Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

562 lines
16 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Used to fire events based on the orientation of a given entity.
//
// Looks at its target's angles every frame and fires an output if its
// target's forward vector points at a specified lookat entity for more
// than a specified length of time.
//
// It also fires an output whenever the target's angles change.
//
//=============================================================================//
#include "cbase.h"
#include "entityinput.h"
#include "entityoutput.h"
#include "eventqueue.h"
#include "mathlib/mathlib.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define SF_USE_TARGET_FACING (1<<0) // Use the target entity's direction instead of position
class CPointAngleSensor : public CPointEntity
{
DECLARE_CLASS(CPointAngleSensor, CPointEntity);
public:
bool KeyValue(const char *szKeyName, const char *szValue);
void Activate(void);
void Spawn(void);
void Think(void);
int DrawDebugTextOverlays(void);
protected:
void Enable();
void Disable();
// Input handlers
void InputEnable(inputdata_t &inputdata);
void InputDisable(inputdata_t &inputdata);
void InputToggle(inputdata_t &inputdata);
void InputTest(inputdata_t &inputdata);
void InputSetTargetEntity(inputdata_t &inputdata);
bool IsFacingWithinTolerance(CBaseEntity *pEntity, CBaseEntity *pTarget, float flTolerance, float *pflDot = NULL);
bool m_bDisabled; // When disabled, we do not think or fire outputs.
string_t m_nLookAtName; // Name of the entity that the target must point at to fire the OnTrue output.
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
EHANDLE m_hLookAtEntity; // Entity that the target must look at to fire the OnTrue output.
float m_flDuration; // Time in seconds for which the entity must point at the target.
float m_flDotTolerance; // Degrees of error allowed to satisfy the condition, expressed as a dot product.
float m_flFacingTime; // The time at which the target entity pointed at the lookat entity.
bool m_bFired; // Latches the output so it only fires once per true.
// Outputs
COutputEvent m_OnFacingLookat; // Fired when the target points at the lookat entity.
COutputEvent m_OnNotFacingLookat; // Fired in response to a Test input if the target is not looking at the lookat entity.
COutputVector m_TargetDir;
COutputFloat m_FacingPercentage; // Normalize value representing how close the entity is to facing directly at the target
DECLARE_DATADESC();
};
LINK_ENTITY_TO_CLASS(point_anglesensor, CPointAngleSensor);
BEGIN_DATADESC(CPointAngleSensor)
// Keys
DEFINE_KEYFIELD(m_bDisabled, FIELD_BOOLEAN, "StartDisabled"),
DEFINE_KEYFIELD(m_nLookAtName, FIELD_STRING, "lookatname"),
DEFINE_FIELD(m_hTargetEntity, FIELD_EHANDLE),
DEFINE_FIELD(m_hLookAtEntity, FIELD_EHANDLE),
DEFINE_KEYFIELD(m_flDuration, FIELD_FLOAT, "duration"),
DEFINE_FIELD(m_flDotTolerance, FIELD_FLOAT),
DEFINE_FIELD(m_flFacingTime, FIELD_TIME),
DEFINE_FIELD(m_bFired, FIELD_BOOLEAN),
// Outputs
DEFINE_OUTPUT(m_OnFacingLookat, "OnFacingLookat"),
DEFINE_OUTPUT(m_OnNotFacingLookat, "OnNotFacingLookat"),
DEFINE_OUTPUT(m_TargetDir, "TargetDir"),
DEFINE_OUTPUT(m_FacingPercentage, "FacingPercentage"),
// Inputs
DEFINE_INPUTFUNC(FIELD_VOID, "Enable", InputEnable),
DEFINE_INPUTFUNC(FIELD_VOID, "Disable", InputDisable),
DEFINE_INPUTFUNC(FIELD_VOID, "Toggle", InputToggle),
DEFINE_INPUTFUNC(FIELD_VOID, "Test", InputTest),
DEFINE_INPUTFUNC(FIELD_STRING, "SetTargetEntity", InputSetTargetEntity),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Handles keyvalues that require special processing.
// Output : Returns true if handled, false if not.
//-----------------------------------------------------------------------------
bool CPointAngleSensor::KeyValue(const char *szKeyName, const char *szValue)
{
if (FStrEq(szKeyName, "tolerance"))
{
float flTolerance = atof(szValue);
m_flDotTolerance = cos(DEG2RAD(flTolerance));
}
else
{
return(BaseClass::KeyValue(szKeyName, szValue));
}
return(true);
}
//-----------------------------------------------------------------------------
// Purpose: Called when spawning after parsing keyvalues.
//-----------------------------------------------------------------------------
void CPointAngleSensor::Spawn(void)
{
BaseClass::Spawn();
}
//-----------------------------------------------------------------------------
// Purpose: Called after all entities have spawned on new map or savegame load.
