Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

6059 lines
167 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "tier0/dbg.h"
#include "mathlib/mathlib.h"
#include "bone_setup.h"
#include <string.h>
#include "collisionutils.h"
#include "vstdlib/random.h"
#include "tier0/vprof.h"
#include "bone_accessor.h"
#include "mathlib/ssequaternion.h"
#include "bitvec.h"
#include "datamanager.h"
#include "convar.h"
#include "tier0/tslist.h"
#include "vphysics_interface.h"
#ifdef CLIENT_DLL
#include "posedebugger.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class CBoneSetup
{
public:
CBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger = NULL );
void InitPose( Vector pos[], Quaternion q[] );
void AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext );
void CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext );
private:
void AddSequenceLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext );
void AddLocalLayers( Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext );
public:
const CStudioHdr *m_pStudioHdr;
int m_boneMask;
const float *m_flPoseParameter;
IPoseDebugger *m_pPoseDebugger;
};
// -----------------------------------------------------------------
template <typename T>
class CBoneSetupMemoryPool
{
public:
T *Alloc()
{
T *p = (T *)m_FreeBlocks.Pop();
if ( !p )
{
p = new T[MAXSTUDIOBONES];
if ( ((size_t)p) % TSLIST_NODE_ALIGNMENT != 0 )
{
DebuggerBreak();
}
}
return p;
}
void Free( T *p )
{
m_FreeBlocks.Push( (TSLNodeBase_t *)p );
}
private:
CTSListBase m_FreeBlocks;
};
CBoneSetupMemoryPool<Quaternion> g_QaternionPool;
CBoneSetupMemoryPool<Vector> g_VectorPool;
CBoneSetupMemoryPool<matrix3x4_t> g_MatrixPool;
// -----------------------------------------------------------------
CBoneCache *CBoneCache::CreateResource( const bonecacheparams_t &params )
{
short studioToCachedIndex[MAXSTUDIOBONES];
short cachedToStudioIndex[MAXSTUDIOBONES];
int cachedBoneCount = 0;
for ( int i = 0; i < params.pStudioHdr->numbones(); i++ )
{
// skip bones that aren't part of the boneMask (and aren't the root bone)
if (i != 0 && !(params.pStudioHdr->boneFlags(i) & params.boneMask))
{
studioToCachedIndex[i] = -1;
continue;
}
studioToCachedIndex[i] = cachedBoneCount;
cachedToStudioIndex[cachedBoneCount] = i;
cachedBoneCount++;
}
int tableSizeStudio = sizeof(short) * params.pStudioHdr->numbones();
int tableSizeCached = sizeof(short) * cachedBoneCount;
int matrixSize = sizeof(matrix3x4_t) * cachedBoneCount;
int size = ( sizeof(CBoneCache) + tableSizeStudio + tableSizeCached + matrixSize + 3 ) & ~3;
CBoneCache *pMem = (CBoneCache *)malloc( size );
Construct( pMem );
pMem->Init( params, size, studioToCachedIndex, cachedToStudioIndex, cachedBoneCount );
return pMem;
}
unsigned int CBoneCache::EstimatedSize( const bonecacheparams_t &params )
{
// conservative estimate - max size
return ( params.pStudioHdr->numbones() * (sizeof(short) + sizeof(short) + sizeof(matrix3x4_t)) + 3 ) & ~3;
}
void CBoneCache::DestroyResource()
{
free( this );
}
CBoneCache::CBoneCache()
{
m_size = 0;
m_cachedBoneCount = 0;
}
void CBoneCache::Init( const bonecacheparams_t &params, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount )
{
m_cachedBoneCount = cachedBoneCount;
m_size = size;
m_timeValid = params.curtime;
m_boneMask = params.boneMask;
int studioTableSize = params.pStudioHdr->numbones() * sizeof(short);
m_cachedToStudioOffset = studioTableSize;
memcpy( StudioToCached(), pStudioToCached, studioTableSize );
int cachedTableSize = cachedBoneCount * sizeof(short);
memcpy( CachedToStudio(), pCachedToStudio, cachedTableSize );
m_matrixOffset = ( m_cachedToStudioOffset + cachedTableSize + 3 ) & ~3;
UpdateBones( params.pBoneToWorld, params.pStudioHdr->numbones(), params.curtime );
}
void CBoneCache::UpdateBones( const matrix3x4_t *pBoneToWorld, int numbones, float curtime )
{
matrix3x4_t *pBones = BoneArray();
const short *pCachedToStudio = CachedToStudio();
for ( int i = 0; i < m_cachedBoneCount; i++ )
{
int index = pCachedToStudio[i];
MatrixCopy( pBoneToWorld[index], pBones[i] );
}
m_timeValid = curtime;
}
matrix3x4_t *CBoneCache::GetCachedBone( int studioIndex )
{
int cachedIndex = StudioToCached()[studioIndex];
if ( cachedIndex >= 0 )
{
return BoneArray() + cachedIndex;
}
return NULL;
}
void CBoneCache::ReadCachedBones( matrix3x4_t *pBoneToWorld )
{
matrix3x4_t *pBones = BoneArray();
const short *pCachedToStudio = CachedToStudio();
for ( int i = 0; i < m_cachedBoneCount; i++ )
{
MatrixCopy( pBones[i], pBoneToWorld[pCachedToStudio[i]] );
}
}
void CBoneCache::ReadCachedBonePointers( matrix3x4_t **bones, int numbones )
{
memset( bones, 0, sizeof(matrix3x4_t *) * numbones );
matrix3x4_t *pBones = BoneArray();
const short *pCachedToStudio = CachedToStudio();
for ( int i = 0; i < m_cachedBoneCount; i++ )
{
bones[pCachedToStudio[i]] = pBones + i;
}
}
bool CBoneCache::IsValid( float curtime, float dt )
{
if ( curtime - m_timeValid <= dt )
return true;
return false;
}
// private functions
matrix3x4_t *CBoneCache::BoneArray()
{
return (matrix3x4_t *)( (char *)(this+1) + m_matrixOffset );
}
short *CBoneCache::StudioToCached()
{
return (short *)( (char *)(this+1) );
}
short *CBoneCache::CachedToStudio()
{
return (short *)( (char *)(this+1) + m_cachedToStudioOffset );
}
// Construct a singleton
static CDataManager<CBoneCache, bonecacheparams_t, CBoneCache *, CThreadFastMutex> g_StudioBoneCache( 128 * 1024L );
CBoneCache *Studio_GetBoneCache( memhandle_t cacheHandle )
{
AUTO_LOCK( g_StudioBoneCache.AccessMutex() );
return g_StudioBoneCache.GetResource_NoLock( cacheHandle );
}
memhandle_t Studio_CreateBoneCache( bonecacheparams_t &params )
{
AUTO_LOCK( g_StudioBoneCache.AccessMutex() );
return g_StudioBoneCache.CreateResource( params );
}
void Studio_DestroyBoneCache( memhandle_t cacheHandle )
{
AUTO_LOCK( g_StudioBoneCache.AccessMutex() );
g_StudioBoneCache.DestroyResource( cacheHandle );
}
void Studio_InvalidateBoneCache( memhandle_t cacheHandle )
{
AUTO_LOCK( g_StudioBoneCache.AccessMutex() );
CBoneCache *pCache = g_StudioBoneCache.GetResource_NoLock( cacheHandle );
if ( pCache )
{
pCache->m_timeValid = -1.0f;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void BuildBoneChain(
const CStudioHdr *pStudioHdr,
const matrix3x4_t &rootxform,
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t *pBoneToWorld )
{
CBoneBitList boneComputed;
BuildBoneChain( pStudioHdr, rootxform, pos, q, iBone, pBoneToWorld, boneComputed );
return;
}
//-----------------------------------------------------------------------------
// Purpose: return a sub frame rotation for a single bone
//-----------------------------------------------------------------------------
void ExtractAnimValue( int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1, float &v2 )
{
if ( !panimvalue )
{
v1 = v2 = 0;
return;
}
// Avoids a crash reading off the end of the data
// There is probably a better long-term solution; Ken is going to look into it.
