Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1923 lines
57 KiB

// NextBotPathFollow.cpp
// Path following
// Author: Michael Booth, April 2005
//========= Copyright Valve Corporation, All rights reserved. ============//
#include "cbase.h"
#include "BasePropDoor.h"
#include "nav_mesh.h"
#include "NextBot.h"
#include "NextBotPathFollow.h"
#include "NextBotUtil.h"
#include "NextBotLocomotionInterface.h"
#include "NextBotBodyInterface.h"
#include "NextBotVisionInterface.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
ConVar NextBotSpeedLookAheadRange( "nb_speed_look_ahead_range", "150", FCVAR_CHEAT );
ConVar NextBotGoalLookAheadRange( "nb_goal_look_ahead_range", "50", FCVAR_CHEAT );
ConVar NextBotLadderAlignRange( "nb_ladder_align_range", "50", FCVAR_CHEAT );
ConVar NextBotAllowAvoiding( "nb_allow_avoiding", "1", FCVAR_CHEAT );
ConVar NextBotAllowClimbing( "nb_allow_climbing", "1", FCVAR_CHEAT );
ConVar NextBotAllowGapJumping( "nb_allow_gap_jumping", "1", FCVAR_CHEAT );
ConVar NextBotDebugClimbing( "nb_debug_climbing", "0", FCVAR_CHEAT );
//--------------------------------------------------------------------------------------------------------------
/**
* Constructor
*/
PathFollower::PathFollower( void )
{
m_goal = NULL;
m_didAvoidCheck = false;
m_avoidTimer.Invalidate();
m_waitTimer.Invalidate();
m_hindrance = NULL;
m_minLookAheadRange = -1.0f;
// was 10.0f for L4D - need a better solution here (MSB 5/15/09)
m_goalTolerance = 25.0f;
}
//--------------------------------------------------------------------------------------------------------------
class CDetachPath
{
public:
CDetachPath( PathFollower *path )
{
m_path = path;
}
bool operator() ( INextBot *bot )
{
bot->NotifyPathDestruction( m_path );
return true;
}
PathFollower *m_path;
};
//--------------------------------------------------------------------------------------------------------------
PathFollower::~PathFollower()
{
// allow bots to detach pointer to me
CDetachPath detach( this );
TheNextBots().ForEachBot( detach );
}
//--------------------------------------------------------------------------------------------------------------
/**
* When the path is invalidated, the follower is also reset
*/
void PathFollower::Invalidate( void )
{
// extend
Path::Invalidate();
m_goal = NULL;
m_avoidTimer.Invalidate();
m_waitTimer.Invalidate();
m_hindrance = NULL;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Invoked when the path is (re)computed (path is valid at the time of this call)
*/
void PathFollower::OnPathChanged( INextBot *bot, Path::ResultType result )
{
// start from the beginning
m_goal = FirstSegment();
}
//--------------------------------------------------------------------------------------------------------------
/**
* Adjust speed based on path curvature
*/
void PathFollower::AdjustSpeed( INextBot *bot )
{
ILocomotion *mover = bot->GetLocomotionInterface();
// if we're coming up on a gap jump, or we're in the air, use maximum speed
if ( ( m_goal && m_goal->type == JUMP_OVER_GAP ) || !mover->IsOnGround() )
{
mover->SetDesiredSpeed( mover->GetRunSpeed() );
return;
}
MoveCursorToClosestPosition( bot->GetPosition() );
const Path::Data &data = GetCursorData();
// speed based on curvature
mover->SetDesiredSpeed( mover->GetRunSpeed() + fabs( data.curvature ) * ( mover->GetWalkSpeed() - mover->GetRunSpeed() ) );
}
//--------------------------------------------------------------------------------------------------------------
/**
* Return true if reached current goal along path
* NOTE: Ladder goals are handled elsewhere
*/
bool PathFollower::IsAtGoal( INextBot *bot ) const
{
VPROF_BUDGET( "PathFollower::IsAtGoal", "NextBot" );
ILocomotion *mover = bot->GetLocomotionInterface();
IBody *body = bot->GetBodyInterface();
//
// m_goal is the node we are moving toward along the path
// current is the node just behind us
//
const Segment *current = PriorSegment( m_goal );
Vector toGoal = m_goal->pos - mover->GetFeet();
// if ( m_goal->type == JUMP_OVER_GAP && !mover->IsOnGround() )
// {
// // jumping over a gap, don't skip ahead until we land
// return false;
// }
if ( current == NULL )
{
// passed goal
return true;
}
else if ( m_goal->type == DROP_DOWN )
{
// m_goal is the top of the drop-down, and the following segment is the landing point
const Segment *landing = NextSegment( m_goal );
if ( landing == NULL )
{
// passed goal or corrupt path
return true;
}
else
{
// did we reach the ground
if ( mover->GetFeet().z - landing->pos.z < mover->GetStepHeight() )
{
// reached goal
return true;
}
}
/// @todo: it is possible to fall into a bad place and get stuck - should move back onto the path
}
else if ( m_goal->type == CLIMB_UP )
{
// once jump is started, assume it is successful, since
// nav mesh may be substantially off from actual ground height at landing
const Segment *landing = NextSegment( m_goal );
if ( landing == NULL )
{
// passed goal or corrupt path
return true;
}
else if ( /*!mover->IsOnGround() && */ mover->GetFeet().z > m_goal->pos.z + mover->GetStepHeight() )
{
// we're off the ground, presumably climbing - assume we reached the goal
return true;
}
/* This breaks infected climbing up holes in the ceiling - they can get within 2D range of m_goal before finding a ledge to climb up to
else if ( mover->IsOnGround() )
{
// proximity check
// Z delta can be anything, since we may be climbing over a tall fence, a physics prop, etc.
const float rangeTolerance = 10.0f;
if ( toGoal.AsVector2D().IsLengthLessThan( rangeTolerance ) )
{
// reached goal
return true;
}
}
*/
}
else
{
const Segment *next = NextSegment( m_goal );
if ( next )
{
// because mover may be off the path, check if it crossed the plane of the goal
// check against average of current and next forward vectors
Vector2D dividingPlane;
if ( current->ladder )
{
dividingPlane = m_goal->forward.AsVector2D();
}
else
{
dividingPlane = current->forward.AsVector2D() + m_goal->forward.AsVector2D();
}
if ( DotProduct2D( toGoal.AsVector2D(), dividingPlane ) < 0.0001f &&
abs( toGoal.z ) < body->GetStandHullHeight() )
{
// only skip higher Z goal if next goal is directly reachable
// can't use this for positions below us because we need to be able
// to climb over random objects along our path that we can't actually
// move *through*
if ( toGoal.z < mover->GetStepHeight() && ( mover->IsPotentiallyTraversable( mover->GetFeet(), next->pos ) && !mover->HasPotentialGap( mover->GetFeet(), next->pos ) ) )
{
// passed goal
return true;
}
}
}
// proximity check
// Z delta can be anything, since we may be climbing over a tall fence, a physics prop, etc.
if ( toGoal.AsVector2D().IsLengthLessThan( m_goalTolerance ) )
{
// reached goal
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Move bot along ladder. Return true if ladder motion is in progress, false if complete.
*/
bool PathFollower::LadderUpdate( INextBot *bot )
{
VPROF_BUDGET( "PathFollower::LadderUpdate", "NextBot" );
ILocomotion *mover = bot->GetLocomotionInterface();
IBody *body = bot->GetBodyInterface();
if ( mover->IsUsingLadder() )
{
// wait for locomotor to finish traversing ladder
return true;
}
if ( m_goal->ladder == NULL )
{
// Check if we have somehow ended up on a ladder, if so, and its a tall down-ladder we are expecting, jump the path ahead.
