You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
876 lines
29 KiB
876 lines
29 KiB
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose: particle system code
|
|
//
|
|
//===========================================================================//
|
|
|
|
#include "tier0/platform.h"
|
|
#include "particles/particles.h"
|
|
#include "filesystem.h"
|
|
#include "tier2/tier2.h"
|
|
#include "tier2/fileutils.h"
|
|
#include "tier1/UtlStringMap.h"
|
|
#include "tier1/strtools.h"
|
|
|
|
// memdbgon must be the last include file in a .cpp file!!!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
extern int g_nParticle_Multiplier;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Emits particles immediately
|
|
//-----------------------------------------------------------------------------
|
|
struct InstantaneousEmitterContext_t
|
|
{
|
|
int m_nRemainingParticles;
|
|
int m_ActualParticlesToEmit;
|
|
float m_flTimeOffset;
|
|
bool m_bReadScaleFactor;
|
|
};
|
|
|
|
class C_OP_InstantaneousEmitter : public CParticleOperatorInstance
|
|
{
|
|
DECLARE_PARTICLE_OPERATOR( C_OP_InstantaneousEmitter );
|
|
|
|
uint32 GetWrittenAttributes( void ) const
|
|
{
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
uint32 GetReadAttributes( void ) const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
virtual uint64 GetReadControlPointMask() const
|
|
{
|
|
if ( m_nScaleControlPoint >= 0 )
|
|
return ( 1ULL << m_nScaleControlPoint );
|
|
return 0;
|
|
}
|
|
|
|
virtual uint32 Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const;
|
|
|
|
// unpack structure will be applied by creator. add extra initialization needed here
|
|
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
|
|
{
|
|
if ( m_nMinParticlesToEmit >= 0 )
|
|
{
|
|
if ( m_nMinParticlesToEmit > m_nParticlesToEmit )
|
|
{
|
|
V_swap( m_nParticlesToEmit, m_nMinParticlesToEmit );
|
|
}
|
|
}
|
|
|
|
if ( m_nPerFrameNum < 0 )
|
|
{
|
|
m_nPerFrameNum = INT_MAX;
|
|
}
|
|
m_nScaleControlPointField = clamp( m_nScaleControlPointField, 0, 2 );
|
|
}
|
|
|
|
virtual void StopEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly )
|
|
{
|
|
pCtx->m_nRemainingParticles = 0;
|
|
}
|
|
}
|
|
virtual void StartEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly )
|
|
{
|
|
pCtx->m_nRemainingParticles = pCtx->m_ActualParticlesToEmit;
|
|
SkipToTime( pParticles->m_flCurTime, pParticles, pCtx );
|
|
}
|
|
}
|
|
|
|
// Called when the SFM wants to skip forward in time
|
|
virtual void SkipToTime( float flTime, CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
// NOTE: This is a bit of a hack. We're saying that if we're skipping more than two seconds, that we're
|
|
// probably not going to bother emitting at all. Really, this would have to know the maximum
|
|
// lifetime of the child particles and only skip if past that.
|
|
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( flTime > ( flStartTime + 2.0f ) )
|
|
{
|
|
pCtx->m_nRemainingParticles = 0;
|
|
}
|
|
}
|
|
|
|
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
if ( m_nMinParticlesToEmit >= 0 )
|
|
{
|
|
pCtx->m_ActualParticlesToEmit = pParticles->RandomInt( m_nMinParticlesToEmit, m_nParticlesToEmit );
|
|
}
|
|
else
|
|
{
|
|
pCtx->m_ActualParticlesToEmit = m_nParticlesToEmit;
|
|
}
|
|
pCtx->m_nRemainingParticles = pCtx->m_ActualParticlesToEmit;
|
|
pCtx->m_flTimeOffset = 0.0f;
|
|
pCtx->m_bReadScaleFactor = false;
|
|
}
|
|
|
|
virtual void Restart( CParticleCollection *pParticles, void *pContext )
|
|
{
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
pCtx->m_nRemainingParticles = pCtx->m_ActualParticlesToEmit;
|
|
pCtx->m_flTimeOffset = pParticles->m_flCurTime;
|
|
pCtx->m_bReadScaleFactor = false;