if ( ( panimvalue->num.total == 1 ) && ( panimvalue->num.valid == 1 ) )
{
v1 = v2 = panimvalue[1].value * scale;
return;
}
int k = frame;
// find the data list that has the frame
while (panimvalue->num.total <= k)
{
k -= panimvalue->num.total;
panimvalue += panimvalue->num.valid + 1;
if ( panimvalue->num.total == 0 )
{
Assert( 0 ); // running off the end of the animation stream is bad
v1 = v2 = 0;
return;
}
}
if (panimvalue->num.valid > k)
{
// has valid animation data
v1 = panimvalue[k+1].value * scale;
if (panimvalue->num.valid > k + 1)
{
// has valid animation blend data
v2 = panimvalue[k+2].value * scale;
}
else
{
if (panimvalue->num.total > k + 1)
{
// data repeats, no blend
v2 = v1;
}
else
{
// pull blend from first data block in next list
v2 = panimvalue[panimvalue->num.valid+2].value * scale;
}
}
}
else
{
// get last valid data block
v1 = panimvalue[panimvalue->num.valid].value * scale;
if (panimvalue->num.total > k + 1)
{
// data repeats, no blend
v2 = v1;
}
else
{
// pull blend from first data block in next list
v2 = panimvalue[panimvalue->num.valid + 2].value * scale;
}
}
}
void ExtractAnimValue( int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1 )
{
if ( !panimvalue )
{
v1 = 0;
return;
}
int k = frame;
while (panimvalue->num.total <= k)
{
k -= panimvalue->num.total;
panimvalue += panimvalue->num.valid + 1;
if ( panimvalue->num.total == 0 )
{
Assert( 0 ); // running off the end of the animation stream is bad
v1 = 0;
return;
}
}
if (panimvalue->num.valid > k)
{
v1 = panimvalue[k+1].value * scale;
}
else
{
// get last valid data block
v1 = panimvalue[panimvalue->num.valid].value * scale;
}
}
//-----------------------------------------------------------------------------
// Purpose: return a sub frame rotation for a single bone
//-----------------------------------------------------------------------------
void CalcBoneQuaternion( int frame, float s,
const Quaternion &baseQuat, const RadianEuler &baseRot, const Vector &baseRotScale,
int iBaseFlags, const Quaternion &baseAlignment,
const mstudioanim_t *panim, Quaternion &q )
{
if ( panim->flags & STUDIO_ANIM_RAWROT )
{
q = *(panim->pQuat48());
Assert( q.IsValid() );
return;
}
if ( panim->flags & STUDIO_ANIM_RAWROT2 )
{
q = *(panim->pQuat64());
Assert( q.IsValid() );
return;
}
if ( !(panim->flags & STUDIO_ANIM_ANIMROT) )
{
if (panim->flags & STUDIO_ANIM_DELTA)
{
q.Init( 0.0f, 0.0f, 0.0f, 1.0f );
}
else
{
q = baseQuat;
}
return;
}
mstudioanim_valueptr_t *pValuesPtr = panim->pRotV();
if (s > 0.001f)
{
QuaternionAligned q1, q2;
RadianEuler angle1, angle2;
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 0 ), baseRotScale.x, angle1.x, angle2.x );
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 1 ), baseRotScale.y, angle1.y, angle2.y );
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 2 ), baseRotScale.z, angle1.z, angle2.z );
if (!(panim->flags & STUDIO_ANIM_DELTA))
{
angle1.x = angle1.x + baseRot.x;
angle1.y = angle1.y + baseRot.y;
angle1.z = angle1.z + baseRot.z;
angle2.x = angle2.x + baseRot.x;
angle2.y = angle2.y + baseRot.y;
angle2.z = angle2.z + baseRot.z;
}
Assert( angle1.IsValid() && angle2.IsValid() );
if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z)
{
AngleQuaternion( angle1, q1 );
AngleQuaternion( angle2, q2 );
#ifdef _X360
fltx4 q1simd, q2simd, qsimd;
q1simd = LoadAlignedSIMD( q1 );
q2simd = LoadAlignedSIMD( q2 );
qsimd = QuaternionBlendSIMD( q1simd, q2simd, s );
StoreUnalignedSIMD( q.Base(), qsimd );
#else
QuaternionBlend( q1, q2, s, q );
#endif
}
else
{
AngleQuaternion( angle1, q );
}
}
else
{
RadianEuler angle;
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 0 ), baseRotScale.x, angle.x );
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 1 ), baseRotScale.y, angle.y );
ExtractAnimValue( frame, pValuesPtr->pAnimvalue( 2 ), baseRotScale.z, angle.z );
if (!(panim->flags & STUDIO_ANIM_DELTA))
{
angle.x = angle.x + baseRot.x;
angle.y = angle.y + baseRot.y;
angle.z = angle.z + baseRot.z;
}
Assert( angle.IsValid() );
AngleQuaternion( angle, q );
}
Assert( q.IsValid() );
// align to unified bone
if (!(panim->flags & STUDIO_ANIM_DELTA) && (iBaseFlags & BONE_FIXED_ALIGNMENT))
{
QuaternionAlign( baseAlignment, q, q );
}
}
inline void CalcBoneQuaternion( int frame, float s,
const mstudiobone_t *pBone,
const mstudiolinearbone_t *pLinearBones,
const mstudioanim_t *panim, Quaternion &q )
{
if (pLinearBones)
{
CalcBoneQuaternion( frame, s, pLinearBones->quat(panim->bone), pLinearBones->rot(panim->bone), pLinearBones->rotscale(panim->bone), pLinearBones->flags(panim->bone), pLinearBones->qalignment(panim->bone), panim, q );
}
else
{
CalcBoneQuaternion( frame, s, pBone->quat, pBone->rot, pBone->rotscale, pBone->flags, pBone->qAlignment, panim, q );
}
}
//-----------------------------------------------------------------------------
// Purpose: return a sub frame position for a single bone
//-----------------------------------------------------------------------------
void CalcBonePosition( int frame, float s,
const Vector &basePos, const Vector &baseBoneScale,
const mstudioanim_t *panim, Vector &pos )
{
if (panim->flags & STUDIO_ANIM_RAWPOS)
{
pos = *(panim->pPos());
Assert( pos.IsValid() );
return;
}
else if (!(panim->flags & STUDIO_ANIM_ANIMPOS))
{
if (panim->flags & STUDIO_ANIM_DELTA)
{
pos.Init( 0.0f, 0.0f, 0.0f );
}
else
{
pos = basePos;
}
return;
}
mstudioanim_valueptr_t *pPosV = panim->pPosV();
int j;
if (s > 0.001f)
{
float v1, v2;
for (j = 0; j < 3; j++)
{
ExtractAnimValue( frame, pPosV->pAnimvalue( j ), baseBoneScale[j], v1, v2 );
pos[j] = v1 * (1.0 - s) + v2 * s;
}
}
else
{
for (j = 0; j < 3; j++)
{
ExtractAnimValue( frame, pPosV->pAnimvalue( j ), baseBoneScale[j], pos[j] );
}
}
if (!(panim->flags & STUDIO_ANIM_DELTA))
{
pos.x = pos.x + basePos.x;
pos.y = pos.y + basePos.y;
pos.z = pos.z + basePos.z;
}
Assert( pos.IsValid() );
}
inline void CalcBonePosition( int frame, float s,
const mstudiobone_t *pBone,
