Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2816 lines
72 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "audio_pch.h"
#include "snd_mp3_source.h"
#include "utlsymbol.h"
#include "checksum_crc.h"
#include "../../host.h"
#include "xwvfile.h"
#include "filesystem/IQueuedLoader.h"
#include "tier1/lzmaDecoder.h"
#include "tier2/fileutils.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// This determines how much data to pre-cache (will invalidate per-map caches if changed).
#define SND_ASYNC_LOOKAHEAD_SECONDS ( 0.125f )
extern ConVar snd_async_spew_blocking;
ConVar snd_async_minsize("snd_async_minsize", "262144");
// #define DEBUG_CHUNKS
//-----------------------------------------------------------------------------
// Purpose: Report chunk error
// Input : id - chunk FOURCC
//-----------------------------------------------------------------------------
void ChunkError( unsigned int id )
{
#if defined( DEBUG_CHUNKS ) && defined( _DEBUG )
if ( id == WAVE_LIST || id == WAVE_FACT )
{
// unused chunks, not an error
return;
}
char tmp[256];
char idname[5];
idname[4] = 0;
memcpy( idname, &id, 4 );
Q_snprintf( tmp, sizeof( tmp ), "Unhandled chunk %s\n", idname );
Plat_DebugString( tmp );
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Determine a true sample count for an ADPCM blob
//-----------------------------------------------------------------------------
int ADPCMSampleCount( ADPCMWAVEFORMAT *pFormat, int length )
{
// determine a true sample count
int nChannels = LittleWord( pFormat->wfx.nChannels );
int wSamplesPerBlock = LittleWord( pFormat->wSamplesPerBlock );
int blockSize = (( wSamplesPerBlock - 2) * nChannels ) / 2;
blockSize += 7 * nChannels;
int blockCount = length / blockSize;
int blockRem = length % blockSize;
// total samples in complete blocks
int sampleCount = blockCount * wSamplesPerBlock;
// add remaining in a short block
if ( blockRem )
{
sampleCount += wSamplesPerBlock - (((blockSize - blockRem) * 2) / nChannels );
}
return sampleCount;
}
//-----------------------------------------------------------------------------
// Purpose: Init to empty wave
//-----------------------------------------------------------------------------
CAudioSourceWave::CAudioSourceWave( CSfxTable *pSfx )
{
m_format = 0;
m_pHeader = NULL;
m_nHeaderSize = 0;
// no looping
m_loopStart = -1;
m_sampleSize = 1;
m_sampleCount = 0;
m_bits = 0;
m_channels = 0;
m_dataStart = 0;
m_dataSize = 0;
m_rate = 0;
m_refCount = 0;
m_pSfx = pSfx;
#ifdef _DEBUG
if ( m_pSfx )
m_pDebugName = strdup( m_pSfx->getname() );
#endif
m_bNoSentence = false;
m_pTempSentence = NULL;
m_nCachedDataSize = 0;
m_bIsPlayOnce = false;
m_bIsSentenceWord = false;
m_numDecodedSamples = 0;
}
CAudioSourceWave::CAudioSourceWave( CSfxTable *pSfx, CAudioSourceCachedInfo *info )
{
m_pSfx = pSfx;
#ifdef _DEBUG
if ( m_pSfx )
m_pDebugName = strdup( m_pSfx->getname() );
#endif
m_refCount = 0;
m_pHeader = NULL;
m_nHeaderSize = 0;
if ( info->HeaderData() )
{
m_pHeader = new char[ info->HeaderSize() ];
Assert( m_pHeader );
Q_memcpy( m_pHeader, info->HeaderData(), info->HeaderSize() );
m_nHeaderSize = info->HeaderSize();
}
m_bits = info->Bits();
m_channels = info->Channels();
m_sampleSize = info->SampleSize();
m_format = info->Format();
m_dataStart = info->DataStart();
m_dataSize = info->DataSize();
m_rate = info->SampleRate();
m_loopStart = info->LoopStart();
m_sampleCount = info->SampleCount();
m_numDecodedSamples = m_sampleCount;
if ( m_format == WAVE_FORMAT_ADPCM && m_pHeader )
{
m_numDecodedSamples = ADPCMSampleCount( (ADPCMWAVEFORMAT *)m_pHeader, m_sampleCount );
}
m_bNoSentence = false;
m_pTempSentence = NULL;
m_nCachedDataSize = 0;
m_bIsPlayOnce = false;
m_bIsSentenceWord = false;
}
CAudioSourceWave::~CAudioSourceWave( void )
{
#if _DEBUG
if ( !CanDelete() )
Assert(0);
#endif
// for non-standard waves, we store a copy of the header in RAM
delete[] m_pHeader;
delete m_pTempSentence;
}
int CAudioSourceWave::GetType( void )
{
return AUDIO_SOURCE_WAV;
}
void CAudioSourceWave::GetCacheData( CAudioSourceCachedInfo *info )
{
Assert( info->Type() == CAudioSource::AUDIO_SOURCE_WAV );
byte tempbuf[ 32768 ];
int datalen = 0;
// NOTE GetStartupData has side-effects (...) hence the unconditional call
if ( GetStartupData( tempbuf, sizeof( tempbuf ), datalen ) &&
info->s_bIsPrecacheSound &&
datalen > 0 )
{
byte *data = new byte[ datalen ];
Q_memcpy( data, tempbuf, datalen );
info->SetCachedDataSize( datalen );
info->SetCachedData( data );
}
info->SetBits( m_bits );
info->SetChannels( m_channels );
info->SetSampleSize( m_sampleSize );
info->SetFormat( m_format );
info->SetDataStart( m_dataStart ); // offset of wave data chunk
info->SetDataSize( m_dataSize ); // size of wave data chunk
info->SetSampleRate( m_rate );
info->SetLoopStart( m_loopStart );
info->SetSampleCount( m_sampleCount );
if ( m_pTempSentence )
{
CSentence *scopy = new CSentence;
*scopy = *m_pTempSentence;
info->SetSentence( scopy );
// Wipe it down to basically nothing
delete m_pTempSentence;
m_pTempSentence = NULL;
}
if ( m_pHeader && m_nHeaderSize > 0 )
{
byte *data = new byte[ m_nHeaderSize ];
Q_memcpy( data, m_pHeader, m_nHeaderSize );
info->SetHeaderSize( m_nHeaderSize );
info->SetHeaderData( data );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : char const
//-----------------------------------------------------------------------------
char const *CAudioSourceWave::GetFileName()
{
return m_pSfx ? m_pSfx->GetFileName() : "NULL m_pSfx";
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CAudioSourceWave::IsAsyncLoad()
{
VPROF("CAudioSourceWave::IsAsyncLoad");
if ( ( IsPC() || !IsX360() ) && !m_AudioCacheHandle.IsValid() )
{
m_AudioCacheHandle.Get( GetType(), m_pSfx->IsPrecachedSound(), m_pSfx, &m_nCachedDataSize );
}
// If there's a bit of "cached data" then we don't have to lazy/async load (we still async load the remaining data,
// but we run from the cache initially)
if ( m_dataSize > snd_async_minsize.GetInt() )
return true;
return ( m_nCachedDataSize > 0 ) ? false : true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAudioSourceWave::CheckAudioSourceCache()
{
if ( IsX360() )
{
// 360 does not use audio cache files
return;
}
Assert( m_pSfx );
if ( !m_pSfx || !m_pSfx->IsPrecachedSound() )
{
return;
}
// This will "re-cache" this if it's not in this level's cache already
m_AudioCacheHandle.Get( GetType(), true, m_pSfx, &m_nCachedDataSize );
}
//-----------------------------------------------------------------------------
// Purpose: Init the wave data.
// Input : *pHeaderBuffer - the RIFF fmt chunk
// headerSize - size of that chunk
//-----------------------------------------------------------------------------
void CAudioSourceWave::Init( const char *pHeaderBuffer, int headerSize )
{
const WAVEFORMATEX *pHeader = (const WAVEFORMATEX *)pHeaderBuffer;
// copy the relevant header data
m_format = LittleWord( pHeader->wFormatTag );
m_bits = LittleWord( pHeader->wBitsPerSample );
m_rate = LittleDWord( pHeader->nSamplesPerSec );
m_channels = LittleWord( pHeader->nChannels );
m_sampleSize = (m_bits * m_channels)/8;
// this can never be zero -- other functions divide by this.