|
|
}
|
|
|
|
size_t GetRequiredContextBytes( void ) const
|
|
{
|
|
return sizeof( InstantaneousEmitterContext_t );
|
|
}
|
|
|
|
virtual bool MayCreateMoreParticles( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
return !(pCtx->m_nRemainingParticles <= 0);
|
|
}
|
|
|
|
int m_nParticlesToEmit;
|
|
int m_nMinParticlesToEmit;
|
|
float m_flStartTime;
|
|
int m_nPerFrameNum;
|
|
int m_nScaleControlPoint;
|
|
int m_nScaleControlPointField;
|
|
};
|
|
|
|
DEFINE_PARTICLE_OPERATOR( C_OP_InstantaneousEmitter, "emit_instantaneously", OPERATOR_GENERIC );
|
|
|
|
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_InstantaneousEmitter )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_start_time", "0", float, m_flStartTime )
|
|
DMXELEMENT_UNPACK_FIELD( "num_to_emit_minimum", "-1", int, m_nMinParticlesToEmit )
|
|
DMXELEMENT_UNPACK_FIELD( "num_to_emit", "100", int, m_nParticlesToEmit )
|
|
DMXELEMENT_UNPACK_FIELD( "maximum emission per frame", "-1", int, m_nPerFrameNum )
|
|
DMXELEMENT_UNPACK_FIELD( "emission count scale control point", "-1", int, m_nScaleControlPoint )
|
|
DMXELEMENT_UNPACK_FIELD( "emission count scale control point field", "0", int, m_nScaleControlPointField )
|
|
END_PARTICLE_OPERATOR_UNPACK( C_OP_InstantaneousEmitter )
|
|
|
|
|
|
uint32 C_OP_InstantaneousEmitter::Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const
|
|
{
|
|
// Don't emit any more if the particle system has emitted all it's supposed to.
|
|
InstantaneousEmitterContext_t *pCtx = reinterpret_cast<InstantaneousEmitterContext_t *>( pContext );
|
|
if ( pCtx->m_nRemainingParticles <= 0 )
|
|
return 0;
|
|
|
|
// Wait until we're told to start emitting
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( pParticles->m_flCurTime < flStartTime )
|
|
return 0;
|
|
|
|
if ( pCtx->m_ActualParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
if ( ( m_nScaleControlPoint >= 0 ) && !pCtx->m_bReadScaleFactor )
|
|
{
|
|
Vector vecScale;
|
|
if ( flStartTime <= pParticles->m_flCurTime && flStartTime >= pParticles->m_flCurTime - pParticles->m_flPreviousDt )
|
|
{
|
|
pParticles->GetControlPointAtTime( m_nScaleControlPoint, flStartTime, &vecScale );
|
|
}
|
|
else
|
|
{
|
|
pParticles->GetControlPointAtPrevTime( m_nScaleControlPoint, &vecScale );
|
|
}
|
|
|
|
pCtx->m_ActualParticlesToEmit *= vecScale[m_nScaleControlPointField];
|
|
pCtx->m_nRemainingParticles *= vecScale[m_nScaleControlPointField];
|
|
pCtx->m_bReadScaleFactor = true;
|
|
}
|
|
|
|
pCtx->m_nRemainingParticles = max( pCtx->m_nRemainingParticles, 0 );
|
|
|
|
// NOTE: Applying the scale here because I don't believe we can sample the control point
|
|
// values inside
|
|
// We're only allowed to emit so many particles, though..
|
|
// If we run out of room, only emit the last N particles
|
|
int nAllowedParticlesToEmit = pParticles->m_nMaxAllowedParticles - pParticles->m_nActiveParticles;
|
|
// Cap to the maximum emission per frame
|
|
int nParticlesThisFrame = min( m_nPerFrameNum, pCtx->m_nRemainingParticles );
|
|
nAllowedParticlesToEmit = min( nAllowedParticlesToEmit, nParticlesThisFrame );
|
|
int nActualParticlesToEmit = min( nAllowedParticlesToEmit, pCtx->m_ActualParticlesToEmit * g_nParticle_Multiplier );
|
|
pCtx->m_nRemainingParticles -= nParticlesThisFrame;
|
|
Assert( pCtx->m_nRemainingParticles >= 0 );
|
|
|
|
if ( nActualParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
int nStartParticle = pParticles->m_nActiveParticles;
|
|
pParticles->SetNActiveParticles( nActualParticlesToEmit + pParticles->m_nActiveParticles );
|
|
|
|
// !! speed!! do sse init here
|
|
for( int i = nStartParticle; i < nStartParticle + nActualParticlesToEmit; i++ )
|
|