// This happens for players, who run off ledges and the gamemovement sticks them onto ladders. We only care about
// tall down-ladders, because up ladders work without this, and short ladders aren't dangerous to miss and drop down
// instead of climbing down.
if ( bot->GetEntity()->GetMoveType() == MOVETYPE_LADDER )
{
// 'current' is the segment we are on/just passed over
const Segment *current = PriorSegment( m_goal );
if ( current == NULL )
{
return false;
}
// Start with current, the segment we are currently traversing. Skip the distance check for that segment, because
// the pos is (hopefully) behind us. And if it's a long path segment, it's already outside the climbLookAheadRange,
// and thus it would prevent us looking at m_goal and further for imminent planned climbs.
// 'current' is the segment we are on/just passed over
const float ladderLookAheadRange = 50.0f;
for( const Segment *s = current; s; s = NextSegment( s ) )
{
if ( s != current && ( s->pos - mover->GetFeet() ).AsVector2D().IsLengthGreaterThan( ladderLookAheadRange ) )
{
break;
}
// Only consider reasonably tall down ladders - if we don't grab onto a short ladder, it hopefully won't be a bad fall.
if ( s->ladder != NULL && s->how == GO_LADDER_DOWN && s->ladder->m_length > mover->GetMaxJumpHeight() )
{
float destinationHeightDelta = s->pos.z - mover->GetFeet().z;
if ( fabs(destinationHeightDelta) < mover->GetMaxJumpHeight() )
{
// Advance the goal, and fall through to the normal codepath.
m_goal = s;
break;
}
}
}
}
if ( m_goal->ladder == NULL )
{
// no ladder to use
return false;
}
}
// start using the ladder
const float mountRange = 25.0f;
if ( m_goal->how == GO_LADDER_UP )
{
// check if we're off the ladder and at the top
if ( !mover->IsUsingLadder() && mover->GetFeet().z > m_goal->ladder->m_top.z - mover->GetStepHeight() )
{
// we're up
m_goal = NextSegment( m_goal );
return false;
}
// approach the ladder
Vector2D to = ( m_goal->ladder->m_bottom - mover->GetFeet() ).AsVector2D();
body->AimHeadTowards( m_goal->ladder->m_top - 50.0f * m_goal->ladder->GetNormal() + Vector( 0, 0, body->GetCrouchHullHeight() ),
IBody::CRITICAL,
2.0f,
NULL,
"Mounting upward ladder" );
float range = to.NormalizeInPlace();
if ( range < NextBotLadderAlignRange.GetFloat() )
{
// getting close - line up
Vector2D ladderNormal2D = m_goal->ladder->GetNormal().AsVector2D();
float dot = DotProduct2D( ladderNormal2D, to );
const float cos5 = 0.9f;
if ( dot < -cos5 )
{
// lined up - continue approach
mover->Approach( m_goal->ladder->m_bottom );
if ( range < mountRange )
{
// go up ladder
mover->ClimbLadder( m_goal->ladder, m_goal->area );
}
}
else
{
// rotate around ladder and maintain distance from it
Vector myPerp( -to.y, to.x, 0.0f );
Vector2D ladderPerp2D( -ladderNormal2D.y, ladderNormal2D.x );
Vector goal = m_goal->ladder->m_bottom;
float alignRange = NextBotLadderAlignRange.GetFloat();
if ( dot < 0.0f )
{
// we are on the correct side of the ladder
// align range should drop off as we reach alignment
alignRange = mountRange + (1.0f + dot) * (alignRange - mountRange);
}
goal.x -= alignRange * to.x;
goal.y -= alignRange * to.y;
if ( DotProduct2D( to, ladderPerp2D ) < 0.0f )
{
goal += 10.0f * myPerp;
}
else
{
goal -= 10.0f * myPerp;
}
mover->Approach( goal );
}
}
else
{
// approach the base of the ladder - use normal path following in case there are jumps/climbs on the way to the ladder
return false;
}
}
else // go down ladder
{
// check if we fell off and are now below the ladder
if ( mover->GetFeet().z < m_goal->ladder->m_bottom.z + mover->GetStepHeight() )
{
// we fell
m_goal = NextSegment( m_goal );
}
else
{
// approach the ladder
Vector mountPoint = m_goal->ladder->m_top + 0.5f * body->GetHullWidth() * m_goal->ladder->GetNormal();
Vector2D to = ( mountPoint - mover->GetFeet() ).AsVector2D();
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
const float size = 5.0f;
NDebugOverlay::Sphere( mountPoint, size, 255, 0, 255, true, 0.1f );
}
body->AimHeadTowards( m_goal->ladder->m_bottom + 50.0f * m_goal->ladder->GetNormal() + Vector( 0, 0, body->GetCrouchHullHeight() ),
IBody::CRITICAL,
1.0f,
NULL,
"Mounting downward ladder" );
float range = to.NormalizeInPlace();
// Approach the top of the ladder. If we're already on the ladder, start descending.
if ( range < mountRange || bot->GetEntity()->GetMoveType() == MOVETYPE_LADDER )
{
// go down ladder
mover->DescendLadder( m_goal->ladder, m_goal->area );
// increment goal segment since locomotor will move us along the ladder
m_goal = NextSegment( m_goal );
}
else
{
// approach the top of the ladder - use normal path following in case there are jumps/climbs on the way to the ladder
return false;
}
}
}
return true;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Check if we have reached our current path goal and
* iterate to next goal or finish the path
*/
bool PathFollower::CheckProgress( INextBot *bot )
{
ILocomotion *mover = bot->GetLocomotionInterface();
// skip nearby goal points that are redundant to smooth path following motion
const Path::Segment *pSkipToGoal = NULL;
if ( m_minLookAheadRange > 0.0f )
{
pSkipToGoal = m_goal;
const Vector &myFeet = mover->GetFeet();
while( pSkipToGoal && pSkipToGoal->type == ON_GROUND && mover->IsOnGround() )
{
if ( ( pSkipToGoal->pos - myFeet ).IsLengthLessThan( m_minLookAheadRange ) )
{
// goal is too close - step to next segment
const Path::Segment *nextSegment = NextSegment( pSkipToGoal );
if ( !nextSegment || nextSegment->type != ON_GROUND )
{
// can't skip ahead to next segment - head towards current goal
break;
}
if ( nextSegment->pos.z > myFeet.z + mover->GetStepHeight() )
{
// going uphill or up stairs tends to cause problems if we skip ahead, so don't
break;
}
#ifdef DOTA_DLL
if ( DotProduct( mover->GetMotionVector(), nextSegment->forward ) <= 0.1f )
{
// don't skip sharp turns
break;
}
#endif
// can we reach the next path segment directly