// this should never happen, but avoid crashing
if ( m_sampleSize <= 0 )
{
m_sampleSize = 1;
}
if ( m_format == WAVE_FORMAT_ADPCM )
{
// For non-standard waves (like ADPCM) store the header, it has the decoding coefficients
m_pHeader = new char[headerSize];
memcpy( m_pHeader, pHeader, headerSize );
m_nHeaderSize = headerSize;
// treat ADPCM sources as a file of bytes. They are decoded by the mixer
m_sampleSize = 1;
}
}
int CAudioSourceWave::SampleRate( void )
{
return m_rate;
}
//-----------------------------------------------------------------------------
// Purpose: Size of each sample
// Output :
//-----------------------------------------------------------------------------
int CAudioSourceWave::SampleSize( void )
{
return m_sampleSize;
}
//-----------------------------------------------------------------------------
// Purpose: Total number of samples in this source
// Output : int
//-----------------------------------------------------------------------------
int CAudioSourceWave::SampleCount( void )
{
// caller wants real samples
return m_numDecodedSamples;
}
int CAudioSourceWave::Format( void )
{
return m_format;
}
int CAudioSourceWave::DataSize( void )
{
return m_dataSize;
}
bool CAudioSourceWave::IsVoiceSource()
{
if ( GetSentence() )
{
if ( GetSentence()->GetVoiceDuck() )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Do any sample conversion
// For 8 bit PCM, convert to signed because the mixing routine assumes this
// Input : *pData - pointer to sample data
// sampleCount - number of samples
//-----------------------------------------------------------------------------
void CAudioSourceWave::ConvertSamples( char *pData, int sampleCount )
{
if ( m_format == WAVE_FORMAT_PCM )
{
if ( m_bits == 8 )
{
for ( int i = 0; i < sampleCount*m_channels; i++ )
{
*pData = (unsigned char)((int)((unsigned)*pData) - 128);
pData++;
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Parse base chunks
// Input : &walk - riff file to parse
// : chunkName - name of the chunk to parse
//-----------------------------------------------------------------------------
// UNDONE: Move parsing loop here and drop each chunk into a virtual function
// instead of this being virtual.
void CAudioSourceWave::ParseChunk( IterateRIFF &walk, int chunkName )
{
switch( chunkName )
{
case WAVE_CUE:
ParseCueChunk( walk );
break;
case WAVE_SAMPLER:
ParseSamplerChunk( walk );
break;
case WAVE_VALVEDATA:
ParseSentence( walk );
break;
default:
// unknown and don't care
ChunkError( walk.ChunkName() );
break;
}
}
bool CAudioSourceWave::IsLooped( void )
{
return (m_loopStart >= 0) ? true : false;
}
bool CAudioSourceWave::IsStereoWav( void )
{
return (m_channels == 2) ? true : false;
}
bool CAudioSourceWave::IsStreaming( void )
{
return false;
}
int CAudioSourceWave::GetCacheStatus( void )
{
return AUDIO_IS_LOADED;
}
void CAudioSourceWave::CacheLoad( void )
{
}
void CAudioSourceWave::CacheUnload( void )
{
}
int CAudioSourceWave::ZeroCrossingBefore( int sample )
{
return sample;
}
int CAudioSourceWave::ZeroCrossingAfter( int sample )
{
return sample;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : &walk -
//-----------------------------------------------------------------------------
void CAudioSourceWave::ParseSentence( IterateRIFF &walk )
{
CUtlBuffer buf( 0, 0, CUtlBuffer::TEXT_BUFFER );
buf.EnsureCapacity( walk.ChunkSize() );
walk.ChunkRead( buf.Base() );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, walk.ChunkSize() );
m_pTempSentence = new CSentence();
Assert( m_pTempSentence );
m_pTempSentence->InitFromDataChunk( buf.Base(), buf.TellPut() );
// Throws all phonemes into one word, discards sentence memory, etc.
m_pTempSentence->MakeRuntimeOnly();
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : CSentence
//-----------------------------------------------------------------------------
CSentence *CAudioSourceWave::GetSentence( void )
{
if ( IsX360() )
{
return m_pTempSentence;
}
// Already checked and this wav doesn't have sentence data...
if ( m_bNoSentence == true )
{
return NULL;
}
// Look up sentence from cache
CAudioSourceCachedInfo *info = m_AudioCacheHandle.FastGet();
if ( !info )
{
info = m_AudioCacheHandle.Get( CAudioSource::AUDIO_SOURCE_WAV, m_pSfx->IsPrecachedSound(), m_pSfx, &m_nCachedDataSize );
}
Assert( info );
if ( !info )
{
m_bNoSentence = true;
return NULL;
}
CSentence *sentence = info->Sentence();
if ( !sentence )
{
m_bNoSentence = true;
return NULL;
}
if ( sentence->m_bIsValid )
{
return sentence;
}
m_bNoSentence = true;
return NULL;
}
const char *CAudioSourceWave::GetName()
{
return m_pSfx ? m_pSfx->getname() : NULL;
}
//-----------------------------------------------------------------------------
// Load a native xaudio or legacy wav
//-----------------------------------------------------------------------------
bool CAudioSourceWave::GetXboxAudioStartupData()
{
CUtlBuffer buf;
char fileName[MAX_PATH];
char tempFileName[MAX_PATH];
MEM_ALLOC_CREDIT();
// try native optimal xma wav file first
Q_StripExtension( m_pSfx->GetFileName(), tempFileName, sizeof( tempFileName ) );
Q_snprintf( fileName, sizeof( fileName ), "sound\\%s.360.wav", tempFileName );
if ( !g_pFullFileSystem->ReadFile( fileName, "GAME", buf, sizeof( xwvHeader_t ) ) )
{
// not found, not supported
return false;
}
else
{
xwvHeader_t* pHeader = (xwvHeader_t *)buf.Base();
if ( pHeader->id != XWV_ID || pHeader->version != XWV_VERSION )
{
return false;
}
if ( pHeader->format == XWV_FORMAT_XMA )
{
m_format = WAVE_FORMAT_XMA;
}
else if ( pHeader->format == XWV_FORMAT_PCM )
{
m_format = WAVE_FORMAT_PCM;
}
else
{
// unknown
return false;
}
m_rate = pHeader->GetSampleRate();
m_channels = pHeader->channels;
m_dataStart = pHeader->dataOffset;
m_dataSize = pHeader->dataSize;
m_loopStart = pHeader->loopStart;
m_loopBlock = pHeader->loopBlock;
m_numLeadingSamples = pHeader->numLeadingSamples;
m_numTrailingSamples = pHeader->numTrailingSamples;
if ( m_format == WAVE_FORMAT_XMA )
{
// xma is compressed blocks, trick to fool system to treat data as bytes, not samples
// unfortunate, but callers must know xma context and provide offsets in samples or bytes
m_bits = 16;
m_sampleSize = 1;
m_sampleCount = m_dataSize;
}
else
{
m_bits = 16;
m_sampleSize = sizeof( short ) * m_channels;
m_sampleCount = m_dataSize / m_sampleSize;
}
// keep true decoded samples because cannot be easily determined
m_numDecodedSamples = pHeader->numDecodedSamples;
m_bNoSentence = true;
CUtlBuffer fileBuffer;
if ( pHeader->staticDataSize )
{
// get optional data
if ( !g_pFullFileSystem->ReadFile( fileName, "GAME", fileBuffer, pHeader->staticDataSize, sizeof( xwvHeader_t ) ) )
{
return false;
}
unsigned char *pData = (unsigned char *)fileBuffer.Base() + sizeof( xwvHeader_t );
if ( pHeader->GetSeekTableSize() )
{
// store off the seek table
m_nHeaderSize = pHeader->GetSeekTableSize();
m_pHeader = new char[m_nHeaderSize];
V_memcpy( m_pHeader, pData, m_nHeaderSize );
// advance past optional seek table
pData += m_nHeaderSize;
}
if ( pHeader->vdatSize )
{
m_pTempSentence = new CSentence();
Assert( m_pTempSentence );
m_bNoSentence = false;
// vdat is precompiled into minimal binary format and possibly compressed
if ( CLZMA::IsCompressed( pData ) )
{
// uncompress binary vdat and restore
CUtlBuffer targetBuffer;
int originalSize = CLZMA::GetActualSize( pData );
targetBuffer.EnsureCapacity( originalSize );
CLZMA::Uncompress( pData, (unsigned char *)targetBuffer.Base() );
targetBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, originalSize );
m_pTempSentence->CacheRestoreFromBuffer( targetBuffer );
}
else
{
m_pTempSentence->CacheRestoreFromBuffer( fileBuffer );
}
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Bastardized construction routine. This is just to avoid complex
// constructor functions so code can be shared more easily by sub-classes
// Input : *pFormatBuffer - RIFF header
// formatSize - header size
// &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceWave::Setup( const char *pFormatBuffer, int formatSize, IterateRIFF &walk )
{
Init( pFormatBuffer, formatSize );
while ( walk.ChunkAvailable() )
{
ParseChunk( walk, walk.ChunkName() );
walk.ChunkNext();
}
}
bool CAudioSourceWave::GetStartupData( void *dest, int destsize, int& bytesCopied )
{
bytesCopied = 0;
char formatBuffer[1024];
const char *pName = m_pSfx->GetFileName();
InFileRIFF riff( pName, *g_pSndIO );
if ( riff.RIFFName() != RIFF_WAVE )
{
return false;
}
// set up the iterator for the whole file (root RIFF is a chunk)
IterateRIFF walk( riff, riff.RIFFSize() );
int format = 0;
int formatSize = 0;
// This chunk must be first as it contains the wave's format
// break out when we've parsed it
while ( walk.ChunkAvailable() && format == 0 )
{
switch( walk.ChunkName() )
{
case WAVE_FMT:
{
if ( walk.ChunkSize() <= sizeof( formatBuffer ) )
{
walk.ChunkRead( formatBuffer );
formatSize = walk.ChunkSize();
format = ((WAVEFORMATEX *)formatBuffer)->wFormatTag;
if( ((WAVEFORMATEX *)formatBuffer)->wBitsPerSample > 16)
{
Warning("Unsupported %d-bit wave file %s\n", (int)((WAVEFORMATEX *)formatBuffer)->wBitsPerSample, pName);
}
}
}
break;
default:
{
ChunkError( walk.ChunkName() );
}
break;
}
walk.ChunkNext();
}
// Not really a WAVE file or no format chunk, bail
if ( !format )
{
return false;
}
Setup( formatBuffer, formatSize, walk );
if ( !m_dataStart || !m_dataSize )
{
// failed during setup
return false;
}
// requesting precache snippet as leader for streaming startup latency
if ( destsize )
{
int file = g_pSndIO->open( m_pSfx->GetFileName() );
if ( !file )
{
return false;
}
int bytesNeeded = m_channels * ( m_bits >> 3 ) * m_rate * SND_ASYNC_LOOKAHEAD_SECONDS;
// Round to multiple of 4
bytesNeeded = ( bytesNeeded + 3 ) & ~3;
bytesCopied = min( destsize, m_dataSize );
bytesCopied = min( bytesNeeded, bytesCopied );
g_pSndIO->seek( file, m_dataStart );
g_pSndIO->read( dest, bytesCopied, file );
g_pSndIO->close( file );
// some samples need to be converted
ConvertSamples( (char *)dest, ( bytesCopied / m_sampleSize ) );
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: parses loop information from a cue chunk
// Input : &walk - RIFF iterator
// Output : int loop start position
//-----------------------------------------------------------------------------
void CAudioSourceWave::ParseCueChunk( IterateRIFF &walk )
{
// Cue chunk as specified by RIFF format
// see $/research/jay/sound/riffnew.htm
struct
{
unsigned int dwName;
unsigned int dwPosition;
unsigned int fccChunk;
unsigned int dwChunkStart;
unsigned int dwBlockStart;
unsigned int dwSampleOffset;
} cue_chunk;
int cueCount;
// assume that the cue chunk stored in the wave is the start of the loop
// assume only one cue chunk, UNDONE: Test this assumption here?