const mstudiolinearbone_t *pLinearBones,
const mstudioanim_t *panim, Vector &pos )
{
if (pLinearBones)
{
CalcBonePosition( frame, s, pLinearBones->pos(panim->bone), pLinearBones->posscale(panim->bone), panim, pos );
}
else
{
CalcBonePosition( frame, s, pBone->pos, pBone->posscale, panim, pos );
}
}
void SetupSingleBoneMatrix(
CStudioHdr *pOwnerHdr,
int nSequence,
int iFrame,
int iBone,
matrix3x4_t &mBoneLocal )
{
mstudioseqdesc_t &seqdesc = pOwnerHdr->pSeqdesc( nSequence );
mstudioanimdesc_t &animdesc = pOwnerHdr->pAnimdesc( seqdesc.anim( 0, 0 ) );
int iLocalFrame = iFrame;
mstudioanim_t *panim = animdesc.pAnim( &iLocalFrame );
float s = 0;
mstudiobone_t *pbone = pOwnerHdr->pBone( iBone );
Quaternion boneQuat;
Vector bonePos;
// search for bone
while (panim && panim->bone != iBone)
{
panim = panim->pNext();
}
// look up animation if found, if not, initialize
if (panim && seqdesc.weight(iBone) > 0)
{
CalcBoneQuaternion( iLocalFrame, s, pbone, NULL, panim, boneQuat );
CalcBonePosition ( iLocalFrame, s, pbone, NULL, panim, bonePos );
}
else if (animdesc.flags & STUDIO_DELTA)
{
boneQuat.Init( 0.0f, 0.0f, 0.0f, 1.0f );
bonePos.Init( 0.0f, 0.0f, 0.0f );
}
else
{
boneQuat = pbone->quat;
bonePos = pbone->pos;
}
QuaternionMatrix( boneQuat, bonePos, mBoneLocal );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
static void CalcDecompressedAnimation( const mstudiocompressedikerror_t *pCompressed, int iFrame, float fraq, Vector &pos, Quaternion &q )
{
if (fraq > 0.0001f)
{
Vector p1, p2;
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 0 ), pCompressed->scale[0], p1.x, p2.x );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 1 ), pCompressed->scale[1], p1.y, p2.y );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 2 ), pCompressed->scale[2], p1.z, p2.z );
pos = p1 * (1 - fraq) + p2 * fraq;
Quaternion q1, q2;
RadianEuler angle1, angle2;
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 3 ), pCompressed->scale[3], angle1.x, angle2.x );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 4 ), pCompressed->scale[4], angle1.y, angle2.y );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 5 ), pCompressed->scale[5], angle1.z, angle2.z );
if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z)
{
AngleQuaternion( angle1, q1 );
AngleQuaternion( angle2, q2 );
QuaternionBlend( q1, q2, fraq, q );
}
else
{
AngleQuaternion( angle1, q );
}
}
else
{
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 0 ), pCompressed->scale[0], pos.x );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 1 ), pCompressed->scale[1], pos.y );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 2 ), pCompressed->scale[2], pos.z );
RadianEuler angle;
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 3 ), pCompressed->scale[3], angle.x );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 4 ), pCompressed->scale[4], angle.y );
ExtractAnimValue( iFrame, pCompressed->pAnimvalue( 5 ), pCompressed->scale[5], angle.z );
AngleQuaternion( angle, q );
}
}
//-----------------------------------------------------------------------------
// Purpose: translate animations done in a non-standard parent space
//-----------------------------------------------------------------------------
static void CalcLocalHierarchyAnimation(
const CStudioHdr *pStudioHdr,
matrix3x4_t *boneToWorld,
CBoneBitList &boneComputed,
Vector *pos,
Quaternion *q,
//const mstudioanimdesc_t &animdesc,
const mstudiobone_t *pbone,
mstudiolocalhierarchy_t *pHierarchy,
int iBone,
int iNewParent,
float cycle,
int iFrame,
float flFraq,
int boneMask
)
{
#ifdef STAGING_ONLY
Assert( iNewParent == -1 || (iNewParent >= 0 && iNewParent < MAXSTUDIOBONES) );
Assert( iBone > 0 );
Assert( iBone < MAXSTUDIOBONES );
#endif // STAGING_ONLY
Vector localPos;
Quaternion localQ;
// make fake root transform
static ALIGN16 matrix3x4_t rootXform ALIGN16_POST ( 1.0f, 0, 0, 0, 0, 1.0f, 0, 0, 0, 0, 1.0f, 0 );
// FIXME: missing check to see if seq has a weight for this bone
float weight = 1.0f;
// check to see if there's a ramp on the influence
if ( pHierarchy->tail - pHierarchy->peak < 1.0f )
{
float index = cycle;
if (pHierarchy->end > 1.0f && index < pHierarchy->start)
index += 1.0f;
if (index < pHierarchy->start)
return;
if (index >= pHierarchy->end)
return;
if (index < pHierarchy->peak && pHierarchy->start != pHierarchy->peak)
{
weight = (index - pHierarchy->start) / (pHierarchy->peak - pHierarchy->start);
}
else if (index > pHierarchy->tail && pHierarchy->end != pHierarchy->tail)
{
weight = (pHierarchy->end - index) / (pHierarchy->end - pHierarchy->tail);
}
weight = SimpleSpline( weight );
}
CalcDecompressedAnimation( pHierarchy->pLocalAnim(), iFrame - pHierarchy->iStart, flFraq, localPos, localQ );
BuildBoneChain( pStudioHdr, rootXform, pos, q, iBone, boneToWorld, boneComputed );
matrix3x4_t localXform;
AngleMatrix( localQ, localPos, localXform );
if ( iNewParent != -1 )
{
BuildBoneChain( pStudioHdr, rootXform, pos, q, iNewParent, boneToWorld, boneComputed );
ConcatTransforms( boneToWorld[iNewParent], localXform, boneToWorld[iBone] );
}
else
{
boneToWorld[iBone] = localXform;
}
// back solve
Vector p1;
Quaternion q1;
int n = pbone[iBone].parent;
if (n == -1)
{
if (weight == 1.0f)
{
MatrixAngles( boneToWorld[iBone], q[iBone], pos[iBone] );
}
else
{
MatrixAngles( boneToWorld[iBone], q1, p1 );
QuaternionSlerp( q[iBone], q1, weight, q[iBone] );
pos[iBone] = Lerp( weight, p1, pos[iBone] );
}
}
else
{
matrix3x4_t worldToBone;
MatrixInvert( boneToWorld[n], worldToBone );
matrix3x4_t local;
ConcatTransforms( worldToBone, boneToWorld[iBone], local );
if (weight == 1.0f)
{
MatrixAngles( local, q[iBone], pos[iBone] );
}
else
{
MatrixAngles( local, q1, p1 );
QuaternionSlerp( q[iBone], q1, weight, q[iBone] );
pos[iBone] = Lerp( weight, p1, pos[iBone] );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Calc Zeroframe Data
//-----------------------------------------------------------------------------