if ( mover->IsPotentiallyTraversable( myFeet, nextSegment->pos ) && !mover->HasPotentialGap( myFeet, nextSegment->pos ) )
{
pSkipToGoal = nextSegment;
}
else
{
// can't directly reach next segment - keep heading towards current goal
break;
}
}
else
{
// goal is farther than min lookahead
break;
}
}
// didn't find any goal to skip to
if ( pSkipToGoal == m_goal )
{
pSkipToGoal = NULL;
}
}
if ( IsAtGoal( bot ) )
{
// iterate to next segment of the path
const Path::Segment *nextSegment = pSkipToGoal ? pSkipToGoal : NextSegment( m_goal );
if ( nextSegment == NULL )
{
// must be on ground to complete the path
if ( mover->IsOnGround() )
{
// the end of the path has been reached
mover->GetBot()->OnMoveToSuccess( this );
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "PathFollower: OnMoveToSuccess\n" );
}
// don't invalidate if OnMoveToSuccess just recomputed a new path
if ( GetAge() > 0.0f )
{
Invalidate();
}
return false;
}
}
else
{
// keep moving
m_goal = nextSegment;
if ( bot->IsDebugging( NEXTBOT_PATH ) && !mover->IsPotentiallyTraversable( mover->GetFeet(), nextSegment->pos ) )
{
Warning( "PathFollower: path to my goal is blocked by something\n" );
NDebugOverlay::Sphere( m_goal->pos, 5.f, 255, 0, 0, true, 3.f );
}
}
}
return true;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Move mover along path
*/
void PathFollower::Update( INextBot *bot )
{
VPROF_BUDGET( "PathFollower::Update", "NextBotSpiky" );
// track most recent path followed
bot->SetCurrentPath( this );
ILocomotion *mover = bot->GetLocomotionInterface();
if ( !IsValid() || m_goal == NULL )
{
return;
}
if ( !m_waitTimer.IsElapsed() )
{
// still waiting
//mover->ClearStuckStatus( "Waiting for blocker to move" );
return;
}
// m_didAvoidCheck = false;
if ( LadderUpdate( bot ) )
{
// we are traversing a ladder
return;
}
// adjust speed based on path curvature
AdjustSpeed( bot );
if ( CheckProgress( bot ) == false )
{
// goal reached
return;
}
// use the direction towards the goal as 'forward' direction
Vector forward = m_goal->pos - mover->GetFeet();
if ( m_goal->type == CLIMB_UP )
{
const Segment *next = NextSegment( m_goal );
if ( next )
{
// use landing of climb up as forward to help ledge detection
forward = next->pos - mover->GetFeet();
}
}
forward.z = 0.0f;
float goalRange = forward.NormalizeInPlace();
Vector left( -forward.y, forward.x, 0.0f );
if ( left.IsZero() )
{
// if left is zero, forward must also be - path follow failure
mover->GetBot()->OnMoveToFailure( this, FAIL_STUCK );
// don't invalidate if OnMoveToFailure just recomputed a new path
if ( GetAge() > 0.0f )
{
Invalidate();
}
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "PathFollower: OnMoveToFailure( FAIL_STUCK ) because forward and left are ZERO\n" );
}
return;
}
// unit vectors must follow floor slope
const Vector &normal = mover->GetGroundNormal();
// get forward vector along floor
forward = CrossProduct( left, normal );
// correct the sideways vector
left = CrossProduct( normal, forward );
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
float axisSize = 25.0f;
NDebugOverlay::Line( mover->GetFeet(), mover->GetFeet() + axisSize * forward, 255, 0, 0, true, 0.1f );
NDebugOverlay::Line( mover->GetFeet(), mover->GetFeet() + axisSize * normal, 0, 255, 0, true, 0.1f );
NDebugOverlay::Line( mover->GetFeet(), mover->GetFeet() + axisSize * left, 0, 0, 255, true, 0.1f );
}
// climb up ledges
if ( !Climbing( bot, m_goal, forward, left, goalRange ) )
{
// a failed climb could mean an invalid path
if ( !IsValid() )
{
return;
}
// jump over gaps
JumpOverGaps( bot, m_goal, forward, left, goalRange );
}
// event callbacks from the above climbs and jumps may invalidate the path
if ( !IsValid() )
{
return;
}
// if our movement goal is high above us, we must have fallen
CNavArea *myArea = bot->GetEntity()->GetLastKnownArea();
bool isOnStairs = ( myArea && myArea->HasAttributes( NAV_MESH_STAIRS ) );
// limit too high distance to reasonable value for bots that can climb very high
float tooHighDistance = mover->GetMaxJumpHeight();
if ( !m_goal->ladder && !mover->IsClimbingOrJumping() && !isOnStairs && m_goal->pos.z > mover->GetFeet().z + tooHighDistance )
{
const float closeRange = 25.0f; // 75.0f;
Vector2D to( mover->GetFeet().x - m_goal->pos.x, mover->GetFeet().y - m_goal->pos.y );
if ( mover->IsStuck() || to.IsLengthLessThan( closeRange ) )
{
// the goal is too high to reach
// check if we can reach the next segment, in case this was a "jump down" situation
const Path::Segment *next = NextSegment( m_goal );
if ( mover->IsStuck() || !next || ( next->pos.z - mover->GetFeet().z > mover->GetMaxJumpHeight() ) || !mover->IsPotentiallyTraversable( mover->GetFeet(), next->pos ) )
{
// the next node is too high, too - we really did fall off the path
mover->GetBot()->OnMoveToFailure( this, FAIL_FELL_OFF );
// don't invalidate if OnMoveToFailure just recomputed a new path
if ( GetAge() > 0.0f )
{
Invalidate();
}
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "PathFollower: OnMoveToFailure( FAIL_FELL_OFF )\n" );
}
// reset stuck status since we're (likely) repathing anyways. otherwise, we could be stuck in a loop here and not move
mover->ClearStuckStatus( "Fell off path" );
return;
}
}
}
Vector goalPos = m_goal->pos;
// avoid small obstacles
forward = goalPos - mover->GetFeet();
forward.z = 0.0f;
float rangeToGoal = forward.NormalizeInPlace();
left.x = -forward.y;
left.y = forward.x;
left.z = 0.0f;
if ( true || m_goal != LastSegment() ) // think more about this - we often need to avoid to reach the final goal pos, too (MSB 5/15/09)
{
const float nearLedgeRange = 50.0f;
if ( rangeToGoal > nearLedgeRange || ( m_goal && m_goal->type != CLIMB_UP ) )
{
goalPos = Avoid( bot, goalPos, forward, left );
}
}
// face towards movement goal
if ( mover->IsOnGround() )
{
mover->FaceTowards( goalPos );
}
// move bot along path
mover->Approach( goalPos );
// Currently, Approach determines STAND or CROUCH.