{
|
|
float *pTimeStamp = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
|
|
*pTimeStamp = flStartTime;
|
|
}
|
|
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Emits particles over time
|
|
//-----------------------------------------------------------------------------
|
|
struct ContinuousEmitterContext_t
|
|
{
|
|
float m_flTotalActualParticlesSoFar;
|
|
int m_nTotalEmittedSoFar;
|
|
float m_flNextEmitTime;
|
|
float m_flTimeOffset;
|
|
bool m_bStoppedEmission;
|
|
};
|
|
|
|
bool g_bDontMakeSkipToTimeTakeForever = false;
|
|
|
|
|
|
class C_OP_ContinuousEmitter : public CParticleOperatorInstance
|
|
{
|
|
DECLARE_PARTICLE_OPERATOR( C_OP_ContinuousEmitter );
|
|
|
|
uint32 GetWrittenAttributes( void ) const
|
|
{
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
uint32 GetReadAttributes( void ) const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
|
|
{
|
|
if ( m_flEmitRate < 0.0f )
|
|
{
|
|
m_flEmitRate = 0.0f;
|
|
}
|
|
if ( m_flEmissionDuration < 0.0f )
|
|
{
|
|
m_flEmissionDuration = 0.0f;
|
|
}
|
|
m_flEmitRate *= g_nParticle_Multiplier;
|
|
}
|
|
|
|
virtual uint32 Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const ;
|
|
|
|
inline bool IsInfinitelyEmitting() const
|
|
{
|
|
return ( m_flEmissionDuration == 0.0f );
|
|
}
|
|
|
|
virtual void StopEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly || IsInfinitelyEmitting() )
|
|
{
|
|
pCtx->m_bStoppedEmission = true;
|
|
}
|
|
}
|
|
virtual void StartEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly || IsInfinitelyEmitting() )
|
|
{
|
|
pCtx->m_bStoppedEmission = false;
|
|
SkipToTime( pParticles->m_flCurTime, pParticles, pCtx );
|
|
}
|
|
}
|
|
|
|
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
pCtx->m_flNextEmitTime = m_flStartTime;
|
|
pCtx->m_flTotalActualParticlesSoFar = 0.0f;
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
pCtx->m_flTimeOffset = 0.0f;
|
|
pCtx->m_bStoppedEmission = false;
|
|
}
|
|
|
|
virtual void Restart( CParticleCollection *pParticles, void *pContext )
|
|
{
|
|
if ( !IsInfinitelyEmitting() )
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
pCtx->m_flNextEmitTime = pParticles->m_flCurTime + m_flStartTime;
|
|
pCtx->m_flTotalActualParticlesSoFar = 0.0f;
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
pCtx->m_flTimeOffset = pParticles->m_flCurTime;
|
|
}
|
|
}
|
|
|
|
// Called when the SFM wants to skip forward in time
|
|
// Currently hacked for save/load pre-sim - correct solution is to serialize rather
|
|
// than skip-to-time and simulate
|
|
virtual void SkipToTime( float flTime, CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( flTime <= flStartTime )
|
|
return;
|
|
|
|
float flControlPointScale = pParticles->GetHighestControlPoint();
|
|
flControlPointScale *= m_flEmissionScale;
|
|
float flEmissionRate = m_flEmitRate;
|
|
|
|
float flEmitStrength;
|
|
if ( pParticles->CheckIfOperatorShouldRun( this, &flEmitStrength ) )
|
|
{
|
|
flEmissionRate *= flEmitStrength;
|
|
}
|
|
|
|
if ( flControlPointScale != 0.0f )
|
|
{
|
|
flEmissionRate *= flControlPointScale;
|
|
}
|
|
|
|
float flPrevDrawTime = pParticles->m_flCurTime - flTime;
|
|
float flCurrDrawTime = pParticles->m_flCurTime;
|
|
|
|
if ( !IsInfinitelyEmitting() )
|
|
{
|
|
if ( flPrevDrawTime < flStartTime )
|
|
{
|
|
flPrevDrawTime = flStartTime;
|
|
}
|
|
//if ( flCurrDrawTime > flStartTime + m_flEmissionDuration )
|
|
//{
|
|
// flCurrDrawTime = flStartTime + m_flEmissionDuration;
|
|
//}
|
|
}
|
|
float flDeltaTime = flCurrDrawTime - flPrevDrawTime;
|
|
flDeltaTime = min( flDeltaTime, 4.f );
|
|
flPrevDrawTime = flCurrDrawTime - flDeltaTime;
|
|
//disabled for now
|
|
pCtx->m_flTotalActualParticlesSoFar = flDeltaTime * flEmissionRate;