//-----------------------------------------------------------------------------
void CPointAngleSensor::Activate(void)
{
BaseClass::Activate();
if (!m_hTargetEntity)
{
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target );
}
if (!m_hLookAtEntity && (m_nLookAtName != NULL_STRING))
{
m_hLookAtEntity = gEntList.FindEntityByName( NULL, m_nLookAtName );
if (!m_hLookAtEntity)
{
DevMsg(1, "Angle sensor '%s' could not find look at entity '%s'.\n", GetDebugName(), STRING(m_nLookAtName));
}
}
// It's okay to not have a look at entity, it just means we measure and output the angles
// of the target entity without testing them against the look at entity.
if (!m_bDisabled && m_hTargetEntity)
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose: Determines if one entity is facing within a given tolerance of another
// Input : pEntity -
// pTarget -
// flTolerance -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CPointAngleSensor::IsFacingWithinTolerance(CBaseEntity *pEntity, CBaseEntity *pTarget, float flTolerance, float *pflDot)
{
if (pflDot)
{
*pflDot = 0;
}
if ((pEntity == NULL) || (pTarget == NULL))
{
return(false);
}
Vector forward;
pEntity->GetVectors(&forward, NULL, NULL);
Vector dir;
// Use either our position relative to the target, or the target's raw facing
if ( HasSpawnFlags( SF_USE_TARGET_FACING ) )
{
pTarget->GetVectors(&dir, NULL, NULL);
}
else
{
dir = pTarget->GetAbsOrigin() - pEntity->GetAbsOrigin();
VectorNormalize(dir);
}
//
// Larger dot product corresponds to a smaller angle.
//
float flDot = dir.Dot(forward);
if (pflDot)
{
*pflDot = flDot;
}
if (flDot >= m_flDotTolerance)
{
return(true);
}
return(false);
}
//-----------------------------------------------------------------------------
// Purpose: Called every frame.
//-----------------------------------------------------------------------------
void CPointAngleSensor::Think(void)
{
if (m_hTargetEntity != NULL)
{
Vector forward;
m_hTargetEntity->GetVectors(&forward, NULL, NULL);
m_TargetDir.Set(forward, this, this);
if (m_hLookAtEntity != NULL)
{
//
// Check to see if the measure entity's forward vector has been within
// given tolerance of the target entity for the given period of time.
//
float flDot;
if (IsFacingWithinTolerance(m_hTargetEntity, m_hLookAtEntity, m_flDotTolerance, &flDot ))
{
if (!m_bFired)
{
if (!m_flFacingTime)
{
m_flFacingTime = gpGlobals->curtime;
}
if (gpGlobals->curtime >= m_flFacingTime + m_flDuration)
{
m_OnFacingLookat.FireOutput(this, this);
m_bFired = true;
}
}
}
else
{
// Reset the fired state
if ( m_bFired )
{
m_bFired = false;
}
// Always reset the time when we've lost our facing
m_flFacingTime = 0;
}
// Output the angle range we're in
float flPerc = RemapValClamped( flDot, 1.0f, m_flDotTolerance, 1.0f, 0.0f );
m_FacingPercentage.Set( flPerc, this, this );
}
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose: Input handler for forcing an instantaneous test of the condition.
//-----------------------------------------------------------------------------
void CPointAngleSensor::InputTest(inputdata_t &inputdata)
{
if (IsFacingWithinTolerance(m_hTargetEntity, m_hLookAtEntity, m_flDotTolerance))
{
m_OnFacingLookat.FireOutput(inputdata.pActivator, this);
}
else
{
m_OnNotFacingLookat.FireOutput(inputdata.pActivator, this);
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointAngleSensor::InputSetTargetEntity(inputdata_t &inputdata)
{
if ((inputdata.value.String() == NULL) || (inputdata.value.StringID() == NULL_STRING) || (inputdata.value.String()[0] == '\0'))
{
m_target = NULL_STRING;
m_hTargetEntity = NULL;
SetNextThink( TICK_NEVER_THINK );
}
else
{
m_target = AllocPooledString(inputdata.value.String());
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target, NULL, inputdata.pActivator, inputdata.pCaller );
if (!m_bDisabled && m_hTargetEntity)
{
SetNextThink( gpGlobals->curtime );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointAngleSensor::InputEnable(inputdata_t &inputdata)
{
Enable();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointAngleSensor::InputDisable(inputdata_t &inputdata)
{
Disable();
}
//-----------------------------------------------------------------------------
// Purpose: I like separators between my functions.