// Override this if we're approaching a climb or a jump
if ( m_goal && ( m_goal->type == CLIMB_UP || m_goal->type == JUMP_OVER_GAP ) )
{
bot->GetBodyInterface()->SetDesiredPosture( IBody::STAND );
}
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
const Segment *start = GetCurrentGoal();
if ( start )
{
start = PriorSegment( start );
}
Draw( start );
/*
else
{
DrawInterpolated( 0.0f, GetLength() );
}
*/
NDebugOverlay::Cross3D( goalPos, 5.0f, 150, 150, 255, true, 0.1f );
NDebugOverlay::Line( bot->GetEntity()->WorldSpaceCenter(), goalPos, 255, 255, 0, true, 0.1f );
}
}
//--------------------------------------------------------------------------------------------------------------
/**
* If entity is returned, it is blocking us from continuing along our path
*/
CBaseEntity *PathFollower::FindBlocker( INextBot *bot )
{
IIntention *think = bot->GetIntentionInterface();
// if we don't care about hindrances, don't do the expensive tests
if ( think->IsHindrance( bot, IS_ANY_HINDRANCE_POSSIBLE ) != ANSWER_YES )
return NULL;
ILocomotion *mover = bot->GetLocomotionInterface();
IBody *body = bot->GetBodyInterface();
trace_t result;
NextBotTraceFilterOnlyActors filter( bot->GetEntity(), COLLISION_GROUP_NONE );
const float size = body->GetHullWidth()/4.0f; // keep this small to avoid lockups when groups of bots get close
Vector blockerMins( -size, -size, mover->GetStepHeight() );
Vector blockerMaxs( size, size, body->GetCrouchHullHeight() );
Vector from = mover->GetFeet();
float range = 0.0f;
const float maxHindranceRangeAlong = 750.0f;
// because our path goal may be far ahead of us if the way to there is unobstructed, we
// need to start looking from the point of the path we are actually standing on
MoveCursorToClosestPosition( mover->GetFeet() );
for( const Segment *s = GetCursorData().segmentPrior; s && range < maxHindranceRangeAlong; s = NextSegment( s ) )
{
// trace along direction toward goal a minimum range, in case goal and hindrance are
// very close, but goal is closer
Vector traceForward = s->pos - from;
float traceRange = traceForward.NormalizeInPlace();
const float minTraceRange = 2.0f * body->GetHullWidth();
if ( traceRange < minTraceRange )
{
traceRange = minTraceRange;
}
mover->TraceHull( from, from + traceRange * traceForward, blockerMins, blockerMaxs, body->GetSolidMask(), &filter, &result );
if ( result.DidHitNonWorldEntity() )
{
// if blocker is close, they could be behind us - check
Vector toBlocker = result.m_pEnt->GetAbsOrigin() - bot->GetLocomotionInterface()->GetFeet();
Vector alongPath = s->pos - from;
alongPath.z = 0.0f;
if ( DotProduct( toBlocker, alongPath ) > 0.0f )
{
// ask the bot if this really is a hindrance
if ( think->IsHindrance( bot, result.m_pEnt ) == ANSWER_YES )
{
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
NDebugOverlay::Circle( bot->GetLocomotionInterface()->GetFeet(), QAngle( -90.0f, 0, 0 ), 10.0f, 255, 0, 0, 255, true, 1.0f );
NDebugOverlay::HorzArrow( bot->GetLocomotionInterface()->GetFeet(), result.m_pEnt->GetAbsOrigin(), 1.0f, 255, 0, 0, 255, true, 1.0f );
}
// we are blocked
return result.m_pEnt;
}
}
}
from = s->pos;
range += s->length;
}
return NULL;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Do reflex avoidance movements of very nearby obstacles.
* Return adjusted goal.
*/
Vector PathFollower::Avoid( INextBot *bot, const Vector &goalPos, const Vector &forward, const Vector &left )
{
VPROF_BUDGET( "PathFollower::Avoid", "NextBotExpensive" );
if ( !NextBotAllowAvoiding.GetBool() )
{
return goalPos;
}
if ( !m_avoidTimer.IsElapsed() )
{
return goalPos;
}
// low frequency check until we actually hit something we need to avoid
const float avoidInterval = 0.5f; // 1.0f;
m_avoidTimer.Start( avoidInterval );
ILocomotion *mover = bot->GetLocomotionInterface();
if ( mover->IsClimbingOrJumping() || !mover->IsOnGround() )
{
return goalPos;
}
//
// Check for potential blockers along our path and wait if we're blocked
//
m_hindrance = FindBlocker( bot );
if ( m_hindrance != NULL )
{
// wait
m_waitTimer.Start( avoidInterval * RandomFloat( 1.0f, 2.0f ) );
return mover->GetFeet();
}
// if we are in a "precise" area, do not use avoid volumes
CNavArea *area = bot->GetEntity()->GetLastKnownArea();
if ( area && ( area->GetAttributes() & NAV_MESH_PRECISE ) )
{
return goalPos;
}
m_didAvoidCheck = true;
// we want to avoid other players, etc
trace_t result;
NextBotTraceFilterOnlyActors filter( bot->GetEntity(), COLLISION_GROUP_NONE );
IBody *body = bot->GetBodyInterface();
unsigned int mask = body->GetSolidMask();
const float size = body->GetHullWidth()/4.0f;
const float offset = size + 2.0f;
float range = mover->IsRunning() ? 50.0f : 30.0f;
range *= bot->GetEntity()->GetModelScale();
m_hullMin = Vector( -size, -size, mover->GetStepHeight()+0.1f );
// only use crouch-high avoid volumes, since we'll just crouch if higher obstacles are near
m_hullMax = Vector( size, size, body->GetCrouchHullHeight() );
Vector nextStepHullMin( -size, -size, 2.0f * mover->GetStepHeight() + 0.1f );
// avoid any open doors in our way
CBasePropDoor *door = NULL;
// check left side
m_leftFrom = mover->GetFeet() + offset * left;
m_leftTo = m_leftFrom + range * forward;
m_isLeftClear = true;
float leftAvoid = 0.0f;
NextBotTraversableTraceFilter traverseFilter( bot );
mover->TraceHull( m_leftFrom, m_leftTo, m_hullMin, m_hullMax, mask, &traverseFilter, &result );
if ( result.fraction < 1.0f || result.startsolid )
{
// if this sensor is starting in a solid, set fraction to emulate being against a wall
if ( result.startsolid )
{
result.fraction = 0.0f;
}
leftAvoid = clamp( 1.0f - result.fraction, 0.0f, 1.0f );
m_isLeftClear = false;
// track any doors we need to avoid
if ( result.DidHitNonWorldEntity() )
{
door = dynamic_cast< CBasePropDoor * >( result.m_pEnt );
}
// check for steps
// float firstHit = result.fraction;
// mover->TraceHull( m_leftFrom, m_leftTo, nextStepHullMin, m_hullMax, mask, &filter, &result );
// if ( result.fraction <= firstHit ) //+ mover->GetStepHeight()/2.0f )
// {
// // it's not a step - we hit something
// m_isLeftClear = false;
// }
}
// check right side
m_rightFrom = mover->GetFeet() - offset * left;
m_rightTo = m_rightFrom + range * forward;
m_isRightClear = true;
float rightAvoid = 0.0f;
mover->TraceHull( m_rightFrom, m_rightTo, m_hullMin, m_hullMax, mask, &traverseFilter, &result );
if ( result.fraction < 1.0f || result.startsolid )
{
// if this sensor is starting in a solid, set fraction to emulate being against a wall
if ( result.startsolid )
{
result.fraction = 0.0f;
}
rightAvoid = clamp( 1.0f - result.fraction, 0.0f, 1.0f );
m_isRightClear = false;
// track any doors we need to avoid
if ( !door && result.DidHitNonWorldEntity() )
{
door = dynamic_cast< CBasePropDoor * >( result.m_pEnt );
}
// check for steps
// float firstHit = result.fraction;
// mover->TraceHull( m_rightFrom, m_rightTo, nextStepHullMin, m_hullMax, mask, &filter, &result );
// if ( result.fraction <= firstHit ) // + mover->GetStepHeight()/2.0f)
// {
// // it's not a step - we hit something
// m_isRightClear = false;
// }
}
Vector adjustedGoal = goalPos;
// avoid doors directly in our way
if ( door && !m_isLeftClear && !m_isRightClear )
{
Vector forward, right, up;
AngleVectors( door->GetAbsAngles(), &forward, &right, &up );
const float doorWidth = 100.0f;
Vector doorEdge = door->GetAbsOrigin() - doorWidth * right;
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
NDebugOverlay::Axis( door->GetAbsOrigin(), door->GetAbsAngles(), 20.0f, true, 10.0f );
NDebugOverlay::Line( door->GetAbsOrigin(), doorEdge, 255, 255, 0, true, 10.0f );
}
// move around door
adjustedGoal.x = doorEdge.x;
adjustedGoal.y = doorEdge.y;
// do avoid check again next frame
m_avoidTimer.Invalidate();
}
else if ( !m_isLeftClear || !m_isRightClear )
{
// adjust goal to avoid small obstacle
float avoidResult = 0.0f;
if ( m_isLeftClear )
{
avoidResult = -rightAvoid;
}
else if (m_isRightClear)
{
avoidResult = leftAvoid;
}
else
{
// both left and right are blocked, avoid nearest
const float equalTolerance = 0.01f;
if ( fabs( rightAvoid - leftAvoid ) < equalTolerance )
{
// squarely against a wall, etc
return adjustedGoal;
}
else if ( rightAvoid > leftAvoid )
{
avoidResult = -rightAvoid;
}
else
{
avoidResult = leftAvoid;
}
}
// adjust goal to avoid obstacle
Vector avoidDir = 0.5f * forward - left * avoidResult;
avoidDir.NormalizeInPlace();
adjustedGoal = mover->GetFeet() + 100.0f * avoidDir;
// do avoid check again next frame
m_avoidTimer.Invalidate();
}
return adjustedGoal;
}
#ifdef EXPERIMENTAL_LEDGE_FINDER
//--------------------------------------------------------------------------------------------------------------
/**
* Given a hull that defines the area of space that may contain a climbable ledge,
* subdivide it until we find the ledge.