|
|
|
|
|
|
//if ( !IsInfinitelyEmitting() )
|
|
// pCtx->m_flTotalActualParticlesSoFar = min( pCtx->m_ActualParticlesToEmit, pCtx->m_flTotalActualParticlesSoFar );
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
//simulate a bunch
|
|
int nActualParticlesToEmit = floor (pCtx->m_flTotalActualParticlesSoFar);
|
|
int nStartParticle = pParticles->m_nActiveParticles;
|
|
|
|
if ( pParticles->m_nMaxAllowedParticles < nStartParticle + nActualParticlesToEmit )
|
|
{
|
|
nActualParticlesToEmit = pParticles->m_nMaxAllowedParticles - nStartParticle;
|
|
}
|
|
|
|
pParticles->SetNActiveParticles( nActualParticlesToEmit + pParticles->m_nActiveParticles );
|
|
|
|
float flTimeStampStep = ( flDeltaTime ) / ( nActualParticlesToEmit );
|
|
float flTimeStep = flPrevDrawTime + flTimeStampStep;
|
|
|
|
// Set the particle creation time to the exact sub-frame particle emission time
|
|
// !! speed!! do sse init here
|
|
for( int i = nStartParticle; i < nStartParticle + nActualParticlesToEmit; i++ )
|
|
{
|
|
float *pTimeStamp = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
|
|
flTimeStep = min( flTimeStep, flCurrDrawTime );
|
|
*pTimeStamp = flTimeStep;
|
|
flTimeStep += flTimeStampStep;
|
|
}
|
|
|
|
if ( !g_bDontMakeSkipToTimeTakeForever )
|
|
{
|
|
flPrevDrawTime = max( flPrevDrawTime, flCurrDrawTime - pParticles->m_pDef->m_flNoDrawTimeToGoToSleep );
|
|
pParticles->m_flCurTime = flPrevDrawTime;
|
|
pParticles->m_fl4CurTime = ReplicateX4( flPrevDrawTime );
|
|
for( float i = flPrevDrawTime; i < flCurrDrawTime; i += 0.1 )
|
|
{
|
|
pParticles->Simulate( .1, false );
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t GetRequiredContextBytes( void ) const
|
|
{
|
|
return sizeof( ContinuousEmitterContext_t );
|
|
}
|
|
|
|
virtual bool MayCreateMoreParticles( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
if ( pCtx->m_bStoppedEmission )
|
|
return false;
|
|
|
|
if ( m_flEmitRate <= 0.0f )
|
|
return false;
|
|
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( m_flEmissionDuration != 0.0f && ( pParticles->m_flCurTime - pParticles->m_flDt ) > ( flStartTime + m_flEmissionDuration ) )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
float m_flEmissionDuration;
|
|
float m_flStartTime;
|
|
float m_flEmitRate;
|
|
float m_flTimePerEmission;
|
|
float m_flEmissionScale;
|
|
bool m_bScalePerParticle;
|
|
};
|
|
|
|
DEFINE_PARTICLE_OPERATOR( C_OP_ContinuousEmitter, "emit_continuously", OPERATOR_GENERIC );
|
|
|
|
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ContinuousEmitter )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_start_time", "0", float, m_flStartTime )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_rate", "100", float, m_flEmitRate )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_duration", "0", float, m_flEmissionDuration )
|
|
DMXELEMENT_UNPACK_FIELD( "scale emission to used control points", "0.0", float, m_flEmissionScale )
|
|
DMXELEMENT_UNPACK_FIELD( "use parent particles for emission scaling", "0", bool, m_bScalePerParticle )
|
|
END_PARTICLE_OPERATOR_UNPACK( C_OP_ContinuousEmitter )
|
|
|
|
uint32 C_OP_ContinuousEmitter::Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const
|
|
{
|
|
// Have we emitted all the particles we're going to emit?
|
|
// NOTE: Using C_OP_ContinuousEmitter:: avoids a virtual function call
|
|
ContinuousEmitterContext_t *pCtx = reinterpret_cast<ContinuousEmitterContext_t *>( pContext );
|
|
|
|
//Allows for dynamic scaling via changes in number of control points.
|
|
float flControlPointScale = pParticles->GetHighestControlPoint();
|
|
//The emission scale here allows for a scalar value per controlpoint, like 2 or .25...