cueCount = walk.ChunkReadInt();
if ( cueCount > 0 )
{
walk.ChunkReadPartial( &cue_chunk, sizeof(cue_chunk) );
m_loopStart = LittleLong( cue_chunk.dwSampleOffset );
}
}
//-----------------------------------------------------------------------------
// Purpose: parses loop information from a 'smpl' chunk
// Input : &walk - RIFF iterator
// Output : int loop start position
//-----------------------------------------------------------------------------
void CAudioSourceWave::ParseSamplerChunk( IterateRIFF &walk )
{
// Sampler chunk for MIDI instruments
// Parse loop info from this chunk too
struct SampleLoop
{
unsigned int dwIdentifier;
unsigned int dwType;
unsigned int dwStart;
unsigned int dwEnd;
unsigned int dwFraction;
unsigned int dwPlayCount;
};
struct
{
unsigned int dwManufacturer;
unsigned int dwProduct;
unsigned int dwSamplePeriod;
unsigned int dwMIDIUnityNote;
unsigned int dwMIDIPitchFraction;
unsigned int dwSMPTEFormat;
unsigned int dwSMPTEOffset;
unsigned int cSampleLoops;
unsigned int cbSamplerData;
struct SampleLoop Loops[1];
} samplerChunk;
// assume that the loop end is the sample end
// assume that only the first loop is relevant
walk.ChunkReadPartial( &samplerChunk, sizeof(samplerChunk) );
if ( LittleLong( samplerChunk.cSampleLoops ) > 0 )
{
// only support normal forward loops
if ( LittleLong( samplerChunk.Loops[0].dwType ) == 0 )
{
m_loopStart = LittleLong( samplerChunk.Loops[0].dwStart );
}
#ifdef _DEBUG
else
{
Msg("Unknown sampler chunk type %d on %s\n", LittleLong( samplerChunk.Loops[0].dwType ), m_pSfx->GetFileName() );
}
#endif
}
// else discard - this is some other non-loop sampler data we don't support
}
//-----------------------------------------------------------------------------
// Purpose: get the wave header
//-----------------------------------------------------------------------------
void *CAudioSourceWave::GetHeader( void )
{
return m_pHeader;
}
//-----------------------------------------------------------------------------
// Gets the looping information. Some parameters are interpreted based on format
//-----------------------------------------------------------------------------
int CAudioSourceWave::GetLoopingInfo( int *pLoopBlock, int *pNumLeadingSamples, int *pNumTrailingSamples )
{
if ( pLoopBlock )
{
// for xma, the block that contains the loop point
*pLoopBlock = m_loopBlock;
}
if ( pNumLeadingSamples )
{
// for xma, the number of leading samples at the loop block to discard
*pNumLeadingSamples = m_numLeadingSamples;
}
if ( pNumTrailingSamples )
{
// for xma, the number of trailing samples at the final block to discard
*pNumTrailingSamples = m_numTrailingSamples;
}
// the loop point in samples
return m_loopStart;
}
//-----------------------------------------------------------------------------
// Purpose: wrap the position wrt looping
// Input : samplePosition - absolute position
// Output : int - looped position
//-----------------------------------------------------------------------------
int CAudioSourceWave::ConvertLoopedPosition( int samplePosition )
{
if ( m_format == WAVE_FORMAT_XMA )
{
// xma mixer interprets loops and *always* sends a corrected position
return samplePosition;
}
// if the wave is looping and we're past the end of the sample
// convert to a position within the loop
// At the end of the loop, we return a short buffer, and subsequent call
// will loop back and get the rest of the buffer
if ( m_loopStart >= 0 && samplePosition >= m_sampleCount )
{
// size of loop
int loopSize = m_sampleCount - m_loopStart;
// subtract off starting bit of the wave
samplePosition -= m_loopStart;
if ( loopSize )
{
// "real" position in memory (mod off extra loops)
samplePosition = m_loopStart + (samplePosition % loopSize);
}
// ERROR? if no loopSize
}
return samplePosition;
}
//-----------------------------------------------------------------------------
// Purpose: remove the reference for the mixer getting deleted
// Input : *pMixer -
//-----------------------------------------------------------------------------
void CAudioSourceWave::ReferenceRemove( CAudioMixer *pMixer )
{
m_refCount--;
if ( m_refCount == 0 && ( ( IsPC() && IsPlayOnce() ) || ( IsX360() && IsStreaming() ) ) )
{
SetPlayOnce( false ); // in case it gets used again
CacheUnload();
}
}
//-----------------------------------------------------------------------------
// Purpose: Add a mixer reference
// Input : *pMixer -
//-----------------------------------------------------------------------------
void CAudioSourceWave::ReferenceAdd( CAudioMixer *pMixer )
{
m_refCount++;
}
//-----------------------------------------------------------------------------
// Purpose: return true if no mixers reference this source
//-----------------------------------------------------------------------------
bool CAudioSourceWave::CanDelete( void )
{
if ( m_refCount > 0 )
return false;
return true;
}
// CAudioSourceMemWave is a bunch of wave data that is all in memory.
// To use it:
// - derive from CAudioSourceMemWave
// - call CAudioSourceWave::Init with a WAVEFORMATEX
// - set m_sampleCount.
// - implement GetDataPointer
class CAudioSourceMemWave : public CAudioSourceWave
{
public:
CAudioSourceMemWave();
CAudioSourceMemWave( CSfxTable *pSfx );
CAudioSourceMemWave( CSfxTable *pSfx, CAudioSourceCachedInfo *info );
virtual ~CAudioSourceMemWave();
// These are all implemented by CAudioSourceMemWave.
virtual CAudioMixer* CreateMixer( int initialStreamPosition = 0 );
virtual int GetOutputData( void **pData, int samplePosition, int sampleCount, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] );
virtual int ZeroCrossingBefore( int sample );
virtual int ZeroCrossingAfter( int sample );
virtual int GetCacheStatus( void );
virtual void CacheLoad( void );
virtual void CacheUnload( void );
// by definition, should already be in memory
virtual void Prefetch() {}
virtual void ParseChunk( IterateRIFF &walk, int chunkName );
void ParseDataChunk( IterateRIFF &walk );
protected:
// Whoeover derives must implement this.