*/
bool PathFollower::FindClimbLedge( INextBot *bot, Vector startTracePos, Vector ledgeRegionMins, Vector ledgeRegionMaxs )
{
float deltaZ = ledgeRegionMaxs.z - ledgeRegionMins.z;
if ( deltaZ <= bot->GetLocomotionInterface()->GetStepHeight() )
{
// reached minimum subdivision limit - stop
return false;
}
trace_t result;
NextBotTraversableTraceFilter filter( bot, ILocomotion::IMMEDIATELY );
mover->TraceHull( startTracePos, startTracePos,
ledgeRegionMins, ledgeRegionMaxs,
bot->GetBodyInterface()->GetSolidMask(), &filter, &result );
if ( result.DidHit() )
{
// volume is blocked - split into upper and lower volumes and try again
float midZ = ( ledgeRegionMins.z + ledgeRegionMaxs.z ) / 2.0f;
Vector upperLedgeRegionMins( ledgeRegionMins.x, ledgeRegionMins.y, midZ );
Vector upperLedgeRegionMaxs = ledgeRegionMaxs;
FindClimbLedge( bot, startTracePos, upperLedgeRegionMins, upperLedgeRegionMaxs );
Vector lowerLedgeRegionMins = ledgeRegionMins;
Vector lowerLedgeRegionMaxs( ledgeRegionMaxs.x, ledgeRegionMaxs.y, midZ );
FindClimbLedge( bot, startTracePos, lowerLedgeRegionMins, lowerLedgeRegionMaxs );
}
else
{
// volume is clear, trace straight down to find ledge and keep lowest one we've found
mover->TraceHull( startTracePos,
startTracePos + Vector( 0, 0, -100.0f ),
ledgeRegionMins, ledgeRegionMaxs,
bot->GetBodyInterface()->GetSolidMask(), &filter, &result );
}
}
#endif // _DEBUG
//--------------------------------------------------------------------------------------------------------------
/**
* Climb up ledges
*/
bool PathFollower::Climbing( INextBot *bot, const Path::Segment *goal, const Vector &forward, const Vector &right, float goalRange )
{
VPROF_BUDGET( "PathFollower::Climbing", "NextBot" );
ILocomotion *mover = bot->GetLocomotionInterface();
IBody *body = bot->GetBodyInterface();
CNavArea *myArea = bot->GetEntity()->GetLastKnownArea();
if ( !mover->IsAbleToClimb() || !NextBotAllowClimbing.GetBool() )
{
return false;
}
// use the 2D direction towards our goal
Vector climbDirection = forward;
climbDirection.z = 0.0f;
climbDirection.NormalizeInPlace();
// we can't have this as large as our hull width, or we'll find ledges ahead of us
// that we will fall from when we climb up because our hull wont actually touch at the top.
const float ledgeLookAheadRange = body->GetHullWidth() - 1;
if ( mover->IsClimbingOrJumping() || mover->IsAscendingOrDescendingLadder() || !mover->IsOnGround() )
{
return false;
}
// can be in any posture when we climb
if ( m_goal == NULL )
{
return false;
}
if ( TheNavMesh->IsAuthoritative() )
{
//
// Trust what that nav mesh tells us.
// No need for expensive ledge-finding for games with simpler geometry (like TF2)
//
if ( m_goal->type == CLIMB_UP )
{
const Segment *afterClimb = NextSegment( m_goal );
if ( afterClimb && afterClimb->area )
{
// find closest point on climb-destination area
Vector nearClimbGoal;
afterClimb->area->GetClosestPointOnArea( mover->GetFeet(), &nearClimbGoal );
climbDirection = nearClimbGoal - mover->GetFeet();
climbDirection.z = 0.0f;
climbDirection.NormalizeInPlace();
if ( mover->ClimbUpToLedge( nearClimbGoal, climbDirection, NULL ) )
return true;
}
}
return false;
}
// If we're approaching a CLIMB_UP link, save off the height delta for it, and trust the nav *just* enough
// to climb up to that ledge and only that ledge. We keep as large a tolerance as possible, to trust
// the nav as little as possible. There's no valid way to have another CLIMB_UP link within crouch height,
// because we can't actually fit in between the two areas, so one climb is invalid.
float climbUpLedgeHeightDelta = -1.0f;
const float climbUpLedgeTolerance = body->GetCrouchHullHeight();
if ( m_goal->type == CLIMB_UP )
{
const Segment *afterClimb = NextSegment( m_goal );
if ( afterClimb && afterClimb->area )
{
// find closest point on climb-destination area
Vector nearClimbGoal;
afterClimb->area->GetClosestPointOnArea( mover->GetFeet(), &nearClimbGoal );
climbDirection = nearClimbGoal - mover->GetFeet();
climbUpLedgeHeightDelta = climbDirection.z;
climbDirection.z = 0.0f;
climbDirection.NormalizeInPlace();
}
}
// don't try to climb up stairs
if ( m_goal->area->HasAttributes( NAV_MESH_STAIRS ) || ( myArea && myArea->HasAttributes( NAV_MESH_STAIRS ) ) )
{
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
NDebugOverlay::Cross3D( mover->GetFeet(), 5.0f, 0, 255, 255, true, 5.0f );
DevMsg( "%3.2f: %s ON STAIRS\n", gpGlobals->curtime, bot->GetDebugIdentifier() );
}
return false;
}
// 'current' is the segment we are on/just passed over
const Segment *current = PriorSegment( m_goal );
if ( current == NULL )
{
return false;
}
// If path segment immediately ahead of us is not obstructed, don't try to climb.
// This is required to try to avoid accidentally climbing onto valid high ledges when we really want to run UNDER them to our destination.
// We need to check "immediate" traversability to pay attention to breakable objects in our way that we should climb over.
// We also need to check traversability out to 2 * ledgeLookAheadRange in case our goal is just before a tricky ledge climb and once we pass the goal it will be too late.
// When we're in a CLIMB_UP segment, allow us to look for ledges - we know the destination ledge height, and will only grab the correct ledge.
Vector toGoal = m_goal->pos - mover->GetFeet();
toGoal.NormalizeInPlace();
if ( toGoal.z < mover->GetTraversableSlopeLimit() &&
!mover->IsStuck() && m_goal->type != CLIMB_UP &&
mover->IsPotentiallyTraversable( mover->GetFeet(), mover->GetFeet() + 2.0f * ledgeLookAheadRange * toGoal, ILocomotion::IMMEDIATELY ) )
{
return false;
}
// can't do this - we have to find the ledge to deal with breakable railings
#if 0
// If our path requires a climb, do the climb.