static void CalcZeroframeData( const CStudioHdr *pStudioHdr, const studiohdr_t *pAnimStudioHdr, const virtualgroup_t *pAnimGroup, const mstudiobone_t *pAnimbone, mstudioanimdesc_t &animdesc, float fFrame, Vector *pos, Quaternion *q, int boneMask, float flWeight )
{
byte *pData = animdesc.pZeroFrameData();
if (!pData)
return;
int i, j;
// Msg("zeroframe %s\n", animdesc.pszName() );
if (animdesc.zeroframecount == 1)
{
for (j = 0; j < pAnimStudioHdr->numbones; j++)
{
if (pAnimGroup)
i = pAnimGroup->masterBone[j];
else
i = j;
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS)
{
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
{
Vector p = *(Vector48 *)pData;
pos[i] = pos[i] * (1.0f - flWeight) + p * flWeight;
Assert( pos[i].IsValid() );
}
pData += sizeof( Vector48 );
}
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT)
{
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
{
Quaternion q0 = *(Quaternion64 *)pData;
QuaternionBlend( q[i], q0, flWeight, q[i] );
Assert( q[i].IsValid() );
}
pData += sizeof( Quaternion64 );
}
}
}
else
{
float s1;
int index = fFrame / animdesc.zeroframespan;
if (index >= animdesc.zeroframecount - 1)
{
index = animdesc.zeroframecount - 2;
s1 = 1.0f;
}
else
{
s1 = clamp( (fFrame - index * animdesc.zeroframespan) / animdesc.zeroframespan, 0.0f, 1.0f );
}
int i0 = max( index - 1, 0 );
int i1 = index;
int i2 = min( index + 1, animdesc.zeroframecount - 1 );
for (j = 0; j < pAnimStudioHdr->numbones; j++)
{
if (pAnimGroup)
i = pAnimGroup->masterBone[j];
else
i = j;
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS)
{
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
{
Vector p0 = *(((Vector48 *)pData) + i0);
Vector p1 = *(((Vector48 *)pData) + i1);
Vector p2 = *(((Vector48 *)pData) + i2);
Vector p3;
Hermite_Spline( p0, p1, p2, s1, p3 );
pos[i] = pos[i] * (1.0f - flWeight) + p3 * flWeight;
Assert( pos[i].IsValid() );
}
pData += sizeof( Vector48 ) * animdesc.zeroframecount;
}
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT)
{
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
{
Quaternion q0 = *(((Quaternion64 *)pData) + i0);
Quaternion q1 = *(((Quaternion64 *)pData) + i1);
Quaternion q2 = *(((Quaternion64 *)pData) + i2);
if (flWeight == 1.0f)
{
Hermite_Spline( q0, q1, q2, s1, q[i] );
}
else
{
Quaternion q3;
Hermite_Spline( q0, q1, q2, s1, q3 );
QuaternionBlend( q[i], q3, flWeight, q[i] );
}
Assert( q[i].IsValid() );
}
pData += sizeof( Quaternion64 ) * animdesc.zeroframecount;
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Find and decode a sub-frame of animation, remapping the skeleton bone indexes
//-----------------------------------------------------------------------------
static void CalcVirtualAnimation( virtualmodel_t *pVModel, const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q,
mstudioseqdesc_t &seqdesc, int sequence, int animation,
float cycle, int boneMask )
{
//int i, k;
const mstudiobone_t *pbone;
const virtualgroup_t *pSeqGroup;
const studiohdr_t *pSeqStudioHdr;
const mstudiolinearbone_t *pSeqLinearBones;
const mstudiobone_t *pSeqbone;
const mstudioanim_t *panim;
const studiohdr_t *pAnimStudioHdr;
const mstudiolinearbone_t *pAnimLinearBones;
const mstudiobone_t *pAnimbone;
const virtualgroup_t *pAnimGroup;
pSeqGroup = pVModel->pSeqGroup( sequence );
int baseanimation = pStudioHdr->iRelativeAnim( sequence, animation );
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( baseanimation );
pSeqStudioHdr = ((CStudioHdr *)pStudioHdr)->pSeqStudioHdr( sequence );
pSeqLinearBones = pSeqStudioHdr->pLinearBones();
pSeqbone = pSeqStudioHdr->pBone( 0 );
pAnimGroup = pVModel->pAnimGroup( baseanimation );
pAnimStudioHdr = ((CStudioHdr *)pStudioHdr)->pAnimStudioHdr( baseanimation );
pAnimLinearBones = pAnimStudioHdr->pLinearBones();
pAnimbone = pAnimStudioHdr->pBone( 0 );
int iFrame;
float s;
float fFrame = cycle * (animdesc.numframes - 1);
iFrame = (int)fFrame;
s = (fFrame - iFrame);
int iLocalFrame = iFrame;
float flStall;
panim = animdesc.pAnim( &iLocalFrame, flStall );
float *pweight = seqdesc.pBoneweight( 0 );
pbone = pStudioHdr->pBone( 0 );
for (int i = 0; i < pStudioHdr->numbones(); i++)
{
if (pStudioHdr->boneFlags(i) & boneMask)
{
int j = pSeqGroup->boneMap[i];
if (j >= 0 && pweight[j] > 0.0f)
{
if (animdesc.flags & STUDIO_DELTA)
{
q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f );
pos[i].Init( 0.0f, 0.0f, 0.0f );
}
else if (pSeqLinearBones)
{
q[i] = pSeqLinearBones->quat(j);
pos[i] = pSeqLinearBones->pos(j);
}
else
{
q[i] = pSeqbone[j].quat;
pos[i] = pSeqbone[j].pos;
}
#ifdef STUDIO_ENABLE_PERF_COUNTERS
pStudioHdr->m_nPerfUsedBones++;
#endif
}
}
}
// if the animation isn't available, look for the zero frame cache
if (!panim)
{
CalcZeroframeData( ((CStudioHdr *)pStudioHdr), pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, 1.0 );
return;
}
// FIXME: change encoding so that bone -1 is never the case
while (panim && panim->bone < 255)
{
int j = pAnimGroup->masterBone[panim->bone];
if ( j >= 0 && ( pStudioHdr->boneFlags(j) & boneMask ) )
{
int k = pSeqGroup->boneMap[j];
if (k >= 0 && pweight[k] > 0.0f)
{
CalcBoneQuaternion( iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, q[j] );
CalcBonePosition ( iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, pos[j] );
#ifdef STUDIO_ENABLE_PERF_COUNTERS
pStudioHdr->m_nPerfAnimatedBones++;
#endif
}
}
panim = panim->pNext();
}
// cross fade in previous zeroframe data
if (flStall > 0.0f)
{
CalcZeroframeData( pStudioHdr, pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, flStall );
}
// calculate a local hierarchy override
if (animdesc.numlocalhierarchy)
{
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int i;
for (i = 0; i < animdesc.numlocalhierarchy; i++)
{
mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy( i );
if ( !pHierarchy )
break;
int iBone = pAnimGroup->masterBone[pHierarchy->iBone];
if (iBone >= 0 && (pStudioHdr->boneFlags(iBone) & boneMask))
{
if ( pHierarchy->iNewParent != -1 )