|
|
flControlPointScale *= m_flEmissionScale;
|
|
//Global strength scale brought in by operator fade in/fade out/oscillate
|
|
float flEmissionRate = m_flEmitRate * flCurStrength;
|
|
if ( flControlPointScale != 0.0f || m_bScalePerParticle )
|
|
{
|
|
if ( m_bScalePerParticle )
|
|
{
|
|
if ( pParticles->m_pParent )
|
|
{
|
|
flControlPointScale = pParticles->m_pParent->m_nActiveParticles * m_flEmissionScale;
|
|
}
|
|
else
|
|
{
|
|
flControlPointScale = m_flEmissionScale;
|
|
}
|
|
|
|
}
|
|
flEmissionRate *= flControlPointScale;
|
|
}
|
|
|
|
if ( flEmissionRate == 0.0f )
|
|
return 0;
|
|
|
|
if ( !C_OP_ContinuousEmitter::MayCreateMoreParticles( pParticles, pContext ) )
|
|
return 0;
|
|
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( pParticles->m_flCurTime < flStartTime )
|
|
return 0;
|
|
|
|
Assert( flEmissionRate != 0.0f );
|
|
|
|
// determine our previous and current draw times and clamp them to start time and emission duration
|
|
float flPrevDrawTime = pParticles->m_flCurTime - pParticles->m_flDt;
|
|
float flCurrDrawTime = pParticles->m_flCurTime;
|
|
|
|
if ( !IsInfinitelyEmitting() )
|
|
{
|
|
if ( flPrevDrawTime < flStartTime )
|
|
{
|
|
flPrevDrawTime = flStartTime;
|
|
}
|
|
if ( flCurrDrawTime > flStartTime + m_flEmissionDuration )
|
|
{
|
|
flCurrDrawTime = flStartTime + m_flEmissionDuration;
|
|
}
|
|
}
|
|
|
|
float flDeltaTime = flCurrDrawTime - flPrevDrawTime;
|
|
|
|
//Calculate emission rate by delta time from last frame to determine number of particles to emit this frame as a fractional float
|
|
float flActualParticlesToEmit = flEmissionRate * flDeltaTime;
|
|
|
|
//Add emitted particle to float counter to allow for fractional emission
|
|
pCtx->m_flTotalActualParticlesSoFar += flActualParticlesToEmit;
|
|
|
|
//Floor float accumulated value and subtract whole int emitted so far from the result to determine total whole particles to emit this frame
|
|
int nParticlesToEmit = floor ( pCtx->m_flTotalActualParticlesSoFar ) - pCtx->m_nTotalEmittedSoFar;
|
|
|
|
//Add emitted particles to running int total.
|
|
pCtx->m_nTotalEmittedSoFar += nParticlesToEmit;
|
|
|
|
|
|
if ( nParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
// We're only allowed to emit so many particles, though..
|
|
// If we run out of room, only emit the last N particles
|
|
int nActualParticlesToEmit = nParticlesToEmit;
|
|
int nAllowedParticlesToEmit = pParticles->m_nMaxAllowedParticles - pParticles->m_nActiveParticles;
|
|
if ( nAllowedParticlesToEmit < nParticlesToEmit )
|
|
{
|
|
nActualParticlesToEmit = nAllowedParticlesToEmit;
|
|
//flStartEmissionTime = pCtx->m_flNextEmitTime - flTimePerEmission * nActualParticlesToEmit;
|
|
}
|
|
if ( nActualParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
int nStartParticle = pParticles->m_nActiveParticles;
|
|
pParticles->SetNActiveParticles( nActualParticlesToEmit + pParticles->m_nActiveParticles );
|
|
|
|
|
|
float flTimeStampStep = ( flDeltaTime ) / ( nActualParticlesToEmit );
|
|
float flTimeStep = flPrevDrawTime + flTimeStampStep;
|
|
|
|
// Set the particle creation time to the exact sub-frame particle emission time
|
|
// !! speed!! do sse init here
|
|
for( int i = nStartParticle; i < nStartParticle + nActualParticlesToEmit; i++ )
|
|
{
|
|
float *pTimeStamp = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
|
|
flTimeStep = min( flTimeStep, flCurrDrawTime );
|
|
*pTimeStamp = flTimeStep;
|
|
flTimeStep += flTimeStampStep;
|
|
}
|
|
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Noise Emitter
|
|
//-----------------------------------------------------------------------------
|
|
struct NoiseEmitterContext_t
|
|
{