// This solves some issues where there are several possible climbable ledges at a given
// location, and we need to know which ledge to climb - just use the preplanned path's choice.
const Segment *ledge = NextSegment( m_goal );
if ( m_goal->type == CLIMB_UP && ledge )
{
const float startClimbRange = body->GetHullWidth();
if ( ( m_goal->pos - mover->GetFeet() ).IsLengthLessThan( startClimbRange ) )
{
mover->ClimbUpToLedge( ledge->pos, climbDirection );
return true;
}
}
#endif
// Determine if we're approaching a planned climb.
// Start with current, the segment we are currently traversing. Skip the distance check for that segment, because
// the pos is (hopefully) behind us. And if it's a long path segment, it's already outside the climbLookAheadRange,
// and thus it would prevent us looking at m_goal and further for imminent planned climbs.
const float climbLookAheadRange = 150.0f;
bool isPlannedClimbImminent = false;
float plannedClimbZ = 0.0f;
for( const Segment *s = current; s; s = NextSegment( s ) )
{
if ( s != current && ( s->pos - mover->GetFeet() ).AsVector2D().IsLengthGreaterThan( climbLookAheadRange ) )
{
break;
}
if ( s->type == CLIMB_UP )
{
isPlannedClimbImminent = true;
const Segment *next = NextSegment( s );
if ( next )
{
plannedClimbZ = next->pos.z;
}
break;
}
}
unsigned int mask = body->GetSolidMask();
trace_t result;
NextBotTraversableTraceFilter filter( bot, ILocomotion::IMMEDIATELY );
const float hullWidth = body->GetHullWidth();
const float halfSize = hullWidth / 2.0f;
const float minHullHeight = body->GetCrouchHullHeight();
const float minLedgeHeight = mover->GetStepHeight() + 0.1f;
Vector skipStepHeightHullMin( -halfSize, -halfSize, minLedgeHeight );
// need to use minimum actual hull height here to catch porous fences and railings
Vector skipStepHeightHullMax( halfSize, halfSize, minHullHeight + 0.1f );
// Find the highest height we can stand at our current location.
// Using the full width hull catches on small lips/ledges, so back up and try again.
float ceilingFraction;
// We can't use IsPotentiallyTraversable to test for ledges, because it's smaller Hull can cause the
// next trace (trace the ceiling height forward) to start solid.
// mover->IsPotentiallyTraversable( mover->GetFeet(), mover->GetFeet() + Vector( 0, 0, mover->GetMaxJumpHeight() ), ILocomotion::IMMEDIATELY, &ceilingFraction );
// Instead of IsPotentiallyTraversable, we back up the same distance and use a second upward trace
// to see if that one finds a higher ceiling. If so, we use that ceiling height, and use the
// backed-up feet position for the ledge finding traces.
Vector feet( mover->GetFeet() );
Vector ceiling( feet + Vector( 0, 0, mover->GetMaxJumpHeight() ) );
mover->TraceHull( feet, ceiling,
skipStepHeightHullMin, skipStepHeightHullMax, mask, &filter, &result );
ceilingFraction = result.fraction;
bool isBackupTraceUsed = false;
if ( ceilingFraction < 1.0f || result.startsolid )
{
trace_t backupTrace;
const float backupDistance = hullWidth * 0.25f; // The IsPotentiallyTraversable check this replaces uses a 1/4 hull width trace
Vector backupFeet( feet - climbDirection * backupDistance );
Vector backupCeiling( backupFeet + Vector( 0, 0, mover->GetMaxJumpHeight() ) );
mover->TraceHull( backupFeet, backupCeiling,
skipStepHeightHullMin, skipStepHeightHullMax, mask, &filter, &backupTrace );
if ( !backupTrace.startsolid && backupTrace.fraction > ceilingFraction )
{
bot->DebugConColorMsg( NEXTBOT_PATH, Color( 255, 255, 255, 255 ), "%s backing up when looking for max ledge height\n", bot->GetDebugIdentifier() );
result = backupTrace;
ceilingFraction = result.fraction;
feet = backupFeet;
ceiling = backupCeiling;
isBackupTraceUsed = true;
}
}
float maxLedgeHeight = ceilingFraction * mover->GetMaxJumpHeight();
if ( maxLedgeHeight <= mover->GetStepHeight() )
{
return false; // early out when we can't even climb StepHeight.
}
//
// Check for ledge climbs over things in our way.
// Even if we have a CLIMB_UP link in our path, we still need
// to find the actual ledge by tracing the local geometry.
//
Vector climbHullMax( halfSize, halfSize, maxLedgeHeight );
Vector ledgePos = feet; // to be computed below
mover->TraceHull( feet,
feet + climbDirection * ledgeLookAheadRange,
skipStepHeightHullMin, climbHullMax, mask, &filter, &result );
if ( bot->IsDebugging( NEXTBOT_PATH ) && NextBotDebugClimbing.GetBool() )
{
// show ledge-finding hull as we move
NDebugOverlay::SweptBox( feet,
feet + climbDirection * ledgeLookAheadRange,
skipStepHeightHullMin, climbHullMax, vec3_angle,
255, 100, 0, 255, 0.1f );
}
bool wasPotentialLedgeFound = result.DidHit() && !result.startsolid;
// To test climbing up past small lips on walls, we can force the bot to run past the overhang and use the backup trace:
// wasPotentialLedgeFound = wasPotentialLedgeFound && (result.fraction == 0 || isBackupTraceUsed);
if ( wasPotentialLedgeFound )
{
VPROF_BUDGET( "PathFollower::Climbing( Search for ledge to climb )", "NextBot" );
if ( bot->IsDebugging( NEXTBOT_PATH ) && NextBotDebugClimbing.GetBool() )
{
// show ledge-finding hull that found a ledge candidate
NDebugOverlay::SweptBox( feet,
feet + climbDirection * ledgeLookAheadRange,
skipStepHeightHullMin, climbHullMax, vec3_angle,
255, 100, 0, 100, 999.9f );
// show primary climb direction
NDebugOverlay::HorzArrow( feet, feet + 50.0f * climbDirection, 2.0f, 0, 255, 0, 255, true, 9999.9f );
}
// what are we climbing over?
CBaseEntity *obstacle = result.m_pEnt;
if ( !result.DidHitNonWorldEntity() || bot->IsAbleToClimbOnto( obstacle ) )
{
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "%3.2f: %s at potential ledge climb\n", gpGlobals->curtime, bot->GetDebugIdentifier() );
}
// the low hull sweep hit an obstacle - note how 'far in' this is
float ledgeFrontWallDepth = ledgeLookAheadRange * result.fraction;
float minLedgeDepth = body->GetHullWidth()/2.0f; // 5.0f;
if ( m_goal->type == CLIMB_UP )
{
// Climbing up to a narrow nav area indicates a narrow ledge. We need to reduce our minLedgeDepth
// here or our path will say we should climb but we'll forever fail to find a wide enough ledge.
const Segment *afterClimb = NextSegment( m_goal );
if ( afterClimb && afterClimb->area )
{
Vector depthVector = climbDirection * minLedgeDepth;
depthVector.z = 0;
if ( fabs( depthVector.x ) > afterClimb->area->GetSizeX() )
{
depthVector.x = (depthVector.x > 0) ? afterClimb->area->GetSizeX() : -afterClimb->area->GetSizeX();
}
if ( fabs( depthVector.y ) > afterClimb->area->GetSizeY() )
{
depthVector.y = (depthVector.y > 0) ? afterClimb->area->GetSizeY() : -afterClimb->area->GetSizeY();
}
float areaDepth = depthVector.NormalizeInPlace();
minLedgeDepth = MIN( minLedgeDepth, areaDepth );
}
}
//
// Find the ledge. Start at the lowest jump we can make
// and step up until we find the actual ledge.