virtual char *GetDataPointer( void );
memhandle_t m_hCache;
StreamHandle_t m_hStream;
private:
CAudioSourceMemWave( const CAudioSourceMemWave & ); // not implemented, not accessible
};
CAudioSourceMemWave::CAudioSourceMemWave() :
CAudioSourceWave( NULL )
{
m_hCache = 0;
m_hStream = INVALID_STREAM_HANDLE;
}
CAudioSourceMemWave::CAudioSourceMemWave( CSfxTable *pSfx ) :
CAudioSourceWave( pSfx )
{
m_hCache = 0;
m_hStream = INVALID_STREAM_HANDLE;
if ( IsX360() )
{
bool bValid = GetXboxAudioStartupData();
if ( !bValid )
{
// failed, substitute placeholder
pSfx->m_bUseErrorFilename = true;
bValid = GetXboxAudioStartupData();
if ( bValid )
{
DevWarning( "Failed to load sound \"%s\", substituting \"%s\"\n", pSfx->getname(), pSfx->GetFileName() );
}
}
if ( bValid )
{
// a 360 memory wave is a critical resource kept locked in memory, load its data now
CacheLoad();
}
}
}
CAudioSourceMemWave::CAudioSourceMemWave( CSfxTable *pSfx, CAudioSourceCachedInfo *info ) :
CAudioSourceWave( pSfx, info )
{
m_hCache = 0;
m_hStream = INVALID_STREAM_HANDLE;
}
CAudioSourceMemWave::~CAudioSourceMemWave()
{
}
//-----------------------------------------------------------------------------
// Purpose: Creates a mixer and initializes it with an appropriate mixer
//-----------------------------------------------------------------------------
CAudioMixer *CAudioSourceMemWave::CreateMixer( int initialStreamPosition )
{
CAudioMixer *pMixer = CreateWaveMixer( CreateWaveDataMemory(*this), m_format, m_channels, m_bits, initialStreamPosition );
return pMixer;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **pData - output pointer to samples
// samplePosition - position (in samples not bytes)
// sampleCount - number of samples (not bytes)
// Output : int - number of samples available
//-----------------------------------------------------------------------------
int CAudioSourceMemWave::GetOutputData( void **pData, int samplePosition, int sampleCount, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] )
{
// handle position looping
samplePosition = ConvertLoopedPosition( samplePosition );
// how many samples are available (linearly not counting looping)
int totalSampleCount = m_sampleCount - samplePosition;
// may be asking for a sample out of range, clip at zero
if ( totalSampleCount < 0 )
{
totalSampleCount = 0;
}
// clip max output samples to max available
if ( sampleCount > totalSampleCount )
{
sampleCount = totalSampleCount;
}
// byte offset in sample database
samplePosition *= m_sampleSize;
// if we are returning some samples, store the pointer
if ( sampleCount )
{
// Starting past end of "preloaded" data, just use regular cache
if ( samplePosition >= m_nCachedDataSize )
{
*pData = GetDataPointer();
}
else
{
if ( IsPC() || !IsX360() )
{
// Start async loader if we haven't already done so
CacheLoad();
// Return less data if we are about to run out of uncached data
if ( samplePosition + ( sampleCount * m_sampleSize ) >= m_nCachedDataSize )
{
sampleCount = ( m_nCachedDataSize - samplePosition ) / m_sampleSize;
}
// Point at preloaded/cached data from .cache file for now
*pData = GetCachedDataPointer();
}
else
{
// for 360, memory wave data should have already been loaded and locked in cache
Assert( 0 );
}
}
if ( *pData )
{
*pData = (char *)*pData + samplePosition;
}
else
{
// End of data or some other problem
sampleCount = 0;
}
}
return sampleCount;
}
// Hardcoded macros to test for zero crossing
#define ZERO_X_8(b) ((b)<2 && (b)>-2)
#define ZERO_X_16(b) ((b)<512 && (b)>-512)
//-----------------------------------------------------------------------------
// Purpose: Search backward for a zero crossing starting at sample
// Input : sample - starting point
// Output : position of zero crossing
//-----------------------------------------------------------------------------
int CAudioSourceMemWave::ZeroCrossingBefore( int sample )
{
char *pWaveData = GetDataPointer();
if ( m_format == WAVE_FORMAT_PCM )
{
if ( m_bits == 8 )
{
char *pData = pWaveData + sample * m_sampleSize;
bool zero = false;
if ( m_channels == 1 )
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_8(*pData) )
zero = true;
else
{
sample--;
pData--;
}
}
}
else
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_8(*pData) && ZERO_X_8(pData[1]) )
zero = true;
else
{
sample--;
pData--;
}
}
}
}
else
{
short *pData = (short *)(pWaveData + sample * m_sampleSize);
bool zero = false;
if ( m_channels == 1 )
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_16(*pData) )
zero = true;
else
{
pData--;
sample--;
}
}
}
else
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_16(*pData) && ZERO_X_16(pData[1]) )
zero = true;
else
{
sample--;
pData--;
}
}
}
}
}
return sample;
}
//-----------------------------------------------------------------------------
// Purpose: Search forward for a zero crossing
// Input : sample - starting point
// Output : position of found zero crossing
//-----------------------------------------------------------------------------
int CAudioSourceMemWave::ZeroCrossingAfter( int sample )
{
char *pWaveData = GetDataPointer();
if ( m_format == WAVE_FORMAT_PCM )
{
if ( m_bits == 8 )
{
char *pData = pWaveData + sample * m_sampleSize;
bool zero = false;
if ( m_channels == 1 )
{
while ( sample < SampleCount() && !zero )
{
if ( ZERO_X_8(*pData) )
zero = true;
else
{
sample++;
pData++;
}
}
}
else
{
while ( sample < SampleCount() && !zero )
{
if ( ZERO_X_8(*pData) && ZERO_X_8(pData[1]) )
zero = true;
else
{
sample++;
pData++;
}
}
}
}
else
{
short *pData = (short *)(pWaveData + sample * m_sampleSize);
bool zero = false;
if ( m_channels == 1 )
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_16(*pData) )
zero = true;
else
{
pData++;
sample++;
}
}
}
else
{
while ( sample > 0 && !zero )
{
if ( ZERO_X_16(*pData) && ZERO_X_16(pData[1]) )
zero = true;
else
{
sample++;
pData++;
}
}
}
}
}
return sample;
}
//-----------------------------------------------------------------------------
// Purpose: parse chunks with unique processing to in-memory waves
// Input : &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::ParseChunk( IterateRIFF &walk, int chunkName )
{
switch( chunkName )
{
// this is the audio data
case WAVE_DATA:
ParseDataChunk( walk );
return;
}
CAudioSourceWave::ParseChunk( walk, chunkName );
}
//-----------------------------------------------------------------------------
// Purpose: reads the actual sample data and parses it
// Input : &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::ParseDataChunk( IterateRIFF &walk )
{
m_dataStart = walk.ChunkFilePosition() + 8;
m_dataSize = walk.ChunkSize();
// 360 streaming model loads data later, but still needs critical member setup
char *pData = NULL;
if ( IsPC() || !IsX360() )
{
pData = GetDataPointer();
if ( !pData )
{
Error( "CAudioSourceMemWave (%s): GetDataPointer() failed.", m_pSfx ? m_pSfx->GetFileName() : "m_pSfx = NULL" );
}
// load them into memory (bad!!, this is a duplicate read of the data chunk)
walk.ChunkRead( pData );
}
if ( m_format == WAVE_FORMAT_PCM )
{
// number of samples loaded
m_sampleCount = m_dataSize / m_sampleSize;
m_numDecodedSamples = m_sampleCount;
}
else if ( m_format == WAVE_FORMAT_ADPCM )
{
// The ADPCM mixers treat the wave source as a flat file of bytes.
// Since each "sample" is a byte (this is a flat file), the number of samples is the file size
m_sampleCount = m_dataSize;
m_sampleSize = 1;
// file says 4, output is 16
m_bits = 16;
m_numDecodedSamples = ADPCMSampleCount( (ADPCMWAVEFORMAT *)m_pHeader, m_dataSize );
}
// some samples need to be converted
if ( pData )
{
ConvertSamples( pData, m_sampleCount );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
int CAudioSourceMemWave::GetCacheStatus( void )
{
VPROF("CAudioSourceMemWave::GetCacheStatus");
if ( IsPC() || !IsX360() )
{
// NOTE: This will start the load if it isn't started
bool bCacheValid;
bool bCompleted = wavedatacache->IsDataLoadCompleted( m_hCache, &bCacheValid );
if ( !bCacheValid )
{
wavedatacache->RestartDataLoad( &m_hCache, m_pSfx->GetFileName(), m_dataSize, m_dataStart );
}
if ( bCompleted )
return AUDIO_IS_LOADED;
if ( wavedatacache->IsDataLoadInProgress( m_hCache ) )
return AUDIO_LOADING;
}
else
{
return wavedatacache->IsStreamedDataReady( m_hStream ) ? AUDIO_IS_LOADED : AUDIO_NOT_LOADED;
}
return AUDIO_NOT_LOADED;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::CacheLoad( void )
{
if ( IsPC() || !IsX360() )
{
// Commence lazy load?
if ( m_hCache != 0 )
{
bool bCacheValid;
wavedatacache->IsDataLoadCompleted( m_hCache, &bCacheValid );
if ( !bCacheValid )
{
wavedatacache->RestartDataLoad( &m_hCache, m_pSfx->GetFileName(), m_dataSize, m_dataStart );
}
return;
}
m_hCache = wavedatacache->AsyncLoadCache( m_pSfx->GetFileName(), m_dataSize, m_dataStart );
}
else
{
if ( m_hStream == INVALID_STREAM_HANDLE )
{
// memory wave is resident
const char *pFilename = m_pSfx->GetFileName();
streamFlags_t streamFlags = STREAMED_FROMDVD;
char szFilename[MAX_PATH];
if ( m_format == WAVE_FORMAT_XMA || m_format == WAVE_FORMAT_PCM )
{
V_strcpy_safe( szFilename, pFilename );
V_SetExtension( szFilename, ".360.wav", sizeof( szFilename ) );
pFilename = szFilename;
// memory resident xma waves use the queued loader
// restricting to XMA due to not correctly running a post ConvertSamples, which is not an issue for XMA
if ( g_pQueuedLoader->IsMapLoading() )
{
// hint the wave data cache
streamFlags |= STREAMED_QUEUEDLOAD;
}
}
// open stream to load as a single monolithic buffer
m_hStream = wavedatacache->OpenStreamedLoad( pFilename, m_dataSize, m_dataStart, 0, -1, m_dataSize, 1, streamFlags );
if ( m_hStream != INVALID_STREAM_HANDLE && !( streamFlags & STREAMED_QUEUEDLOAD ) )
{
// block and finish load, convert data once right now
char *pWaveData = (char *)wavedatacache->GetStreamedDataPointer( m_hStream, true );
if ( pWaveData )
{
ConvertSamples( pWaveData, m_dataSize/m_sampleSize );
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::CacheUnload( void )
{
if ( IsPC() || !IsX360() )
{
if ( m_hCache != 0 )
{
wavedatacache->Unload( m_hCache );
}
}
else
{
if ( m_hStream != INVALID_STREAM_HANDLE )
{
wavedatacache->CloseStreamedLoad( m_hStream );
m_hStream = INVALID_STREAM_HANDLE;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : char
//-----------------------------------------------------------------------------
char *CAudioSourceMemWave::GetDataPointer( void )
{
char *pWaveData = NULL;
if ( IsPC() || !IsX360() )
{
bool bSamplesConverted = false;
if ( m_hCache == 0 )
{
// not in cache, start loading
CacheLoad();
}
// mount the requested data, blocks if necessary
wavedatacache->GetDataPointer(
m_hCache,
m_pSfx->GetFileName(),
m_dataSize,
m_dataStart,
(void **)&pWaveData,
0,
&bSamplesConverted );
// If we have reloaded data from disk (async) and we haven't converted the samples yet, do it now
// FIXME: Is this correct for stereo wavs?
