngles, pCollide, collideOrigin, collideAngles, ptr ); }
void CPhysicsCollision::CollideGetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ) { m_traceapi.GetAABB( pMins, pMaxs, pCollide, collideOrigin, collideAngles ); }
Vector CPhysicsCollision::CollideGetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ) { if ( !pCollide ) return collideOrigin;
return m_traceapi.GetExtent( pCollide, collideOrigin, collideAngles, direction ); }
bool CPhysicsCollision::IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone ) { return m_traceapi.IsBoxIntersectingCone( boxAbsMins, boxAbsMaxs, cone ); }
// Free a collide that was created with ConvertConvexToCollide()
void CPhysicsCollision::DestroyCollide( CPhysCollide *pCollide ) { if ( !IsBBoxCache( pCollide ) ) { delete pCollide; } }
// calculate the volume of a collide by calling ConvexVolume on its parts
float CPhysicsCollision::CollideVolume( CPhysCollide *pCollide ) { IVP_U_BigVector<IVP_Compact_Ledge> ledges; pCollide->GetAllLedges( ledges );
float volume = 0; for ( int i = 0; i < ledges.len(); i++ ) { volume += ConvexVolume( (CPhysConvex *)ledges.element_at(i) ); }
return volume; }
// calculate the volume of a collide by calling ConvexVolume on its parts
float CPhysicsCollision::CollideSurfaceArea( CPhysCollide *pCollide ) { IVP_U_BigVector<IVP_Compact_Ledge> ledges; pCollide->GetAllLedges( ledges );
float area = 0; for ( int i = 0; i < ledges.len(); i++ ) { area += ConvexSurfaceArea( (CPhysConvex *)ledges.element_at(i) ); }
return area; }
// loads a set of solids into a vcollide_t
void CPhysicsCollision::VCollideLoad( vcollide_t *pOutput, int solidCount, const char *pBuffer, int bufferSize, bool swap ) { memset( pOutput, 0, sizeof(*pOutput) ); int position = 0;
pOutput->solidCount = solidCount; pOutput->solids = new CPhysCollide *[solidCount];
BEGIN_IVP_ALLOCATION();
for ( int i = 0; i < solidCount; i++ ) { int size; memcpy( &size, pBuffer + position, sizeof(int) ); position += sizeof(int);
pOutput->solids[i] = CPhysCollide::UnserializeFromBuffer( pBuffer + position, size, i, swap ); position += size; }
END_IVP_ALLOCATION(); pOutput->isPacked = false; int keySize = bufferSize - position; pOutput->pKeyValues = new char[keySize]; memcpy( pOutput->pKeyValues, pBuffer + position, keySize ); pOutput->descSize = 0; }
// destroys the set of solids created by VCollideCreateCPhysCollide
void CPhysicsCollision::VCollideUnload( vcollide_t *pVCollide ) { for ( int i = 0; i < pVCollide->solidCount; i++ ) { #if _DEBUG
// HACKHACK: 1024 is just "some big number"
// GetActiveEnvironmentByIndex() will eventually return NULL when there are no more environments.
// In HL2 & TF2, there are only 2 environments - so j > 1 is probably an error!
for ( int j = 0; j < 1024; j++ ) { IPhysicsEnvironment *pEnv = g_PhysicsInternal->GetActiveEnvironmentByIndex( j ); if ( !pEnv ) break;
if ( pEnv->IsCollisionModelUsed( (CPhysCollide *)pVCollide->solids[i] ) ) { AssertMsg(0, "Freed collision model while in use!!!\n"); return; } } #endif
delete pVCollide->solids[i]; } delete[] pVCollide->solids; delete[] pVCollide->pKeyValues; memset( pVCollide, 0, sizeof(*pVCollide) ); }
// begins parsing a vcollide. NOTE: This keeps pointers to the vcollide_t
// If you delete the vcollide_t and call members of IVCollideParse, it will crash
IVPhysicsKeyParser *CPhysicsCollision::VPhysicsKeyParserCreate( const char *pKeyData ) { return CreateVPhysicsKeyParser( pKeyData ); }
// Free the parser created by VPhysicsKeyParserCreate
void CPhysicsCollision::VPhysicsKeyParserDestroy( IVPhysicsKeyParser *pParser ) { DestroyVPhysicsKeyParser( pParser ); }
IPhysicsCollision *CPhysicsCollision::ThreadContextCreate( void ) { return this; }
void CPhysicsCollision::ThreadContextDestroy( IPhysicsCollision *pThreadContext ) { }
void CPhysicsCollision::CollideGetMassCenter( CPhysCollide *pCollide, Vector *pOutMassCenter ) { *pOutMassCenter = pCollide->GetMassCenter(); }
void CPhysicsCollision::CollideSetMassCenter( CPhysCollide *pCollide, const Vector &massCenter ) { pCollide->SetMassCenter( massCenter ); }
int CPhysicsCollision::CollideIndex( const CPhysCollide *pCollide ) { if ( !pCollide ) return 0; return pCollide->GetVCollideIndex(); }
Vector CPhysicsCollision::CollideGetOrthographicAreas( const CPhysCollide *pCollide ) { if ( !pCollide ) return vec3_origin; return pCollide->GetOrthographicAreas(); }
void CPhysicsCollision::CollideSetOrthographicAreas( CPhysCollide *pCollide, const Vector &areas ) { if ( pCollide ) pCollide->SetOrthographicAreas( areas ); }
// returns true if this collide has an outer hull built
void CPhysicsCollision::OutputDebugInfo( const CPhysCollide *pCollide ) { pCollide->OutputDebugInfo(); }
bool CPhysicsCollision::GetBBoxCacheSize( int *pCachedSize, int *pCachedCount ) { *pCachedSize = 0; *pCachedCount = m_bboxCache.Count(); for ( int i = 0; i < *pCachedCount; i++ ) { *pCachedSize += m_bboxCache[i].pCollide->GetSerializationSize(); } return true; }
class CCollisionQuery : public ICollisionQuery { public: CCollisionQuery( CPhysCollide *pCollide ); ~CCollisionQuery( void ) {}
// number of convex pieces in the whole solid
virtual int ConvexCount( void ); // triangle count for this convex piece
virtual int TriangleCount( int convexIndex ); // get the stored game data
virtual unsigned int GetGameData( int convexIndex );
// Gets the triangle's verts to an array
virtual void GetTriangleVerts( int convexIndex, int triangleIndex, Vector *verts ); // UNDONE: This doesn't work!!!