{
int iNewParent = pAnimGroup->masterBone[pHierarchy->iNewParent];
if (iNewParent >= 0 && (pStudioHdr->boneFlags(iNewParent) & boneMask))
{
CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, iNewParent, cycle, iFrame, s, boneMask );
}
}
else
{
CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, -1, cycle, iFrame, s, boneMask );
}
}
}
g_MatrixPool.Free( boneToWorld );
}
}
//-----------------------------------------------------------------------------
// Purpose: Find and decode a sub-frame of animation
//-----------------------------------------------------------------------------
static void CalcAnimation( const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q,
mstudioseqdesc_t &seqdesc,
int sequence, int animation,
float cycle, int boneMask )
{
#ifdef STUDIO_ENABLE_PERF_COUNTERS
pStudioHdr->m_nPerfAnimationLayers++;
#endif
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
if (pVModel)
{
CalcVirtualAnimation( pVModel, pStudioHdr, pos, q, seqdesc, sequence, animation, cycle, boneMask );
return;
}
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( animation );
mstudiobone_t *pbone = pStudioHdr->pBone( 0 );
const mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones();
// int i;
int iFrame;
float s;
float fFrame = cycle * (animdesc.numframes - 1);
iFrame = (int)fFrame;
s = (fFrame - iFrame);
int iLocalFrame = iFrame;
float flStall;
mstudioanim_t *panim = animdesc.pAnim( &iLocalFrame, flStall );
float *pweight = seqdesc.pBoneweight( 0 );
// if the animation isn't available, look for the zero frame cache
if (!panim)
{
// Msg("zeroframe %s\n", animdesc.pszName() );
// pre initialize
for (int i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++)
{
if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
{
if (animdesc.flags & STUDIO_DELTA)
{
q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f );
pos[i].Init( 0.0f, 0.0f, 0.0f );
}
else
{
q[i] = pbone->quat;
pos[i] = pbone->pos;
}
}
}
CalcZeroframeData( pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone( 0 ), animdesc, fFrame, pos, q, boneMask, 1.0 );
return;
}
// BUGBUG: the sequence, the anim, and the model can have all different bone mappings.
for (int i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++)
{
if (panim && panim->bone == i)
{
if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
{
CalcBoneQuaternion( iLocalFrame, s, pbone, pLinearBones, panim, q[i] );
CalcBonePosition ( iLocalFrame, s, pbone, pLinearBones, panim, pos[i] );
#ifdef STUDIO_ENABLE_PERF_COUNTERS
pStudioHdr->m_nPerfAnimatedBones++;
pStudioHdr->m_nPerfUsedBones++;
#endif
}
panim = panim->pNext();
}
else if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
{
if (animdesc.flags & STUDIO_DELTA)
{
q[i].Init( 0.0f, 0.0f, 0.0f, 1.0f );
pos[i].Init( 0.0f, 0.0f, 0.0f );
}
else
{
q[i] = pbone->quat;
pos[i] = pbone->pos;
}
#ifdef STUDIO_ENABLE_PERF_COUNTERS
pStudioHdr->m_nPerfUsedBones++;
#endif
}
}
// cross fade in previous zeroframe data
if (flStall > 0.0f)
{
CalcZeroframeData( pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone( 0 ), animdesc, fFrame, pos, q, boneMask, flStall );
}
if (animdesc.numlocalhierarchy)
{
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int i;
for (i = 0; i < animdesc.numlocalhierarchy; i++)
{
mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy( i );
if ( !pHierarchy )
break;
if (pStudioHdr->boneFlags(pHierarchy->iBone) & boneMask)
{
if (pStudioHdr->boneFlags(pHierarchy->iNewParent) & boneMask)
{
CalcLocalHierarchyAnimation( pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, pHierarchy->iBone, pHierarchy->iNewParent, cycle, iFrame, s, boneMask );
}
}
}
g_MatrixPool.Free( boneToWorld );
}
}
//-----------------------------------------------------------------------------
// Purpose: qt = ( s * p ) * q
//-----------------------------------------------------------------------------
void QuaternionSM( float s, const Quaternion &p, const Quaternion &q, Quaternion &qt )
{
Quaternion p1, q1;
QuaternionScale( p, s, p1 );
QuaternionMult( p1, q, q1 );
QuaternionNormalize( q1 );
qt[0] = q1[0];
qt[1] = q1[1];
qt[2] = q1[2];
qt[3] = q1[3];
}
#if ALLOW_SIMD_QUATERNION_MATH
FORCEINLINE fltx4 QuaternionSMSIMD( float s, const fltx4 &p, const fltx4 &q )
{
fltx4 p1, q1, result;
p1 = QuaternionScaleSIMD( p, s );
q1 = QuaternionMultSIMD( p1, q );
result = QuaternionNormalizeSIMD( q1 );
return result;
}
#endif
//-----------------------------------------------------------------------------
// Purpose: qt = p * ( s * q )
//-----------------------------------------------------------------------------
void QuaternionMA( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt )
{
Quaternion p1, q1;
QuaternionScale( q, s, q1 );
QuaternionMult( p, q1, p1 );
QuaternionNormalize( p1 );
qt[0] = p1[0];
qt[1] = p1[1];
qt[2] = p1[2];
qt[3] = p1[3];
}
#if ALLOW_SIMD_QUATERNION_MATH
FORCEINLINE fltx4 QuaternionMASIMD( const fltx4 &p, float s, const fltx4 &q )
{
fltx4 p1, q1, result;
q1 = QuaternionScaleSIMD( q, s );
p1 = QuaternionMultSIMD( p, q1 );
result = QuaternionNormalizeSIMD( p1 );
return result;
}
#endif
//-----------------------------------------------------------------------------
// Purpose: qt = p + s * q
//-----------------------------------------------------------------------------
void QuaternionAccumulate( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt )
{
Quaternion q2;
QuaternionAlign( p, q, q2 );
qt[0] = p[0] + s * q2[0];
qt[1] = p[1] + s * q2[1];
qt[2] = p[2] + s * q2[2];
qt[3] = p[3] + s * q2[3];
}
#if ALLOW_SIMD_QUATERNION_MATH
FORCEINLINE fltx4 QuaternionAccumulateSIMD( const fltx4 &p, float s, const fltx4 &q )
{
fltx4 q2, s4, result;
q2 = QuaternionAlignSIMD( p, q );
s4 = ReplicateX4( s );
result = MaddSIMD( s4, q2, p );
return result;
}
#endif
//-----------------------------------------------------------------------------
// Purpose: blend together in world space q1,pos1 with q2,pos2. Return result in q1,pos1.