if ( pWaveData && !bSamplesConverted )
{
ConvertSamples( pWaveData, m_dataSize/m_sampleSize );
wavedatacache->SetPostProcessed( m_hCache, true );
}
}
else
{
if ( m_hStream != INVALID_STREAM_HANDLE )
{
// expected to be valid, unless failure during setup
pWaveData = (char *)wavedatacache->GetStreamedDataPointer( m_hStream, true );
}
}
return pWaveData;
}
//-----------------------------------------------------------------------------
// Purpose: Wave source for streaming wave files
// UNDONE: Handle looping
//-----------------------------------------------------------------------------
class CAudioSourceStreamWave : public CAudioSourceWave, public IWaveStreamSource
{
public:
CAudioSourceStreamWave( CSfxTable *pSfx );
CAudioSourceStreamWave( CSfxTable *pSfx, CAudioSourceCachedInfo *info );
~CAudioSourceStreamWave();
CAudioMixer *CreateMixer( int initialStreamPosition = 0 );
int GetOutputData( void **pData, int samplePosition, int sampleCount, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] );
void ParseChunk( IterateRIFF &walk, int chunkName );
bool IsStreaming( void ) { return true; }
virtual int GetCacheStatus( void );
// IWaveStreamSource
virtual int UpdateLoopingSamplePosition( int samplePosition )
{
return ConvertLoopedPosition( samplePosition );
}
virtual void UpdateSamples( char *pData, int sampleCount )
{
ConvertSamples( pData, sampleCount );
}
virtual int GetLoopingInfo( int *pLoopBlock, int *pNumLeadingSamples, int *pNumTrailingSamples )
{
return CAudioSourceWave::GetLoopingInfo( pLoopBlock, pNumLeadingSamples, pNumTrailingSamples );
}
virtual void Prefetch();
virtual int SampleToStreamPosition( int samplePosition );
virtual int StreamToSamplePosition( int streamPosition );
private:
CAudioSourceStreamWave( const CAudioSourceStreamWave & ); // not implemented, not accessible
};
//-----------------------------------------------------------------------------
// Purpose: Save a copy of the file name for instances to open later
// Input : *pFileName - filename
//-----------------------------------------------------------------------------
CAudioSourceStreamWave::CAudioSourceStreamWave( CSfxTable *pSfx ) : CAudioSourceWave( pSfx )
{
m_pSfx = pSfx;
m_dataStart = -1;
m_dataSize = 0;
m_sampleCount = 0;
if ( IsX360() )
{
bool bValid = GetXboxAudioStartupData();
if ( !bValid )
{
// failed, substitute placeholder
pSfx->m_bUseErrorFilename = true;
bValid = GetXboxAudioStartupData();
if ( bValid )
{
DevWarning( "Failed to load sound \"%s\", substituting \"%s\"\n", pSfx->getname(), pSfx->GetFileName() );
}
}
}
}
CAudioSourceStreamWave::CAudioSourceStreamWave( CSfxTable *pSfx, CAudioSourceCachedInfo *info ) :
CAudioSourceWave( pSfx, info )
{
m_pSfx = pSfx;
m_dataStart = info->DataStart();
m_dataSize = info->DataSize();
m_sampleCount = info->SampleCount();
}
//-----------------------------------------------------------------------------
// Purpose: free the filename buffer
//-----------------------------------------------------------------------------
CAudioSourceStreamWave::~CAudioSourceStreamWave( void )
{
}
//-----------------------------------------------------------------------------
// Purpose: Create an instance (mixer & wavedata) of this sound
// Output : CAudioMixer * - pointer to the mixer
//-----------------------------------------------------------------------------
CAudioMixer *CAudioSourceStreamWave::CreateMixer( int initialStreamPosition )
{
char fileName[MAX_PATH];
const char *pFileName = m_pSfx->GetFileName();
if ( IsX360() && ( m_format == WAVE_FORMAT_XMA || m_format == WAVE_FORMAT_PCM ) )
{
V_strcpy_safe( fileName, pFileName );
V_SetExtension( fileName, ".360.wav", sizeof( fileName ) );
pFileName = fileName;
// for safety, validate the initial stream position
// not trusting save/load
if ( m_format == WAVE_FORMAT_XMA )
{
if ( ( initialStreamPosition % XBOX_DVD_SECTORSIZE ) ||
( initialStreamPosition % XMA_BLOCK_SIZE ) ||
( initialStreamPosition >= m_dataSize ) )
{
initialStreamPosition = 0;
}
}
}
// BUGBUG: Source constructs the IWaveData, mixer frees it, fix this?
IWaveData *pWaveData = CreateWaveDataStream( *this, static_cast<IWaveStreamSource *>(this), pFileName, m_dataStart, m_dataSize, m_pSfx, initialStreamPosition );
if ( pWaveData )
{
CAudioMixer *pMixer = CreateWaveMixer( pWaveData, m_format, m_channels, m_bits, initialStreamPosition );
if ( pMixer )
{
return pMixer;
}
// no mixer, delete the stream buffer/instance
delete pWaveData;
}
return NULL;
}
void CAudioSourceStreamWave::Prefetch()
{
PrefetchDataStream( m_pSfx->GetFileName(), m_dataStart, m_dataSize );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CAudioSourceStreamWave::SampleToStreamPosition( int samplePosition )
{
if ( IsPC() )
{
// not for PC
Assert( 0 );
return 0;
}
if ( m_format != WAVE_FORMAT_XMA || !m_nHeaderSize )
{
// not in the expected format or lacking the seek table
return 0;
}
// Run through the seek table to find the block closest to the desired sample.
// Each seek table entry is the index (counting from the beginning of the file)
// of the first sample in the corresponding block, but there's no entry for the
// first block (since the index would always be zero).
int *pSeekTable = (int*)m_pHeader;
int packet = 0;
for ( int i = 0; i < m_nHeaderSize/(int)sizeof( int ); ++i )
{
if ( samplePosition < pSeekTable[i] )
{
packet = i;
break;
}
}
int streamPosition = ( packet == 0 ) ? 0 : ( packet - 1 ) * 2048;
return streamPosition;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CAudioSourceStreamWave::StreamToSamplePosition( int streamPosition )
{
if ( IsPC() )
{
// not for PC
Assert( 0 );
return 0;
}
if ( m_format != WAVE_FORMAT_XMA || !m_nHeaderSize )
{
// not in the expected format or lacking the seek table
return 0;
}
int packet = streamPosition/2048;
if ( packet <= 0 )
{
return 0;
}
if ( packet > m_nHeaderSize/(int)sizeof( int ) )
{
return m_numDecodedSamples;
}
return ((int*)m_pHeader)[packet - 1];
}
//-----------------------------------------------------------------------------
// Purpose: Parse a stream wave file chunk
// unlike the in-memory file, don't load the data, just get a reference to it.
// Input : &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceStreamWave::ParseChunk( IterateRIFF &walk, int chunkName )
{
// NOTE: It would be nice to break out of parsing once we have the data start and
// save seeking over the whole file. But to do so, the other needed chunks must occur
// before the DATA chunk. But, that is not standard and breaks most other wav parsers.
switch( chunkName )
{
case WAVE_DATA:
// data starts at chunk + 8 (chunk name, chunk size = 2*4=8 bytes)
// don't load the data, just know where it is so each instance
// can load it later
m_dataStart = walk.ChunkFilePosition() + 8;
m_dataSize = walk.ChunkSize();
m_sampleCount = m_dataSize / m_sampleSize;
return;
}
CAudioSourceWave::ParseChunk( walk, chunkName );
}
//-----------------------------------------------------------------------------
// Purpose: This is not implemented here. This source has no data. It is the
// WaveData's responsibility to load/serve the data
//-----------------------------------------------------------------------------
int CAudioSourceStreamWave::GetOutputData( void **pData, int samplePosition, int sampleCount, char copyBuf[AUDIOSOURCE_COPYBUF_SIZE] )
{
return 0;
}
int CAudioSourceStreamWave::GetCacheStatus( void )
{
if ( !m_dataSize || !m_dataStart )
{
// didn't get precached properly
return AUDIO_NOT_LOADED;
}
return AUDIO_IS_LOADED;
}
//-----------------------------------------------------------------------------
// Purpose: Create a wave audio source (streaming or in memory)
// Input : *pName - file name (NOTE: CAUDIOSOURCE KEEPS A POINTER TO pSfx)
// streaming - if true, don't load, stream each instance
// Output : CAudioSource * - a new source
//-----------------------------------------------------------------------------
CAudioSource *CreateWave( CSfxTable *pSfx, bool bStreaming )
{
Assert( pSfx );
#if defined( _DEBUG )
// For some reason you can't usually do pSfx->getname() in the dev studio debugger, so for convenience we'll grab the name
// here in debug builds at least...
char const *pName = pSfx->getname();
NOTE_UNUSED( pName );
#endif
CAudioSourceWave *pWave = NULL;
if ( IsPC() || !IsX360() )
{
// Caching should always work, so if we failed to cache, it's a problem reading the file data, etc.