|
|
float m_flTotalActualParticlesSoFar;
|
|
int m_nTotalEmittedSoFar;
|
|
float m_flNextEmitTime;
|
|
float m_flTimeOffset;
|
|
bool m_bStoppedEmission;
|
|
};
|
|
|
|
class C_OP_NoiseEmitter : public CParticleOperatorInstance
|
|
{
|
|
DECLARE_PARTICLE_OPERATOR( C_OP_NoiseEmitter );
|
|
|
|
uint32 GetWrittenAttributes( void ) const
|
|
{
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
uint32 GetReadAttributes( void ) const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
virtual void InitParams( CParticleSystemDefinition *pDef, CDmxElement *pElement )
|
|
{
|
|
if ( m_flEmitRate < 0.0f )
|
|
{
|
|
m_flEmitRate = 0.0f;
|
|
}
|
|
if ( m_flEmissionDuration < 0.0f )
|
|
{
|
|
m_flEmissionDuration = 0.0f;
|
|
}
|
|
m_flEmitRate *= g_nParticle_Multiplier;
|
|
}
|
|
|
|
virtual uint32 Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const ;
|
|
|
|
inline bool IsInfinitelyEmitting() const
|
|
{
|
|
return ( m_flEmissionDuration == 0.0f );
|
|
}
|
|
|
|
virtual void StopEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly || IsInfinitelyEmitting() )
|
|
{
|
|
pCtx->m_bStoppedEmission = true;
|
|
}
|
|
}
|
|
virtual void StartEmission( CParticleCollection *pParticles, void *pContext, bool bInfiniteOnly ) const
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
if ( !bInfiniteOnly || IsInfinitelyEmitting() )
|
|
{
|
|
pCtx->m_bStoppedEmission = false;
|
|
SkipToTime( pParticles->m_flCurTime, pParticles, pCtx );
|
|
}
|
|
}
|
|
|
|
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
pCtx->m_flNextEmitTime = m_flStartTime;
|
|
pCtx->m_flTotalActualParticlesSoFar = 1.0f;
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
pCtx->m_flTimeOffset = 0.0f;
|
|
pCtx->m_bStoppedEmission = false;
|
|
}
|
|
|
|
virtual void Restart( CParticleCollection *pParticles, void *pContext )
|
|
{
|
|
if ( !IsInfinitelyEmitting() )
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
pCtx->m_flNextEmitTime = m_flStartTime + pParticles->m_flCurTime;
|
|
pCtx->m_flTotalActualParticlesSoFar = 1.0f;
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
pCtx->m_flTimeOffset = pParticles->m_flCurTime;
|
|
}
|
|
}
|
|
|
|
// Called when the SFM wants to skip forward in time
|
|
virtual void SkipToTime( float flTime, CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( flTime <= flStartTime )
|
|
return;
|
|
|
|
float flControlPointScale = pParticles->GetHighestControlPoint();
|
|
flControlPointScale *= m_flEmissionScale;
|
|
float flEmissionRate = m_flEmitRate;
|
|
|
|
float flEmitStrength;
|
|
if ( pParticles->CheckIfOperatorShouldRun( this, &flEmitStrength ) )
|
|
{
|
|
flEmissionRate *= flEmitStrength;
|
|
}
|
|
|
|
if ( flControlPointScale != 0.0f )
|
|
{
|
|
flEmissionRate *= flControlPointScale;
|
|
}
|
|
pCtx->m_flTotalActualParticlesSoFar = ( pParticles->m_flCurTime - flStartTime ) * flEmissionRate + 1;
|
|
|
|
//if ( !IsInfinitelyEmitting() )
|
|
// pCtx->m_flTotalActualParticlesSoFar = min( pCtx->m_ActualParticlesToEmit, pCtx->m_flTotalActualParticlesSoFar );
|
|
pCtx->m_nTotalEmittedSoFar = 0;
|
|
|
|
}
|
|
|
|
size_t GetRequiredContextBytes( void ) const
|
|
{
|
|
return sizeof( NoiseEmitterContext_t );
|
|
}
|
|
|
|
virtual bool MayCreateMoreParticles( CParticleCollection *pParticles, void *pContext ) const
|
|
{
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
if ( pCtx->m_bStoppedEmission )
|
|
return false;
|
|
|
|
if ( m_flEmitRate <= 0.0f )
|
|
return false;
|
|
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( m_flEmissionDuration != 0.0f && ( pParticles->m_flCurTime - pParticles->m_flDt ) > ( flStartTime + m_flEmissionDuration ) )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