virtual void SetTriangleVerts( int convexIndex, int triangleIndex, const Vector *verts ); // returns the 7-bit material index
virtual int GetTriangleMaterialIndex( int convexIndex, int triangleIndex ); // sets a 7-bit material index for this triangle
virtual void SetTriangleMaterialIndex( int convexIndex, int triangleIndex, int index7bits );
private: IVP_Compact_Triangle *Triangle( IVP_Compact_Ledge *pLedge, int triangleIndex );
IVP_U_BigVector <IVP_Compact_Ledge> m_ledges; };
// create a queryable version of the collision model
ICollisionQuery *CPhysicsCollision::CreateQueryModel( CPhysCollide *pCollide ) { return new CCollisionQuery( pCollide ); }
// destroy the queryable version
void CPhysicsCollision::DestroyQueryModel( ICollisionQuery *pQuery ) { delete pQuery; }
CCollisionQuery::CCollisionQuery( CPhysCollide *pCollide ) { pCollide->GetAllLedges( m_ledges ); }
// number of convex pieces in the whole solid
int CCollisionQuery::ConvexCount( void ) { return m_ledges.len(); }
// triangle count for this convex piece
int CCollisionQuery::TriangleCount( int convexIndex ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at(convexIndex); if ( pLedge ) { return pLedge->get_n_triangles(); }
return 0; }
unsigned int CCollisionQuery::GetGameData( int convexIndex ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at( convexIndex ); if ( pLedge ) return pLedge->get_client_data(); return 0; }
// Gets the triangle's verts to an array
void CCollisionQuery::GetTriangleVerts( int convexIndex, int triangleIndex, Vector *verts ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at( convexIndex ); IVP_Compact_Triangle *pTriangle = Triangle( pLedge, triangleIndex );
int vertIndex = 0; for ( int k = 2; k >= 0; k-- ) { const IVP_Compact_Edge *pEdge = pTriangle->get_edge( k ); const IVP_U_Float_Point *pPoint = pEdge->get_start_point( pLedge );
Vector* pVec = verts + vertIndex; ConvertPositionToHL( *pPoint, *pVec ); vertIndex++; } }
// UNDONE: This doesn't work!!!
void CCollisionQuery::SetTriangleVerts( int convexIndex, int triangleIndex, const Vector *verts ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at( convexIndex ); Triangle( pLedge, triangleIndex ); }
int CCollisionQuery::GetTriangleMaterialIndex( int convexIndex, int triangleIndex ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at( convexIndex ); IVP_Compact_Triangle *pTriangle = Triangle( pLedge, triangleIndex );
return pTriangle->get_material_index(); }
void CCollisionQuery::SetTriangleMaterialIndex( int convexIndex, int triangleIndex, int index7bits ) { IVP_Compact_Ledge *pLedge = m_ledges.element_at( convexIndex ); IVP_Compact_Triangle *pTriangle = Triangle( pLedge, triangleIndex );
pTriangle->set_material_index( index7bits ); }
IVP_Compact_Triangle *CCollisionQuery::Triangle( IVP_Compact_Ledge *pLedge, int triangleIndex ) { if ( !pLedge ) return NULL;
return pLedge->get_first_triangle() + triangleIndex; }
#if 0
void TestCubeVolume( void ) { float volume = 0; Vector verts[8]; typedef struct { int a, b, c; } triangle_t;
triangle_t triangles[12] = { {0,1,3}, // front 0123
{0,3,2}, {4,5,1}, // top 4501
{4,1,0}, {2,3,7}, // bottom 2367
{2,7,6}, {1,5,7}, // right 1537
{1,7,3}, {4,0,2}, // left 4062
{4,2,6}, {5,4,6}, // back 5476
{5,6,7} };
int i = 0; for ( int x = -1; x <= 1; x +=2 ) for ( int y = -1; y <= 1; y +=2 ) for ( int z = -1; z <= 1; z +=2 ) { verts[i][0] = x; verts[i][1] = y; verts[i][2] = z; i++; }
for ( i = 0; i < 12; i++ ) { triangle_t *pTri = triangles + i; volume += TetrahedronVolume( verts[0], verts[pTri->a], verts[pTri->b], verts[pTri->c] ); } // should report a volume of 8. This is a cube that is 2 on a side
printf("Test volume %.4f\n", volume ); } #endif
|