// 0 returns q1, pos1. 1 returns q2, pos2
//-----------------------------------------------------------------------------
void WorldSpaceSlerp(
const CStudioHdr *pStudioHdr,
Quaternion q1[MAXSTUDIOBONES],
Vector pos1[MAXSTUDIOBONES],
mstudioseqdesc_t &seqdesc,
int sequence,
const Quaternion q2[MAXSTUDIOBONES],
const Vector pos2[MAXSTUDIOBONES],
float s,
int boneMask )
{
int i, j;
float s1; // weight of parent for q2, pos2
float s2; // weight for q2, pos2
// make fake root transform
matrix3x4_t rootXform;
SetIdentityMatrix( rootXform );
// matrices for q2, pos2
matrix3x4_t *srcBoneToWorld = g_MatrixPool.Alloc();
CBoneBitList srcBoneComputed;
matrix3x4_t *destBoneToWorld = g_MatrixPool.Alloc();
CBoneBitList destBoneComputed;
matrix3x4_t *targetBoneToWorld = g_MatrixPool.Alloc();
CBoneBitList targetBoneComputed;
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
const virtualgroup_t *pSeqGroup = NULL;
if (pVModel)
{
pSeqGroup = pVModel->pSeqGroup( sequence );
}
mstudiobone_t *pbone = pStudioHdr->pBone( 0 );
for (i = 0; i < pStudioHdr->numbones(); i++)
{
// skip unused bones
if (!(pStudioHdr->boneFlags(i) & boneMask))
{
continue;
}
int n = pbone[i].parent;
s1 = 0.0;
if (pSeqGroup)
{
j = pSeqGroup->boneMap[i];
if (j >= 0)
{
s2 = s * seqdesc.weight( j ); // blend in based on this bones weight
if (n != -1)
{
s1 = s * seqdesc.weight( pSeqGroup->boneMap[n] );
}
}
else
{
s2 = 0.0;
}
}
else
{
s2 = s * seqdesc.weight( i ); // blend in based on this bones weight
if (n != -1)
{
s1 = s * seqdesc.weight( n );
}
}
if (s1 == 1.0 && s2 == 1.0)
{
pos1[i] = pos2[i];
q1[i] = q2[i];
}
else if (s2 > 0.0)
{
Quaternion srcQ, destQ;
Vector srcPos, destPos;
Quaternion targetQ;
Vector targetPos;
Vector tmp;
BuildBoneChain( pStudioHdr, rootXform, pos1, q1, i, destBoneToWorld, destBoneComputed );
BuildBoneChain( pStudioHdr, rootXform, pos2, q2, i, srcBoneToWorld, srcBoneComputed );
MatrixAngles( destBoneToWorld[i], destQ, destPos );
MatrixAngles( srcBoneToWorld[i], srcQ, srcPos );
QuaternionSlerp( destQ, srcQ, s2, targetQ );
AngleMatrix( targetQ, destPos, targetBoneToWorld[i] );
// back solve
if (n == -1)
{
MatrixAngles( targetBoneToWorld[i], q1[i], tmp );
}
else
{
matrix3x4_t worldToBone;
MatrixInvert( targetBoneToWorld[n], worldToBone );
matrix3x4_t local;
ConcatTransforms( worldToBone, targetBoneToWorld[i], local );
MatrixAngles( local, q1[i], tmp );
// blend bone lengths (local space)
pos1[i] = Lerp( s2, pos1[i], pos2[i] );
}
}
}
g_MatrixPool.Free( srcBoneToWorld );
g_MatrixPool.Free( destBoneToWorld );
g_MatrixPool.Free( targetBoneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
// 0 returns q1, pos1. 1 returns q2, pos2
//-----------------------------------------------------------------------------
void SlerpBones(
const CStudioHdr *pStudioHdr,
Quaternion q1[MAXSTUDIOBONES],
Vector pos1[MAXSTUDIOBONES],
mstudioseqdesc_t &seqdesc, // source of q2 and pos2
int sequence,
const QuaternionAligned q2[MAXSTUDIOBONES],
const Vector pos2[MAXSTUDIOBONES],
float s,
int boneMask )
{
if (s <= 0.0f)
return;
if (s > 1.0f)
{
s = 1.0f;
}
if (seqdesc.flags & STUDIO_WORLD)
{
WorldSpaceSlerp( pStudioHdr, q1, pos1, seqdesc, sequence, q2, pos2, s, boneMask );
return;
}
int i, j;
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
const virtualgroup_t *pSeqGroup = NULL;
if (pVModel)
{
pSeqGroup = pVModel->pSeqGroup( sequence );
}
// Build weightlist for all bones
int nBoneCount = pStudioHdr->numbones();
float *pS2 = (float*)stackalloc( nBoneCount * sizeof(float) );
for (i = 0; i < nBoneCount; i++)
{
// skip unused bones
if (!(pStudioHdr->boneFlags(i) & boneMask))
{
pS2[i] = 0.0f;
continue;
}
if ( !pSeqGroup )
{
pS2[i] = s * seqdesc.weight( i ); // blend in based on this bones weight
continue;
}
j = pSeqGroup->boneMap[i];
if ( j >= 0 )
{
pS2[i] = s * seqdesc.weight( j ); // blend in based on this bones weight
}
else
{
pS2[i] = 0.0;
}
}
float s1, s2;
if ( seqdesc.flags & STUDIO_DELTA )
{
for ( i = 0; i < nBoneCount; i++ )
{
s2 = pS2[i];
if ( s2 <= 0.0f )
continue;
if ( seqdesc.flags & STUDIO_POST )
{
#ifndef _X360
QuaternionMA( q1[i], s2, q2[i], q1[i] );
#else
fltx4 q1simd = LoadUnalignedSIMD( q1[i].Base() );
fltx4 q2simd = LoadAlignedSIMD( q2[i] );
fltx4 result = QuaternionMASIMD( q1simd, s2, q2simd );
StoreUnalignedSIMD( q1[i].Base(), result );
#endif
// FIXME: are these correct?
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2;
pos1[i][1] = pos1[i][1] + pos2[i][1] * s2;
pos1[i][2] = pos1[i][2] + pos2[i][2] * s2;
}
else
{
#ifndef _X360
QuaternionSM( s2, q2[i], q1[i], q1[i] );
#else
fltx4 q1simd = LoadUnalignedSIMD( q1[i].Base() );
fltx4 q2simd = LoadAlignedSIMD( q2[i] );
fltx4 result = QuaternionSMSIMD( s2, q2simd, q1simd );
StoreUnalignedSIMD( q1[i].Base(), result );
#endif
// FIXME: are these correct?
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2;
pos1[i][1] = pos1[i][1] + pos2[i][1] * s2;
pos1[i][2] = pos1[i][2] + pos2[i][2] * s2;
}
}
return;
}
QuaternionAligned q3;
for (i = 0; i < nBoneCount; i++)
{
s2 = pS2[i];
if ( s2 <= 0.0f )
continue;
s1 = 1.0 - s2;
#ifdef _X360
fltx4 q1simd, q2simd, result;
q1simd = LoadUnalignedSIMD( q1[i].Base() );
q2simd = LoadAlignedSIMD( q2[i] );
#endif
if ( pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT )
{
#ifndef _X360
QuaternionSlerpNoAlign( q2[i], q1[i], s1, q3 );
#else
result = QuaternionSlerpNoAlignSIMD( q2simd, q1simd, s1 );
#endif
}
else
{
#ifndef _X360
QuaternionSlerp( q2[i], q1[i], s1, q3 );
#else
result = QuaternionSlerpSIMD( q2simd, q1simd, s1 );
#endif
}
#ifndef _X360
q1[i][0] = q3[0];
q1[i][1] = q3[1];
q1[i][2] = q3[2];
q1[i][3] = q3[3];
#else
StoreUnalignedSIMD( q1[i].Base(), result );
#endif
pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2;
pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2;
pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2;
}
}
//-----------------------------------------------------------------------------
// Purpose: Inter-animation blend. Assumes both types are identical.
// blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
// 0 returns q1, pos1. 1 returns q2, pos2
//-----------------------------------------------------------------------------
void BlendBones(
const CStudioHdr *pStudioHdr,
Quaternion q1[MAXSTUDIOBONES],
Vector pos1[MAXSTUDIOBONES],
mstudioseqdesc_t &seqdesc,
int sequence,
const Quaternion q2[MAXSTUDIOBONES],
const Vector pos2[MAXSTUDIOBONES],
float s,
int boneMask )
{
int i, j;
Quaternion q3;
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
const virtualgroup_t *pSeqGroup = NULL;
if (pVModel)
{
pSeqGroup = pVModel->pSeqGroup( sequence );
}
if (s <= 0)
{
Assert(0); // shouldn't have been called
return;
}
else if (s >= 1.0)
{
Assert(0); // shouldn't have been called
for (i = 0; i < pStudioHdr->numbones(); i++)
{
// skip unused bones
if (!(pStudioHdr->boneFlags(i) & boneMask))
{
continue;
}
if (pSeqGroup)
{
j = pSeqGroup->boneMap[i];
}
else
{
j = i;
}
if (j >= 0 && seqdesc.weight( j ) > 0.0)
{
q1[i] = q2[i];
pos1[i] = pos2[i];
}
}
return;
}
float s2 = s;
float s1 = 1.0 - s2;
for (i = 0; i < pStudioHdr->numbones(); i++)
{
// skip unused bones
if (!(pStudioHdr->boneFlags(i) & boneMask))
{
continue;
}
if (pSeqGroup)
{
j = pSeqGroup->boneMap[i];
}
else
{
j = i;
}
if (j >= 0 && seqdesc.weight( j ) > 0.0)
{
if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT)
{
QuaternionBlendNoAlign( q2[i], q1[i], s1, q3 );
}
else
{
QuaternionBlend( q2[i], q1[i], s1, q3 );
}
q1[i][0] = q3[0];
q1[i][1] = q3[1];
q1[i][2] = q3[2];
q1[i][3] = q3[3];
pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2;
pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2;
pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Scale a set of bones. Must be of type delta
//-----------------------------------------------------------------------------
void ScaleBones(
const CStudioHdr *pStudioHdr,
Quaternion q1[MAXSTUDIOBONES],
Vector pos1[MAXSTUDIOBONES],
int sequence,
float s,
int boneMask )
{
int i, j;
Quaternion q3;
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence );
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
const virtualgroup_t *pSeqGroup = NULL;
if (pVModel)
{
pSeqGroup = pVModel->pSeqGroup( sequence );
}
float s2 = s;
float s1 = 1.0 - s2;
for (i = 0; i < pStudioHdr->numbones(); i++)
{
// skip unused bones
if (!(pStudioHdr->boneFlags(i) & boneMask))
{
continue;
}
if (pSeqGroup)
{
j = pSeqGroup->boneMap[i];
}
else
{
j = i;
}
if (j >= 0 && seqdesc.weight( j ) > 0.0)
{
QuaternionIdentityBlend( q1[i], s1, q1[i] );
VectorScale( pos1[i], s2, pos1[i] );
}
}
}
//-----------------------------------------------------------------------------
// Purpose: resolve a global pose parameter to the specific setting for this sequence
//-----------------------------------------------------------------------------
void Studio_LocalPoseParameter( const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index )
{
if (!pStudioHdr)
{
flSetting = 0;
index = 0;
return;
}
int iPose = pStudioHdr->GetSharedPoseParameter( iSequence, seqdesc.paramindex[iLocalIndex] );
if (iPose == -1)
{
flSetting = 0;
index = 0;
return;
}
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iPose );
float flValue = poseParameter[iPose];
if (Pose.loop)
{
float wrap = (Pose.start + Pose.end) / 2.0 + Pose.loop / 2.0;
float shift = Pose.loop - wrap;
flValue = flValue - Pose.loop * floor((flValue + shift) / Pose.loop);
}
if (seqdesc.posekeyindex == 0)
{
float flLocalStart = ((float)seqdesc.paramstart[iLocalIndex] - Pose.start) / (Pose.end - Pose.start);
float flLocalEnd = ((float)seqdesc.paramend[iLocalIndex] - Pose.start) / (Pose.end - Pose.start);
// convert into local range
flSetting = (flValue - flLocalStart) / (flLocalEnd - flLocalStart);
// clamp. This shouldn't ever need to happen if it's looping.
if (flSetting < 0)
flSetting = 0;
if (flSetting > 1)
flSetting = 1;
index = 0;
if (seqdesc.groupsize[iLocalIndex] > 2 )
{
// estimate index
index = (int)(flSetting * (seqdesc.groupsize[iLocalIndex] - 1));
if (index == seqdesc.groupsize[iLocalIndex] - 1) index = seqdesc.groupsize[iLocalIndex] - 2;
flSetting = flSetting * (seqdesc.groupsize[iLocalIndex] - 1) - index;
}
}
else
{
flValue = flValue * (Pose.end - Pose.start) + Pose.start;
index = 0;
// FIXME: this needs to be 2D
// FIXME: this shouldn't be a linear search
while (1)
{
flSetting = (flValue - seqdesc.poseKey( iLocalIndex, index )) / (seqdesc.poseKey( iLocalIndex, index + 1 ) - seqdesc.poseKey( iLocalIndex, index ));
/*
if (index > 0 && flSetting < 0.0)
{
index--;
continue;
}
else
*/
if (index < seqdesc.groupsize[iLocalIndex] - 2 && flSetting > 1.0)
{
index++;
continue;
}
break;
}
// clamp.
if (flSetting < 0.0f)
flSetting = 0.0f;
if (flSetting > 1.0f)
flSetting = 1.0f;
}
}
void Studio_CalcBoneToBoneTransform( const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t& matrixOut )
{
mstudiobone_t *pbone = pStudioHdr->pBone( inputBoneIndex );
matrix3x4_t inputToPose;
MatrixInvert( pbone->poseToBone, inputToPose );
ConcatTransforms( pStudioHdr->pBone( outputBoneIndex )->poseToBone, inputToPose, matrixOut );
}
//-----------------------------------------------------------------------------
// Purpose: calculate a pose for a single sequence
//-----------------------------------------------------------------------------
void InitPose(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
int boneMask
)
{
if (!pStudioHdr->pLinearBones())
{
for (int i = 0; i < pStudioHdr->numbones(); i++)
{
if (pStudioHdr->boneFlags( i ) & boneMask )
{
mstudiobone_t *pbone = pStudioHdr->pBone( i );
pos[i] = pbone->pos;
q[i] = pbone->quat;
}
}
}
else
{
mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones();
for (int i = 0; i < pStudioHdr->numbones(); i++)
{
if (pStudioHdr->boneFlags( i ) & boneMask )
{
pos[i] = pLinearBones->pos(i);
q[i] = pLinearBones->quat(i);
}
}
}
}
inline bool PoseIsAllZeros(
const CStudioHdr *pStudioHdr,
int sequence,
mstudioseqdesc_t &seqdesc,
int i0,
int i1
)
{
int baseanim;
// remove "zero" positional blends
baseanim = pStudioHdr->iRelativeAnim( sequence, seqdesc.anim(i0 ,i1 ) );
mstudioanimdesc_t &anim = ((CStudioHdr *)pStudioHdr)->pAnimdesc( baseanim );
return (anim.flags & STUDIO_ALLZEROS) != 0;
}
//-----------------------------------------------------------------------------
// Purpose: turn a 2x2 blend into a 3 way triangle blend
// Returns: returns the animination indices and barycentric coordinates of a triangle
// the triangle is a right triangle, and the diagonal is between elements [0] and [2]
//-----------------------------------------------------------------------------
static ConVar anim_3wayblend( "anim_3wayblend", "1", FCVAR_REPLICATED, "Toggle the 3-way animation blending code." );
void Calc3WayBlendIndices( int i0, int i1, float s0, float s1, const mstudioseqdesc_t &seqdesc, int *pAnimIndices, float *pWeight )
{
// Figure out which bi-section direction we are using to make triangles.