float m_flEmissionDuration;
|
|
float m_flStartTime;
|
|
float m_flEmitRate;
|
|
float m_flTimePerEmission;
|
|
float m_flEmissionScale;
|
|
bool m_bAbsVal, m_bAbsValInv;
|
|
float m_flOffset;
|
|
float m_flOutputMin;
|
|
float m_flOutputMax;
|
|
float m_flNoiseScale, m_flNoiseScaleLoc;
|
|
Vector m_vecOffsetLoc;
|
|
float m_flWorldTimeScale;
|
|
};
|
|
|
|
|
|
DEFINE_PARTICLE_OPERATOR( C_OP_NoiseEmitter, "emit noise", OPERATOR_GENERIC );
|
|
|
|
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_NoiseEmitter )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_start_time", "0", float, m_flStartTime )
|
|
DMXELEMENT_UNPACK_FIELD( "emission_duration", "0", float, m_flEmissionDuration )
|
|
DMXELEMENT_UNPACK_FIELD( "scale emission to used control points", "0.0", float, m_flEmissionScale )
|
|
DMXELEMENT_UNPACK_FIELD( "time noise coordinate scale","0.1",float,m_flNoiseScale)
|
|
//DMXELEMENT_UNPACK_FIELD( "spatial noise coordinate scale","0.001",float,m_flNoiseScaleLoc)
|
|
DMXELEMENT_UNPACK_FIELD( "time coordinate offset","0", float, m_flOffset )
|
|
//DMXELEMENT_UNPACK_FIELD( "spatial coordinate offset","0 0 0", Vector, m_vecOffsetLoc )
|
|
DMXELEMENT_UNPACK_FIELD( "absolute value","0", bool, m_bAbsVal )
|
|
DMXELEMENT_UNPACK_FIELD( "invert absolute value","0", bool, m_bAbsValInv )
|
|
DMXELEMENT_UNPACK_FIELD( "emission minimum","0", float, m_flOutputMin )
|
|
DMXELEMENT_UNPACK_FIELD( "emission maximum","100", float, m_flOutputMax )
|
|
DMXELEMENT_UNPACK_FIELD( "world time noise coordinate scale","0", float, m_flWorldTimeScale )
|
|
END_PARTICLE_OPERATOR_UNPACK( C_OP_NoiseEmitter )
|
|
|
|
uint32 C_OP_NoiseEmitter::Emit( CParticleCollection *pParticles, float flCurStrength,
|
|
void *pContext ) const
|
|
{
|
|
// Have we emitted all the particles we're going to emit?
|
|
// NOTE: Using C_OP_ContinuousEmitter:: avoids a virtual function call
|
|
NoiseEmitterContext_t *pCtx = reinterpret_cast<NoiseEmitterContext_t *>( pContext );
|
|
|
|
//Allows for dynamic scaling via changes in number of control points.
|
|
float flControlPointScale = pParticles->GetHighestControlPoint();
|
|
//The emission scale here allows for a scalar value per controlpoint, like 2 or .25...
|
|
flControlPointScale *= m_flEmissionScale;
|
|
|
|
float flAbsScale;
|
|
int nAbsVal;
|
|
nAbsVal = 0xffffffff;
|
|
flAbsScale = 0.5;
|
|
if ( m_bAbsVal )
|
|
{
|
|
nAbsVal = 0x7fffffff;
|
|
flAbsScale = 1.0;
|
|
}
|
|
|
|
float fMin = m_flOutputMin;
|
|
float fMax = m_flOutputMax;
|
|
|
|
|
|
float CoordScale = m_flNoiseScale;
|
|
//float CoordScaleLoc = m_flNoiseScaleLoc;
|
|
|
|
|
|
float ValueScale, ValueBase;
|
|
|
|
Vector Coord, CoordLoc, CoordWorldTime;
|
|
//CoordLoc.x = pxyz[0];
|
|
//CoordLoc.y = pxyz[4];
|
|
//CoordLoc.z = pxyz[8];
|
|
//CoordLoc += m_vecOffsetLoc;
|
|
|
|
float Offset = m_flOffset;
|
|
Coord = Vector ( (pParticles->m_flCurTime + Offset), (pParticles->m_flCurTime + Offset), (pParticles->m_flCurTime + Offset) );
|
|
Coord *= CoordScale;
|
|
//CoordLoc *= CoordScaleLoc;
|
|
//Coord += CoordLoc;
|
|
|
|
CoordWorldTime = Vector( (Plat_MSTime() * m_flWorldTimeScale), (Plat_MSTime() * m_flWorldTimeScale), (Plat_MSTime() * m_flWorldTimeScale) );
|
|
Coord += CoordWorldTime;
|
|
|
|
fltx4 flNoise128;
|
|
FourVectors fvNoise;
|
|
|
|
fvNoise.DuplicateVector( Coord );
|
|
flNoise128 = NoiseSIMD( fvNoise );
|
|
float flNoise = SubFloat( flNoise128, 0 );
|
|
|
|
*( (int *) &flNoise) &= nAbsVal;
|
|
|
|
ValueScale = ( flAbsScale *( fMax - fMin ) );
|
|
ValueBase = ( fMin+ ( ( 1.0 - flAbsScale ) *( fMax - fMin ) ) );
|
|
|
|
if ( m_bAbsValInv )
|
|
{
|
|
flNoise = 1.0 - flNoise;
|
|
}
|
|
|
|