bool bIsMapSound = pSfx->IsPrecachedSound();
CAudioSourceCachedInfo *pInfo = audiosourcecache->GetInfo( CAudioSource::AUDIO_SOURCE_WAV, bIsMapSound, pSfx );
if ( pInfo && pInfo->Type() != CAudioSource::AUDIO_SOURCE_UNK )
{
// create the source from this file
if ( bStreaming )
{
pWave = new CAudioSourceStreamWave( pSfx, pInfo );
}
else
{
pWave = new CAudioSourceMemWave( pSfx, pInfo );
}
}
}
else
{
// 360 does not use audio cache system
// create the desired type
if ( bStreaming )
{
pWave = new CAudioSourceStreamWave( pSfx );
}
else
{
pWave = new CAudioSourceMemWave( pSfx );
}
}
if ( pWave && !pWave->Format() )
{
// lack of format indicates failure
delete pWave;
pWave = NULL;
}
return pWave;
}
//-----------------------------------------------------------------------------
// Purpose: Wrapper for CreateWave()
//-----------------------------------------------------------------------------
CAudioSource *Audio_CreateStreamedWave( CSfxTable *pSfx )
{
#if defined( MP3_SUPPORT )
if ( Audio_IsMP3( pSfx->GetFileName() ) )
{
return Audio_CreateStreamedMP3( pSfx );
}
#endif
return CreateWave( pSfx, true );
}
//-----------------------------------------------------------------------------
// Purpose: Wrapper for CreateWave()
//-----------------------------------------------------------------------------
CAudioSource *Audio_CreateMemoryWave( CSfxTable *pSfx )
{
#if defined( MP3_SUPPORT )
if ( Audio_IsMP3( pSfx->GetFileName() ) )
{
return Audio_CreateMemoryMP3( pSfx );
}
#endif
return CreateWave( pSfx, false );
}
float GetMP3Duration_Helper( char const *filename );
static float Audio_GetMP3Duration( char const *pName )
{
// Deduce from file
return GetMP3Duration_Helper( pName );
}
void MaybeReportMissingWav( char const *wav )
{
static CUtlSymbolTable wavErrors;
CUtlSymbol sym;
sym = wavErrors.Find( wav );
if ( UTL_INVAL_SYMBOL == sym )
{
// See if file exists
if ( g_pFullFileSystem->FileExists( wav ) )
{
DevWarning( "Bad Audio file '%s'\n", wav );
}
else
{
DevWarning( "Missing wav file '%s'\n", wav );
}
wavErrors.AddString( wav );
}
}
static float Audio_GetWaveDuration( char const *pName )
{
if ( IsX360() )
{
// should have precached
return 0;
}
char formatBuffer[1024];
WAVEFORMATEX *pfmt = (WAVEFORMATEX *)formatBuffer;
InFileRIFF riff( pName, *g_pSndIO );
if ( riff.RIFFName() != RIFF_WAVE )
{
MaybeReportMissingWav( pName );
return 0.0f;
}
// set up the iterator for the whole file (root RIFF is a chunk)
IterateRIFF walk( riff, riff.RIFFSize() );
int format = 0;
int formatSize = 0;
int sampleCount = 0;
// This chunk must be first as it contains the wave's format
// break out when we've parsed it
while ( walk.ChunkAvailable() && ( format == 0 || sampleCount == 0 ) )
{
switch( walk.ChunkName() )
{
case WAVE_FMT:
if ( walk.ChunkSize() <= sizeof( formatBuffer ) )
{
walk.ChunkRead( formatBuffer );
formatSize = walk.ChunkSize();
format = LittleWord( pfmt->wFormatTag );
}
break;
case WAVE_DATA:
if ( format != 0 )
{
int dataSize = walk.ChunkSize();
if ( format == WAVE_FORMAT_ADPCM )
{
// Dummy size for now
sampleCount = dataSize;
}
else
{
sampleCount = dataSize / ( LittleWord( pfmt->wBitsPerSample ) >> 3 );
}
}
break;
default:
ChunkError( walk.ChunkName() );
break;
}
walk.ChunkNext();
}
// Not really a WAVE file or no format chunk, bail
if ( !format || !sampleCount )
return 0.0f;
float sampleRate = LittleDWord( pfmt->nSamplesPerSec );
if ( format == WAVE_FORMAT_ADPCM )
{
// Determine actual duration
sampleCount = ADPCMSampleCount( (ADPCMWAVEFORMAT *)formatBuffer, sampleCount );
}
return (float)sampleCount / sampleRate;
}
//-----------------------------------------------------------------------------
// Purpose: Fast method for determining duration of .wav/.mp3, exposed to server as well
// Input : *pName -
// Output : float
//-----------------------------------------------------------------------------
float AudioSource_GetSoundDuration( char const *pName )
{
#if defined( MP3_SUPPORT )
if ( Audio_IsMP3( pName ) )
{
return Audio_GetMP3Duration( pName );
}
#endif
CSfxTable *pSound = S_PrecacheSound( pName );
if ( pSound )
{
return AudioSource_GetSoundDuration( pSound );
}
return Audio_GetWaveDuration( pName );
}
float AudioSource_GetSoundDuration( CSfxTable *pSfx )
{
if ( pSfx && pSfx->pSource )
{
return (float)pSfx->pSource->SampleCount() / (float)pSfx->pSource->SampleRate();
}
return 0;
}
CAudioSourceCachedInfo::CAudioSourceCachedInfo() :
infolong( 0 ),
flagsbyte( 0 ),
m_dataStart( 0 ),
m_dataSize( 0 ),
m_loopStart( 0 ),
m_sampleCount( 0 ),
m_usCachedDataSize( 0 ),
m_pCachedData( 0 ),
m_usHeaderSize( 0 ),
m_pHeader( 0 ),
m_pSentence( 0 )
{
}
CAudioSourceCachedInfo& CAudioSourceCachedInfo::operator =( const CAudioSourceCachedInfo& src )
{
if ( this == &src )
return *this;
infolong = src.infolong;
flagsbyte = src.flagsbyte;
SetDataStart( src.DataStart() );
SetDataSize( src.DataSize() );
SetLoopStart( src.LoopStart() );
SetSampleCount( src.SampleCount() );
CSentence *scopy = NULL;
if ( src.Sentence() )
{
scopy = new CSentence();
*scopy = *src.Sentence();
}
SetSentence( scopy );
byte *data = NULL;
Assert( src.CachedDataSize() == 0 || src.CachedData() );
m_usCachedDataSize = 0;
if ( src.CachedData() && src.CachedDataSize() > 0 )
{
SetCachedDataSize( src.CachedDataSize() );
data = new byte[ src.CachedDataSize() ];
Assert( data );
Q_memcpy( data, src.CachedData(), src.CachedDataSize() );
}
SetCachedData( data );
data = NULL;
Assert( src.HeaderSize() == 0 || src.HeaderData() );
m_usHeaderSize = 0;
if ( src.HeaderData() && src.HeaderSize() > 0 )
{
SetHeaderSize( src.HeaderSize() );
data = new byte[ src.HeaderSize() ];
Assert( data );
Q_memcpy( data, src.HeaderData(), src.HeaderSize() );
}
SetHeaderData( data );
return *this;
}
CAudioSourceCachedInfo::CAudioSourceCachedInfo( const CAudioSourceCachedInfo& src )
{
if ( this == &src )
{
Assert( 0 );
return;
}
infolong = src.infolong;
flagsbyte = src.flagsbyte;
SetDataStart( src.DataStart() );
SetDataSize( src.DataSize() );
SetLoopStart( src.LoopStart() );
SetSampleCount( src.SampleCount() );
CSentence *scopy = NULL;
if ( src.Sentence() )
{
scopy = new CSentence();
*scopy = *src.Sentence();
}
SetSentence( scopy );
byte *data = NULL;
Assert( src.CachedDataSize() == 0 || src.CachedData() );
m_usCachedDataSize = 0;
if ( src.CachedData() && src.CachedDataSize() > 0 )
{
SetCachedDataSize( src.CachedDataSize() );
data = new byte[ src.CachedDataSize() ];
Assert( data );
Q_memcpy( data, src.CachedData(), src.CachedDataSize() );
}
SetCachedData( data );
data = NULL;
Assert( src.HeaderSize() == 0 || src.HeaderData() );
m_usHeaderSize = 0;
if ( src.HeaderData() && src.HeaderSize() > 0 )
{
SetHeaderSize( src.HeaderSize() );
data = new byte[ src.HeaderSize() ];
Assert( data );
Q_memcpy( data, src.HeaderData(), src.HeaderSize() );
}
SetHeaderData( data );
}
CAudioSourceCachedInfo::~CAudioSourceCachedInfo()
{
Clear();
}
void CAudioSourceCachedInfo::Clear()
{
infolong = 0;
flagsbyte = 0;
m_dataStart = 0;
m_dataSize = 0;
m_loopStart = 0;
m_sampleCount = 0;
delete m_pSentence;
m_pSentence = NULL;
delete[] m_pCachedData;
m_pCachedData = NULL;
m_usCachedDataSize = 0;
delete[] m_pHeader;
m_pHeader = NULL;
m_usHeaderSize = 0;
}
void CAudioSourceCachedInfo::RemoveData()
{
delete[] m_pCachedData;
m_pCachedData = NULL;
m_usCachedDataSize = 0;
flags.m_bCachedData = false;
}
void CAudioSourceCachedInfo::Save( CUtlBuffer& buf )
{
buf.PutInt( infolong );
buf.PutChar( flagsbyte );
buf.PutInt( m_dataStart );
buf.PutInt( m_dataSize );
buf.PutInt( m_loopStart );
buf.PutInt( m_sampleCount );
if ( flags.m_bSentence )
{
m_pSentence->CacheSaveToBuffer( buf, CACHED_SENTENCE_VERSION );
}
Assert( m_usCachedDataSize < 65535 );
if ( flags.m_bCachedData && m_pCachedData )
{
buf.PutInt( m_usCachedDataSize );
buf.Put( m_pCachedData, m_usCachedDataSize );
}
Assert( m_usHeaderSize <= 32767 );
if ( flags.m_bHeader )
{
buf.PutShort( m_usHeaderSize );
buf.Put( m_pHeader, m_usHeaderSize );
}
}
void CAudioSourceCachedInfo::Restore( CUtlBuffer& buf )
{
// Wipe any old data!!!