//-----------------------------------------------------------------------------
void CPointAngleSensor::InputToggle(inputdata_t &inputdata)
{
if (m_bDisabled)
{
Enable();
}
else
{
Disable();
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointAngleSensor::Enable()
{
m_bDisabled = false;
if (m_hTargetEntity)
{
SetNextThink(gpGlobals->curtime);
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointAngleSensor::Disable()
{
m_bDisabled = true;
SetNextThink(TICK_NEVER_THINK);
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
int CPointAngleSensor::DrawDebugTextOverlays(void)
{
int nOffset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT)
{
float flDot;
bool bFacing = IsFacingWithinTolerance(m_hTargetEntity, m_hLookAtEntity, m_flDotTolerance, &flDot);
char tempstr[512];
Q_snprintf(tempstr, sizeof(tempstr), "delta ang (dot) : %.2f (%f)", RAD2DEG(acos(flDot)), flDot);
EntityText( nOffset, tempstr, 0);
nOffset++;
Q_snprintf(tempstr, sizeof(tempstr), "tolerance ang (dot): %.2f (%f)", RAD2DEG(acos(m_flDotTolerance)), m_flDotTolerance);
EntityText( nOffset, tempstr, 0);
nOffset++;
Q_snprintf(tempstr, sizeof(tempstr), "facing: %s", bFacing ? "yes" : "no");
EntityText( nOffset, tempstr, 0);
nOffset++;
}
return nOffset;
}
// ====================================================================
// Proximity sensor
// ====================================================================
#define SF_PROXIMITY_TEST_AGAINST_AXIS (1<<0)
class CPointProximitySensor : public CPointEntity
{
DECLARE_CLASS( CPointProximitySensor, CPointEntity );
public:
virtual void Activate( void );
protected:
void Think( void );
void Enable( void );
void Disable( void );
// Input handlers
void InputEnable(inputdata_t &inputdata);
void InputDisable(inputdata_t &inputdata);
void InputToggle(inputdata_t &inputdata);
void InputSetTargetEntity(inputdata_t &inputdata);
private:
bool m_bDisabled; // When disabled, we do not think or fire outputs.
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
COutputFloat m_Distance;
DECLARE_DATADESC();
};
LINK_ENTITY_TO_CLASS( point_proximity_sensor, CPointProximitySensor );
BEGIN_DATADESC( CPointProximitySensor )
// Keys
DEFINE_KEYFIELD( m_bDisabled, FIELD_BOOLEAN, "StartDisabled" ),
DEFINE_FIELD( m_hTargetEntity, FIELD_EHANDLE ),
// Outputs
DEFINE_OUTPUT( m_Distance, "Distance"),
// Inputs
DEFINE_INPUTFUNC(FIELD_VOID, "Enable", InputEnable),
DEFINE_INPUTFUNC(FIELD_VOID, "Disable", InputDisable),
DEFINE_INPUTFUNC(FIELD_VOID, "Toggle", InputToggle),
DEFINE_INPUTFUNC(FIELD_STRING, "SetTargetEntity", InputSetTargetEntity),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Called after all entities have spawned on new map or savegame load.
//-----------------------------------------------------------------------------
void CPointProximitySensor::Activate( void )
{
BaseClass::Activate();
if ( m_hTargetEntity == NULL )
{
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target );
}
if ( m_bDisabled == false && m_hTargetEntity != NULL )
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::InputSetTargetEntity(inputdata_t &inputdata)
{
if ((inputdata.value.String() == NULL) || (inputdata.value.StringID() == NULL_STRING) || (inputdata.value.String()[0] == '\0'))
{
m_target = NULL_STRING;
m_hTargetEntity = NULL;
SetNextThink( TICK_NEVER_THINK );
}
else
{
m_target = AllocPooledString(inputdata.value.String());
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target, NULL, inputdata.pActivator, inputdata.pCaller );
if (!m_bDisabled && m_hTargetEntity)
{
SetNextThink( gpGlobals->curtime );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::InputEnable( inputdata_t &inputdata )
{
Enable();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::InputDisable( inputdata_t &inputdata )
{
Disable();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::InputToggle( inputdata_t &inputdata )
{
if ( m_bDisabled )
{
Enable();
}
else
{
Disable();
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::Enable( void )
{
m_bDisabled = false;
if ( m_hTargetEntity )
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointProximitySensor::Disable( void )
{
m_bDisabled = true;
SetNextThink( TICK_NEVER_THINK );
}
//-----------------------------------------------------------------------------
// Purpose: Called every frame
//-----------------------------------------------------------------------------
void CPointProximitySensor::Think( void )
{
if ( m_hTargetEntity != NULL )
{
Vector vecTestDir = ( m_hTargetEntity->GetAbsOrigin() - GetAbsOrigin() );
float flDist = VectorNormalize( vecTestDir );
// If we're only interested in the distance along a vector, modify the length the accomodate that
if ( HasSpawnFlags( SF_PROXIMITY_TEST_AGAINST_AXIS ) )
{
Vector vecDir;
GetVectors( &vecDir, NULL, NULL );
float flDot = DotProduct( vecTestDir, vecDir );
flDist *= fabs( flDot );
}
m_Distance.Set( flDist, this, this );
SetNextThink( gpGlobals->curtime );
}
}