float flInitialNoise = ( ValueBase + ( ValueScale * flNoise ) );
|
|
flInitialNoise = clamp(flInitialNoise, 0.0f, (float) INT_MAX );
|
|
|
|
//Global strength scale brought in by operator fade in/fade out/oscillate
|
|
float flEmissionRate = flInitialNoise * flCurStrength;
|
|
if ( flControlPointScale != 0.0f )
|
|
{
|
|
flEmissionRate *= flControlPointScale;
|
|
}
|
|
|
|
if ( flEmissionRate == 0.0f )
|
|
return 0;
|
|
|
|
if ( !C_OP_NoiseEmitter::MayCreateMoreParticles( pParticles, pContext ) )
|
|
return 0;
|
|
|
|
float flStartTime = m_flStartTime + pCtx->m_flTimeOffset;
|
|
if ( pParticles->m_flCurTime < flStartTime )
|
|
return 0;
|
|
|
|
Assert( flEmissionRate != 0.0f );
|
|
|
|
// determine our previous and current draw times and clamp them to start time and emission duration
|
|
float flPrevDrawTime = pParticles->m_flCurTime - pParticles->m_flDt;
|
|
float flCurrDrawTime = pParticles->m_flCurTime;
|
|
|
|
if ( !IsInfinitelyEmitting() )
|
|
{
|
|
if ( flPrevDrawTime < flStartTime )
|
|
{
|
|
flPrevDrawTime = flStartTime;
|
|
}
|
|
if ( flCurrDrawTime > flStartTime + m_flEmissionDuration )
|
|
{
|
|
flCurrDrawTime = flStartTime + m_flEmissionDuration;
|
|
}
|
|
}
|
|
|
|
float flDeltaTime = flCurrDrawTime - flPrevDrawTime;
|
|
|
|
//Calculate emission rate by delta time from last frame to determine number of particles to emit this frame as a fractional float
|
|
float flActualParticlesToEmit = flEmissionRate * flDeltaTime;
|
|
|
|
//Add emitted particle to float counter to allow for fractional emission
|
|
pCtx->m_flTotalActualParticlesSoFar += flActualParticlesToEmit;
|
|
|
|
//Floor float accumulated value and subtract whole int emitted so far from the result to determine total whole particles to emit this frame
|
|
int nParticlesToEmit = floor ( pCtx->m_flTotalActualParticlesSoFar ) - pCtx->m_nTotalEmittedSoFar;
|
|
|
|
//Add emitted particles to running int total.
|
|
pCtx->m_nTotalEmittedSoFar += nParticlesToEmit;
|
|
|
|
|
|
if ( nParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
// We're only allowed to emit so many particles, though..
|
|
// If we run out of room, only emit the last N particles
|
|
int nActualParticlesToEmit = nParticlesToEmit;
|
|
int nAllowedParticlesToEmit = pParticles->m_nMaxAllowedParticles - pParticles->m_nActiveParticles;
|
|
if ( nAllowedParticlesToEmit < nParticlesToEmit )
|
|
{
|
|
nActualParticlesToEmit = nAllowedParticlesToEmit;
|
|
//flStartEmissionTime = pCtx->m_flNextEmitTime - flTimePerEmission * nActualParticlesToEmit;
|
|
}
|
|
if ( nActualParticlesToEmit == 0 )
|
|
return 0;
|
|
|
|
int nStartParticle = pParticles->m_nActiveParticles;
|
|
pParticles->SetNActiveParticles( nActualParticlesToEmit + pParticles->m_nActiveParticles );
|
|
|
|
float flTimeStampStep = ( flCurrDrawTime - flPrevDrawTime ) / ( nActualParticlesToEmit );
|
|
float flTimeStep = flPrevDrawTime + flTimeStampStep;
|
|
|
|
// Set the particle creation time to the exact sub-frame particle emission time
|
|
// !! speed!! do sse init here
|
|
for( int i = nStartParticle; i < nStartParticle + nActualParticlesToEmit; i++ )
|
|
{
|
|
float *pTimeStamp = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
|
|
flTimeStep = min( flTimeStep, flCurrDrawTime );
|
|
*pTimeStamp = flTimeStep;
|
|
flTimeStep += flTimeStampStep;
|
|
}
|
|
|
|
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
|
|
}
|
|
|
|
|
|
void AddBuiltInParticleEmitters( void )
|
|
{
|
|
REGISTER_PARTICLE_OPERATOR( FUNCTION_EMITTER, C_OP_ContinuousEmitter );
|
|
REGISTER_PARTICLE_OPERATOR( FUNCTION_EMITTER, C_OP_InstantaneousEmitter );
|
|
REGISTER_PARTICLE_OPERATOR( FUNCTION_EMITTER, C_OP_NoiseEmitter );
|
|
}
|
|
|