//
// The scan is limited to maxLedgeHeight in case our max
// jump/climb height is so tall the highest horizontal hull
// trace could be on the other side of the ceiling above us
//
float ledgeHeight = minLedgeHeight;
const float ledgeHeightIncrement = 0.5f * mover->GetStepHeight();
bool foundWall = false;
bool foundLedge = false;
// once we have found the ledge's front wall, we must look at least minLedgeDepth farther in to verify it is a ledge
// NOTE: This *must* be ledgeLookAheadRange since ledges are compared against the initial trace which was ledgeLookAheadRange deep
float ledgeTopLookAheadRange = ledgeLookAheadRange;
// TODO: we also must look far enough ahead in case the ledge we actually find is "deeper" than the initial wall at the base
Vector climbHullMin( -halfSize, -halfSize, 0.0f );
Vector climbHullMax( halfSize, halfSize, minHullHeight );
Vector wallPos;
float wallDepth = 0.0f;
bool isLastIteration = false;
while( true )
{
// trace forward to find the wall in front of us, or the empty space of the ledge above us
mover->TraceHull( feet + Vector( 0, 0, ledgeHeight ),
feet + Vector( 0, 0, ledgeHeight ) + climbDirection * ledgeTopLookAheadRange,
climbHullMin, climbHullMax, mask, &filter, &result );
float traceDepth = ledgeTopLookAheadRange * result.fraction;
if ( !result.startsolid )
{
// if trace reached minLedgeDepth farther, this is a potential ledge
if ( foundWall )
{
// TODO: test that potential ledge is flat enough to stand on
if ( ( traceDepth - ledgeFrontWallDepth ) > minLedgeDepth )
{
bool isUsable = true;
// initialize ledgePos from result of last trace
ledgePos = result.endpos;
// Find the actual ground level on the potential ledge
// Only trace back down to the previous ledge height trace.
// The ledge can be no lower, or we would've found it in the last iteration.
mover->TraceHull( ledgePos,
ledgePos + Vector( 0, 0, -ledgeHeightIncrement ),
climbHullMin, climbHullMax, mask, &filter, &result );
ledgePos = result.endpos;
// if the whole trace is in solid, we're out of luck, but
// if the trace just started solid, 'ledgePos' should still be valid
// since the trace left the solid and then hit.
// if the trace hit nothing, the potential ledge is actually deeper in
const float MinGroundNormal = 0.7f; // players can't stand on ground steeper than 0.7
if ( result.allsolid || !result.DidHit() || result.plane.normal.z < MinGroundNormal )
{
// not a usable ledge, try again
isUsable = false;
}
else
{
if ( climbUpLedgeHeightDelta > 0.0f )
{
// if we're climbing to a specific ledge via a CLIMB_UP link, only climb to that ledge.
// Do this only for the world (which includes static props) so we can still opportunistically
// climb up onto breakable railings and physics props.
if ( result.DidHitWorld() )
{
float potentialLedgeHeight = result.endpos.z - feet.z;
if ( fabs(potentialLedgeHeight - climbUpLedgeHeightDelta) > climbUpLedgeTolerance )
{
isUsable = false;
}
}
}
}
if ( isUsable )
{
// back up until we no longer are hitting the ledge to determine the
// exact ledge edge position
Vector validLedgePos = ledgePos; // save off a valid ledge pos
const float edgeTolerance = 4.0f;
const float maxBackUp = hullWidth;
float backUpSoFar = edgeTolerance;
Vector testPos = ledgePos;
while( backUpSoFar < maxBackUp )
{
testPos -= edgeTolerance * climbDirection;
backUpSoFar += edgeTolerance;
mover->TraceHull( testPos,
testPos + Vector( 0, 0, -ledgeHeightIncrement ),
climbHullMin, climbHullMax, mask, &filter, &result );
if ( bot->IsDebugging( NEXTBOT_PATH ) && NextBotDebugClimbing.GetBool() )
{
// show edge-finder hulls
NDebugOverlay::SweptBox( testPos,
testPos + Vector( 0, 0, -mover->GetStepHeight() ),
climbHullMin, climbHullMax, vec3_angle, 255, 0, 0, 255, 999.9f );
}
if ( result.DidHit() && result.plane.normal.z >= MinGroundNormal )
{
// we hit, this is closer to the actual ledge edge
ledgePos = result.endpos;
}
else
{
// nothing but air or a steep slope below us, we have found the edge
break;
}
}
// we want ledgePos to be right on the edge itself, so move
// it ahead by half of the hull width
ledgePos += climbDirection * halfSize;
// Make sure this doesn't embed us in the far wall if the ledge is narrow, since we would
// have backed up less than halfSize.
Vector climbHullMinStep( climbHullMin ); // skip StepHeight for sloped ledges
mover->TraceHull( validLedgePos,
ledgePos,
climbHullMinStep, climbHullMax, mask, &filter, &result );
ledgePos = result.endpos;
// Now since ledgePos + StepHeight is valid, trace down to find ground on sloped ledges.
mover->TraceHull( ledgePos + Vector( 0, 0, StepHeight ),
ledgePos,
climbHullMin, climbHullMax, mask, &filter, &result );
if ( !result.startsolid )
{
ledgePos = result.endpos;
}
}
/*** NOTE: While this saves us from climbing into a window below the window we want to get in,
*** it also causes us to climb in midair high over crates sitting against walls we need to climb over.
if ( isUsable && m_goal->type == CLIMB_UP )
{
// we can only accept ledges at least as high as our current CLIMB_UP destination
// NOTE: Can't use plannedClimbZ here, since that could be 2 or 3 short climbs ahead
const Segment *ledge = NextSegment( m_goal );
if ( !ledge || ledgeHeight < ledge->pos.z - feet.z - mover->GetStepHeight() )
{
// this ledge is below the CLIMB_UP destination - can't use it
isUsable = false;
}
}
*/
if ( isUsable )
{
// found a usable ledge here
foundLedge = true;
break;
}
}
}
else if ( result.DidHit() )
{
// this iteration hit the wall under the ledge,
// meaning the next iteration that reaches far enough will be our ledge
// Since we know that our desired route is likely blocked (via the
// IsTraversable check above) - any ledge we hit we must climb.