Clear();
infolong = buf.GetInt();
flagsbyte = buf.GetChar();
m_dataStart = buf.GetInt();
m_dataSize = buf.GetInt();
m_loopStart = buf.GetInt();
m_sampleCount = buf.GetInt();
if ( flags.m_bSentence )
{
m_pSentence = new CSentence();
Assert( m_pSentence );
m_pSentence->CacheRestoreFromBuffer( buf );
}
if ( flags.m_bCachedData )
{
m_usCachedDataSize = buf.GetInt();
Assert( m_usCachedDataSize > 0 && m_usCachedDataSize < 65535 );
if ( m_usCachedDataSize > 0 )
{
byte *data = new byte[ m_usCachedDataSize ];
buf.Get( data, m_usCachedDataSize );
SetCachedData( data );
}
}
if ( flags.m_bHeader )
{
m_usHeaderSize = buf.GetShort();
Assert( m_usHeaderSize > 0 && m_usHeaderSize <= 32767 );
if ( m_usHeaderSize > 0 )
{
byte *data = new byte[ m_usHeaderSize ];
buf.Get( data, m_usHeaderSize );
SetHeaderData( data );
}
}
}
int CAudioSourceCachedInfo::s_CurrentType = CAudioSource::AUDIO_SOURCE_MAXTYPE;
CSfxTable *CAudioSourceCachedInfo::s_pSfx = NULL;
bool CAudioSourceCachedInfo::s_bIsPrecacheSound = false;
void CAudioSourceCachedInfo::Rebuild( char const *filename )
{
// Wipe any old data
Clear();
Assert( s_pSfx );
Assert( s_CurrentType != CAudioSource::AUDIO_SOURCE_MAXTYPE );
#if 0
// Never cachify something which is not in the client precache list
if ( s_bIsPrecacheSound != s_pSfx->IsPrecachedSound() )
{
Msg( "Logic bug, precaching entry for '%s' which is not in precache list\n",
filename );
}
#endif
SetType( s_CurrentType );
CAudioSource *as = NULL;
// Note though these instantiate a specific AudioSource subclass, it doesn't matter, we just need one for .wav and one for .mp3
switch ( s_CurrentType )
{
default:
case CAudioSource::AUDIO_SOURCE_VOICE:
break;
case CAudioSource::AUDIO_SOURCE_WAV:
as = new CAudioSourceMemWave( s_pSfx );
break;
case CAudioSource::AUDIO_SOURCE_MP3:
#if defined( MP3_SUPPORT )
as = new CAudioSourceMP3Cache( s_pSfx );
#endif
break;
}
if ( as )
{
as->GetCacheData( this );
delete as;
}
}
// Versions
// 3: The before time
// 4: Changed MP3 caching to ensure we store proper sample rate, removed hack to not cache vo/
// 5: Fixed bug that could result in incorrect mp3 datasizes in the sound cache
#define AUDIOSOURCE_CACHE_VERSION 5
class CAudioSourceCache : public IAudioSourceCache
{
public:
struct SearchPathCache : CUtlCachedFileData< CAudioSourceCachedInfo >
{
SearchPathCache( const char *pszRepositoryFilename, const char *pszSearchPath, UtlCachedFileDataType_t eOutOfDateMethod )
: CUtlCachedFileData( pszRepositoryFilename, AUDIOSOURCE_CACHE_VERSION, AsyncLookaheadMetaChecksum, eOutOfDateMethod )
{
V_strcpy_safe( m_szSearchPath, pszSearchPath );
// Delete any existing cache if it's out of date
IsUpToDate();
// Load up existing cache file
Init();
}
char m_szSearchPath[ MAX_PATH ];
virtual ~SearchPathCache()
{
Shutdown();
}
};
CAudioSourceCache()
{
m_nServerCount = -1;
m_bSndCacheDebug = false;
}
bool Init( unsigned int memSize );
void Shutdown();
void CheckSaveDirtyCaches();
void CheckCacheBuild();
void BuildCache( char const *pszSearchPath );
static unsigned int AsyncLookaheadMetaChecksum( void );
void LevelInit( char const *mapname );
void LevelShutdown();
virtual CAudioSourceCachedInfo *GetInfo( int audiosourcetype, bool soundisprecached, CSfxTable *sfx );
virtual void RebuildCacheEntry( int audiosourcetype, bool soundisprecached, CSfxTable *sfx );
virtual void ForceRecheckDiskInfo();
private:
SearchPathCache *LookUpCacheEntry( const char *szCleanedFilename, int audiosourcetype, bool soundisprecached, CSfxTable *sfx );
SearchPathCache *FindCacheForSearchPath( const char *pszSearchPath );
SearchPathCache *CreateCacheForSearchPath( const char *pszSearchPath );
static void GetSoundFilename( char *szResult, int nResultSize, const char *pszInputFilename );
void RemoveCache( char const *cachename );
// List of all loaded caches
CUtlVector<SearchPathCache*> m_vecCaches;
int m_nServerCount;
bool m_bSndCacheDebug;
};
static CAudioSourceCache g_ASCache;
IAudioSourceCache *audiosourcecache = &g_ASCache;
unsigned int CAudioSourceCachedInfoHandle_t::s_nCurrentFlushCount = 1;
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAudioSourceCachedInfoHandle_t::InvalidateCache()
{
++s_nCurrentFlushCount;
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CAudioSourceCache::Init( unsigned int memSize )
{
#if defined( _DEBUG )
Msg( "CAudioSourceCache: Init\n" );
#endif
m_bSndCacheDebug = CommandLine()->FindParm( "-sndcachedebug" ) ? true : false;
if ( !wavedatacache->Init( memSize ) )
{
Error( "Unable to init wavedatacache system\n" );
return false;
}
if ( IsX360() )
{
// 360 doesn't use audio source caches
return true;
}
// Gather up list of search paths
CUtlVector< CUtlString > vecSearchPaths;
GetSearchPath( vecSearchPaths, "game" );
// Create corresponding caches
FOR_EACH_VEC( vecSearchPaths, idxSearchPath )
{
// Standardize the name
char szSearchPath[ MAX_PATH ];
V_strcpy_safe( szSearchPath, vecSearchPaths[idxSearchPath] );
V_FixSlashes( szSearchPath );
V_AppendSlash( szSearchPath, sizeof(szSearchPath ) );
// See if we already have a cache for this search path.
bool bFound = false;
FOR_EACH_VEC( m_vecCaches, idxCache )
{
if ( V_stricmp( szSearchPath, m_vecCaches[idxCache]->m_szSearchPath ) == 0 )
{
Assert( V_strcmp( szSearchPath, m_vecCaches[idxCache]->m_szSearchPath ) == 0 ); // case *should* match exactly
bFound = true;
break;
}
}
if ( bFound )
continue;
// Add a ceche
SearchPathCache *pCache = CreateCacheForSearchPath( szSearchPath );
m_vecCaches.AddToTail( pCache );
}
return true;
}
CAudioSourceCache::SearchPathCache *CAudioSourceCache::FindCacheForSearchPath( const char *pszSearchPath )
{
FOR_EACH_VEC( m_vecCaches, idx )
{
SearchPathCache *pCache = m_vecCaches[idx];
if ( V_stricmp( pCache->m_szSearchPath, pszSearchPath ) == 0 )
{
return pCache;
}
}
return NULL;
}
CAudioSourceCache::SearchPathCache *CAudioSourceCache::CreateCacheForSearchPath( const char *pszSearchPath )
{
// Make sure search path ends in a slash
char szSearchPath[ MAX_PATH ];
V_strcpy_safe( szSearchPath, pszSearchPath );
V_AppendSlash( szSearchPath, sizeof(szSearchPath) );
// Set the filename for the cache.
UtlCachedFileDataType_t eOutOfDateMethod = UTL_CACHED_FILE_USE_FILESIZE;
char szCacheName[ MAX_PATH + 32 ];
V_strcpy_safe( szCacheName, szSearchPath );
char *dotVpkSlash = V_stristr( szCacheName, ".vpk" CORRECT_PATH_SEPARATOR_S );
if ( dotVpkSlash )
{
Assert( dotVpkSlash[5] == '\0' );
char *d = dotVpkSlash+4; // backup to where the slash is
Assert( *d == CORRECT_PATH_SEPARATOR );
V_strcpy( d, ".sound.cache" );
}
else
{
V_strcat_safe( szCacheName, "sound" CORRECT_PATH_SEPARATOR_S "sound.cache" );
eOutOfDateMethod = UTL_CACHED_FILE_USE_TIMESTAMP;
}
return new SearchPathCache( szCacheName, szSearchPath, eOutOfDateMethod );
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::Shutdown()
{
#if defined( _DEBUG )
Msg( "CAudioSourceCache: Shutdown\n" );
#endif
CheckSaveDirtyCaches();
m_vecCaches.PurgeAndDeleteElements();
wavedatacache->Shutdown();
}
//-----------------------------------------------------------------------------
// Purpose: Called by Host_Init on engine startup to rebuild everything if needed
//-----------------------------------------------------------------------------
void CAudioSourceCache::CheckCacheBuild()
{
if ( IsX360() )
{
return;
}
// !FIXME! We'll just do everything lazily for now!
FOR_EACH_VEC( m_vecCaches, idx )
{
}
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::CheckSaveDirtyCaches()
{
FOR_EACH_VEC( m_vecCaches, idx )
{
SearchPathCache *pCache = m_vecCaches[idx];
if ( pCache->IsDirty() && pCache->GetNumElements() > 0 )
{
Msg( "Saving %s\n", pCache->GetRepositoryFileName() );
pCache->Save();
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Static method
// Output : unsigned int
//-----------------------------------------------------------------------------
unsigned int CAudioSourceCache::AsyncLookaheadMetaChecksum( void )
{
if ( IsX360() )
{
return 0;
}
CRC32_t crc;
CRC32_Init( &crc );
float f = SND_ASYNC_LOOKAHEAD_SECONDS;
CRC32_ProcessBuffer( &crc, &f, sizeof( f ) );
// Finish
CRC32_Final( &crc );
return (unsigned int)crc;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *mapname -
//-----------------------------------------------------------------------------
void CAudioSourceCache::LevelInit( char const *mapname )
{
CheckSaveDirtyCaches();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CAudioSourceCache::LevelShutdown()
{
CheckSaveDirtyCaches();
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::GetSoundFilename( char *szResult, int nResultSize, const char *pszInputFilename )
{
V_snprintf( szResult, nResultSize, "sound/%s", pszInputFilename );
V_FixSlashes( szResult );
V_RemoveDotSlashes( szResult );
V_strlower( szResult );
}
//-----------------------------------------------------------------------------
CAudioSourceCache::SearchPathCache *CAudioSourceCache::LookUpCacheEntry( const char *fn, int audiosourcetype, bool soundisprecached, CSfxTable *sfx )
{
if ( IsX360() )
{
return NULL;
}
// Hack to remember the type of audiosource to create if we need to recreate it
CAudioSourceCachedInfo::s_CurrentType = audiosourcetype;
CAudioSourceCachedInfo::s_pSfx = sfx;
CAudioSourceCachedInfo::s_bIsPrecacheSound = soundisprecached;
// Get cleaned up filename
char szRelFilename[ 256 ];
GetSoundFilename( szRelFilename, sizeof( szRelFilename ), sfx->GetFileName() );
// Get absolute filename. This thing had better exist in the filesystem somewhere
char szAbsFilename[ 1024 ];
if ( !g_pFullFileSystem->RelativePathToFullPath( szRelFilename, "game", szAbsFilename, sizeof(szAbsFilename) ) )
{
return NULL;
}
// now try to figure out which search path this corresponds to
FOR_EACH_VEC( m_vecCaches, idx )
{
SearchPathCache *pCache = m_vecCaches[idx];
if ( V_strncmp( pCache->m_szSearchPath, szAbsFilename, V_strlen( pCache->m_szSearchPath ) ) == 0 )
{
return pCache;
}
}
Warning( "Cannot figure out which search path %s came from. Absolute path is %s\n", szRelFilename, szAbsFilename );
SearchPathCache *pCache = NULL;
return pCache;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CAudioSourceCachedInfo *CAudioSourceCache::GetInfo( int audiosourcetype, bool soundisprecached, CSfxTable *sfx )
{
VPROF("CAudioSourceCache::GetInfo");
if ( IsX360() )
{
// 360 not using
return NULL;
}
Assert( sfx );
char fn[ 512 ];
GetSoundFilename( fn, sizeof( fn ), sfx->GetFileName() );
CAudioSourceCachedInfo *info = NULL;
SearchPathCache *pCache = LookUpCacheEntry( fn, audiosourcetype, soundisprecached, sfx );
if ( !pCache )
return NULL;
info = pCache->Get( fn );
// Is this applicable anymore now that we have a cache per search path?
// if ( info && info->Format() == 0 )
// {
// if ( g_pFullFileSystem->FileExists( fn, "BSP" ) )
// {
// DevMsg( 1, "Forced rebuild of bsp cache sound '%s'\n", fn );
// info = pCache->RebuildItem( fn );
// Assert( info->Format() != 0 );
// }
// }
return info;
}
void CAudioSourceCache::RebuildCacheEntry( int audiosourcetype, bool soundisprecached, CSfxTable *sfx )
{
VPROF("CAudioSourceCache::RebuildCacheEntry");
if ( IsX360() )
{
// 360 not using
return;
}
Assert( sfx );
char fn[ 512 ];
GetSoundFilename( fn, sizeof( fn ), sfx->GetFileName() );
SearchPathCache *pCache = LookUpCacheEntry( fn, audiosourcetype, soundisprecached, sfx );
if ( !pCache )
return;
pCache->RebuildItem( fn );
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::ForceRecheckDiskInfo()
{
FOR_EACH_VEC( m_vecCaches, idx )
{
m_vecCaches[ idx ]->ForceRecheckDiskInfo();
}
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::RemoveCache( char const *cachename )
{
if ( IsX360() )
{
return;
}
if ( g_pFullFileSystem->FileExists( cachename, "MOD" ) )
{
if ( !g_pFullFileSystem->IsFileWritable( cachename, "MOD" ) )
{
g_pFullFileSystem->SetFileWritable( cachename, true, "MOD" );
}
g_pFullFileSystem->RemoveFile( cachename, "MOD" );
}
}
//-----------------------------------------------------------------------------
void CAudioSourceCache::BuildCache( char const *pszSearchPath )
{
// Get absolute path
char szAbsPath[ MAX_PATH ];
V_MakeAbsolutePath( szAbsPath, sizeof(szAbsPath), pszSearchPath );
V_FixSlashes( szAbsPath );
// Add a search path to the filesystem. We'll add one search path as a kludge so we
// can use the existing file finder system easily
g_pFullFileSystem->AddSearchPath( szAbsPath, "soundcache_kludge", PATH_ADD_TO_HEAD );
Msg( "Finding .wav files...\n");
CUtlVector< CUtlString > vecFilenames;
AddFilesToList( vecFilenames, "sound", "soundcache_kludge", "wav" );
Msg( "Finding .mp3 files...\n");
AddFilesToList( vecFilenames, "sound", "soundcache_kludge", "mp3" );
Msg( "Found %d audio files.\n", vecFilenames.Count() );
g_pFullFileSystem->RemoveSearchPaths( "soundcache_kludge" );
if ( vecFilenames.Count() < 1 )
{
Warning(" No audio files found. Not building cache\n" );
return;
}
// FindCacheForSearchPath expects an absolute search path, but if we're working with a VPK we'll have the path to
// the file, wherein the proper path to the file is /foo/bar.vpk, but the *search path* should be /foo/bar.vpk/
char szAsSearchPath[MAX_PATH] = { 0 };
V_strncpy( szAsSearchPath, szAbsPath, sizeof( szAsSearchPath ) );
V_AppendSlash( szAsSearchPath, sizeof( szAsSearchPath ) );
SearchPathCache *pCache = FindCacheForSearchPath( szAsSearchPath );
if ( !pCache )
{
// This cache might not have existed on startup
pCache = CreateCacheForSearchPath( szAbsPath );
m_vecCaches.AddToTail( pCache );
}
g_pFullFileSystem->AddSearchPath( szAbsPath, "game", PATH_ADD_TO_HEAD );
int nLenAbsPath = V_strlen( szAbsPath );
int iLastShownPct = -1;
FOR_EACH_VEC( vecFilenames, idxFilename )
{
const char *pszFilename = vecFilenames[ idxFilename ];
if ( V_strnicmp( pszFilename, szAbsPath, nLenAbsPath ) != 0 )
{
Warning( "Sound %s doesn't begin with search path %s\n", pszFilename, szAbsPath );
Assert( false );
continue;
}
const char *pszRelName = pszFilename + nLenAbsPath;
if ( *pszRelName == '/' || *pszRelName == '\\' )
++pszRelName;
if ( V_strnicmp( pszRelName, "sound" CORRECT_PATH_SEPARATOR_S, 6 ) != 0 )
{
Warning( "Relative name %s doesn't begin with leading 'sound' directory?\n", pszRelName );
Assert( false );
continue;
}
const char *pszName = pszRelName + 6;
// Show progress
int iPct = idxFilename * 100 / vecFilenames.Count();
if ( iPct != iLastShownPct )
{
Msg( " %3d%% %s\n", iPct, pszName );
iLastShownPct = iPct;
}
CAudioSourceCachedInfo::s_bIsPrecacheSound = true;
CAudioSourceCachedInfo::s_CurrentType = CAudioSource::AUDIO_SOURCE_WAV;
char szExt[ 10 ] = { 0 };
V_ExtractFileExtension( pszFilename, szExt, sizeof( szExt ) );
if ( V_stricmp( szExt, "mp3" ) == 0 )
{
CAudioSourceCachedInfo::s_CurrentType = CAudioSource::AUDIO_SOURCE_MP3;
}
CAudioSourceCachedInfo::s_pSfx = S_DummySfx( pszName );
const CAudioSourceCachedInfo *pInfo = pCache->Get( pszRelName );
if ( !pInfo )
{
Warning( "Failed to cache info for %s\n", pszFilename );
}
}
g_pFullFileSystem->RemoveSearchPath( szAbsPath, "game" );
if ( pCache->IsDirty() )
{
Msg( "Saving %s\n", pCache->GetRepositoryFileName() );
pCache->Save();
}
else
{
Msg( "No changes detected; not saving %s\n", pCache->GetRepositoryFileName() );
}
}
void CheckCacheBuild()
{
g_ASCache.CheckCacheBuild();
}
CON_COMMAND( snd_buildcache, "<directory or VPK filename> Rebulds sound cache for a given search path.\n" )
{
if ( args.ArgC() < 2 )
{
ConMsg( "Usage: snd_buildcache <directory or VPK filename>\n" );
return;
}
// Allow them to eitehr specify multiple args, or comma-seperated list.
// You cannot easily pas multiple args on the (OS) command line.
for ( int idxArg = 1 ; idxArg < args.ArgC() ; ++idxArg )
{
CUtlStringList vecPaths;
V_SplitString( args[idxArg], ",", vecPaths );
FOR_EACH_VEC( vecPaths, idxPath )
{
g_ASCache.BuildCache( vecPaths[idxPath] );
}
}
// And now quit the game, because we mucked with search paths and the game is almost certainly not
// going to work anymore
Msg( "Quitting the game because we probably screwed up the search paths...\n" );
extern void HostState_Shutdown();
HostState_Shutdown();
}