// found a valid ledge wall
foundWall = true;
wallDepth = traceDepth;
// make sure the subsequent traces are at least minLedgeDepth deeper than
// the wall we just found, or all ledge checks will fail
float minTraceDepth = traceDepth + minLedgeDepth + 0.1f;
if ( ledgeTopLookAheadRange < minTraceDepth )
{
ledgeTopLookAheadRange = minTraceDepth;
}
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "%3.2f: Climbing - found wall.\n", gpGlobals->curtime );
if ( NextBotDebugClimbing.GetBool() )
{
NDebugOverlay::HorzArrow( result.endpos, result.endpos + 20.0f * result.plane.normal, 5.0f, 255, 100, 0, 255, true, 9999.9f );
}
wallPos = result.endpos;
}
}
else if ( ledgeHeight > body->GetCrouchHullHeight() && !isPlannedClimbImminent )
{
// we haven't hit anything yet, and we're already above our heads - no obstacle
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "%3.2f: Climbing - skipping overhead climb we can walk/crawl under.\n", gpGlobals->curtime );
}
break;
}
}
ledgeHeight += ledgeHeightIncrement;
if ( ledgeHeight >= maxLedgeHeight )
{
if ( isLastIteration )
{
// tested at max height
break;
}
// check one more time at max jump height
isLastIteration = true;
ledgeHeight = maxLedgeHeight;
}
}
if ( foundLedge )
{
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "%3.2f: STARTING LEDGE CLIMB UP\n", gpGlobals->curtime );
if ( NextBotDebugClimbing.GetBool() )
{
NDebugOverlay::Cross3D( ledgePos, 10.0f, 0, 255, 0, true, 9999.9f );
// display approximation of idealized ledge that has been found
Vector side( -climbDirection.y, climbDirection.x, 0.0f );
// this is an approximation, since AABB can hit at any angle
Vector base = feet + halfSize * climbDirection;
Vector wallBottomLeft = base + halfSize * side;
Vector wallBottomRight = base - halfSize * side;
Vector wallTopLeft = wallBottomLeft + Vector( 0, 0, ledgeHeight );
Vector wallTopRight = wallBottomRight + Vector( 0, 0, ledgeHeight );
NDebugOverlay::Triangle( wallBottomRight, wallBottomLeft, wallTopLeft, 255, 100, 0, 100, true, 9999.9f );
NDebugOverlay::Triangle( wallBottomRight, wallTopLeft, wallTopRight, 255, 100, 0, 100, true, 9999.9f );
Vector ledgeLeft = ledgePos + halfSize * side;
Vector ledgeRight = ledgePos - halfSize * side;
NDebugOverlay::Triangle( wallTopRight, wallTopLeft, ledgeLeft, 0, 100, 255, 100, true, 9999.9f );
NDebugOverlay::Triangle( wallTopRight, ledgeLeft, ledgeRight, 0, 100, 255, 100, true, 9999.9f );
}
}
if ( !mover->ClimbUpToLedge( ledgePos, climbDirection, obstacle ) )
{
// climb failed - build a new path in case we're now stuck
//Invalidate();
return false;
}
return true;
}
else if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
DevMsg( "%3.2f: CANT FIND LEDGE TO CLIMB\n", gpGlobals->curtime );
}
}
}
return false;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Jump over gaps
*/
bool PathFollower::JumpOverGaps( INextBot *bot, const Path::Segment *goal, const Vector &forward, const Vector &right, float goalRange )
{
VPROF_BUDGET( "PathFollower::JumpOverGaps", "NextBot" );
ILocomotion *mover = bot->GetLocomotionInterface();
IBody *body = bot->GetBodyInterface();
if ( !mover->IsAbleToJumpAcrossGaps() || !NextBotAllowGapJumping.GetBool() )
{
return false;
}
if ( mover->IsClimbingOrJumping() || mover->IsAscendingOrDescendingLadder() || !mover->IsOnGround() )
{
return false;
}
if ( !body->IsActualPosture( IBody::STAND ) )
{
// can't jump if we're not standing
return false;
}
if ( m_goal == NULL )
{
return false;
}
trace_t result;
NextBotTraversableTraceFilter filter( bot, ILocomotion::IMMEDIATELY );
const float hullWidth = ( body ) ? body->GetHullWidth() : 1.0f;
// 'current' is the segment we are on/just passed over
const Segment *current = PriorSegment( m_goal );
if ( current == NULL )
{
return false;
}
const float minGapJumpRange = 2.0f * hullWidth;
const Segment *gap = NULL;
if ( current->type == JUMP_OVER_GAP )
{
gap = current;
}
else
{
float searchRange = goalRange;
for( const Segment *s = m_goal; s; s = NextSegment( s ) )
{
if ( searchRange > minGapJumpRange )
{
break;
}
if ( s->type == JUMP_OVER_GAP )
{
gap = s;
break;
}
searchRange += s->length;
}
}
if ( gap )
{
VPROF_BUDGET( "PathFollower::GapJumping", "NextBot" );
float halfWidth = hullWidth/2.0f;
if ( mover->IsGap( mover->GetFeet() + halfWidth * gap->forward, gap->forward ) )
{
// there is a gap to jump over
const Segment *landing = NextSegment( gap );
if ( landing )
{
mover->JumpAcrossGap( landing->pos, landing->forward );
// if we're jumping over this gap, make sure our goal is the landing so we aim for it
m_goal = landing;
if ( bot->IsDebugging( NEXTBOT_PATH ) )
{
NDebugOverlay::Cross3D( m_goal->pos, 5.0f, 0, 255, 255, true, 5.0f );
DevMsg( "%3.2f: GAP JUMP\n", gpGlobals->curtime );
}
return true;
}
}
}
return false;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Draw the path for debugging
*/
void PathFollower::Draw( const Path::Segment *start ) const
{
if ( m_goal == NULL )
return;
// show avoid volumes
if ( m_didAvoidCheck )
{
QAngle angles( 0, 0, 0 );
if (m_isLeftClear)
NDebugOverlay::SweptBox( m_leftFrom, m_leftTo, m_hullMin, m_hullMax, angles, 0, 255, 0, 255, 0.1f );
else
NDebugOverlay::SweptBox( m_leftFrom, m_leftTo, m_hullMin, m_hullMax, angles, 255, 0, 0, 255, 0.1f );
if (m_isRightClear)
NDebugOverlay::SweptBox( m_rightFrom, m_rightTo, m_hullMin, m_hullMax, angles, 0, 255, 0, 255, 0.1f );
else
NDebugOverlay::SweptBox( m_rightFrom, m_rightTo, m_hullMin, m_hullMax, angles, 255, 0, 0, 255, 0.1f );
const_cast< PathFollower * >( this )->m_didAvoidCheck = false;
}
// highlight current goal segment
if ( m_goal )
{
const float size = 5.0f;
NDebugOverlay::Sphere( m_goal->pos, size, 255, 255, 0, true, 0.1f );
switch( m_goal->how )
{
case GO_NORTH:
case GO_SOUTH:
NDebugOverlay::Line( m_goal->m_portalCenter - Vector( m_goal->m_portalHalfWidth, 0, 0 ), m_goal->m_portalCenter + Vector( m_goal->m_portalHalfWidth, 0, 0 ), 255, 0, 255, true, 0.1f );
break;
default:
NDebugOverlay::Line( m_goal->m_portalCenter - Vector( 0, m_goal->m_portalHalfWidth, 0 ), m_goal->m_portalCenter + Vector( 0, m_goal->m_portalHalfWidth, 0 ), 255, 0, 255, true, 0.1f );
break;
}
// 'current' is the segment we are on/just passed over
const Segment *current = PriorSegment( m_goal );
if ( current )
{
NDebugOverlay::Line( current->pos, m_goal->pos, 255, 255, 0, true, 0.1f );
}
}
// extend
Path::Draw();
}
//--------------------------------------------------------------------------------------------------------------
/**
* Return true if there is a the given discontinuity ahead in the path within the given range (-1 = entire remaining path)
*/
bool PathFollower::IsDiscontinuityAhead( INextBot *bot, Path::SegmentType type, float range ) const
{
if ( m_goal )
{
const Path::Segment *current = PriorSegment( m_goal );
if ( current && current->type == type )
{
// we're on the discontinuity now
return true;
}
float rangeSoFar = ( m_goal->pos - bot->GetLocomotionInterface()->GetFeet() ).Length();
for( const Segment *s = m_goal; s; s = NextSegment( s ) )
{
if ( rangeSoFar >= range )
{
break;
}
if ( s->type == type )
{
return true;
}
rangeSoFar += s->length;
}
}
return false;
}