bool bEven = ( ( ( i0 + i1 ) & 0x1 ) == 0 );
int x1, y1;
int x2, y2;
int x3, y3;
// diagonal is between elements 1 & 3
// TL to BR
if ( bEven )
{
if ( s0 > s1 )
{
// B
x1 = 0; y1 = 0;
x2 = 1; y2 = 0;
x3 = 1; y3 = 1;
pWeight[0] = (1.0f - s0);
pWeight[1] = s0 - s1;
}
else
{
// C
x1 = 1; y1 = 1;
x2 = 0; y2 = 1;
x3 = 0; y3 = 0;
pWeight[0] = s0;
pWeight[1] = s1 - s0;
}
}
// BL to TR
else
{
float flTotal = s0 + s1;
if( flTotal > 1.0f )
{
// D
x1 = 1; y1 = 0;
x2 = 1; y2 = 1;
x3 = 0; y3 = 1;
pWeight[0] = (1.0f - s1);
pWeight[1] = s0 - 1.0f + s1;
}
else
{
// A
x1 = 0; y1 = 1;
x2 = 0; y2 = 0;
x3 = 1; y3 = 0;
pWeight[0] = s1;
pWeight[1] = 1.0f - s0 - s1;
}
}
pAnimIndices[0] = seqdesc.anim( i0 + x1, i1 + y1 );
pAnimIndices[1] = seqdesc.anim( i0 + x2, i1 + y2 );
pAnimIndices[2] = seqdesc.anim( i0 + x3, i1 + y3 );
/*
float w0 = ((x2-x3)*(y3-s1) - (x3-s0)*(y2-y3)) / ((x1-x3)*(y2-y3) - (x2-x3)*(y1-y3));
float w1 = ((x1-x3)*(y3-s1) - (x3-s0)*(y1-y3)) / ((x2-x3)*(y1-y3) - (x1-x3)*(y2-y3));
Assert( pWeight[0] == w0 && pWeight[1] == w1 );
*/
// clamp the diagonal
if (pWeight[1] < 0.001f)
pWeight[1] = 0.0f;
pWeight[2] = 1.0f - pWeight[0] - pWeight[1];
Assert( pWeight[0] >= 0.0f && pWeight[0] <= 1.0f );
Assert( pWeight[1] >= 0.0f && pWeight[1] <= 1.0f );
Assert( pWeight[2] >= 0.0f && pWeight[2] <= 1.0f );
}
//-----------------------------------------------------------------------------
// Purpose: calculate a pose for a single sequence
//-----------------------------------------------------------------------------
bool CalcPoseSingle(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
mstudioseqdesc_t &seqdesc,
int sequence,
float cycle,
const float poseParameter[],
int boneMask,
float flTime
)
{
bool bResult = true;
Vector *pos2 = g_VectorPool.Alloc();
Quaternion *q2 = g_QaternionPool.Alloc();
Vector *pos3= g_VectorPool.Alloc();
Quaternion *q3 = g_QaternionPool.Alloc();
if (sequence >= pStudioHdr->GetNumSeq())
{
sequence = 0;
seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence );
}
int i0 = 0, i1 = 0;
float s0 = 0, s1 = 0;
Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, sequence, 0, s0, i0 );
Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, sequence, 1, s1, i1 );
if (seqdesc.flags & STUDIO_REALTIME)
{
float cps = Studio_CPS( pStudioHdr, seqdesc, sequence, poseParameter );
cycle = flTime * cps;
cycle = cycle - (int)cycle;
}
else if (seqdesc.flags & STUDIO_CYCLEPOSE)
{
int iPose = pStudioHdr->GetSharedPoseParameter( sequence, seqdesc.cycleposeindex );
if (iPose != -1)
{
/*
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iPose );
cycle = poseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start;
*/
cycle = poseParameter[ iPose ];
}
else
{
cycle = 0.0f;
}
}
else if (cycle < 0 || cycle >= 1)
{
if (seqdesc.flags & STUDIO_LOOPING)
{
cycle = cycle - (int)cycle;
if (cycle < 0) cycle += 1;
}
else
{
cycle = clamp( cycle, 0.0f, 1.0f );
}
}
if (s0 < 0.001)
{
if (s1 < 0.001)
{
if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0, i1 ))
{
bResult = false;
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1 ), cycle, boneMask );
}
}
else if (s1 > 0.999)
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1+1 ), cycle, boneMask );
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 , i1 ), cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0 , i1+1 ), cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask );
}
}
else if (s0 > 0.999)
{
if (s1 < 0.001)
{
if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0+1, i1 ))
{
bResult = false;
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1 ), cycle, boneMask );
}
}
else if (s1 > 0.999)
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1+1 ), cycle, boneMask );
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1, i1 ), cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1, i1+1 ), cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask );
}
}
else
{
if (s1 < 0.001)
{
if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0+1, i1 ))
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask );
ScaleBones( pStudioHdr, q, pos, sequence, 1.0 - s0, boneMask );
}
else if (PoseIsAllZeros( pStudioHdr, sequence, seqdesc, i0, i1 ))
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0+1 ,i1 ), cycle, boneMask );
ScaleBones( pStudioHdr, q, pos, sequence, s0, boneMask );
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1 ), cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask );
}
}
else if (s1 > 0.999)
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1+1 ), cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1+1 ), cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask );
}
else if ( !anim_3wayblend.GetBool() )
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim( i0 ,i1 ), cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0+1,i1 ), cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim( i0 , i1+1), cycle, boneMask );
CalcAnimation( pStudioHdr, pos3, q3, seqdesc, sequence, seqdesc.anim( i0+1, i1+1), cycle, boneMask );
BlendBones( pStudioHdr, q2, pos2, seqdesc, sequence, q3, pos3, s0, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask );
}
else
{
int iAnimIndices[3];
float weight[3];
Calc3WayBlendIndices( i0, i1, s0, s1, seqdesc, iAnimIndices, weight );
/*
char buf[256];
sprintf( buf, "%d %6.2f %d %6.2f : %6.2f %6.2f %6.2f\n", i0, s0, i1, s1, weight[0], weight[1], weight[2] );
OutputDebugString( buf );
*/
if (weight[1] < 0.001)
{
// on diagonal
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[2], cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[2] / (weight[0] + weight[2]), boneMask );
}
else
{
CalcAnimation( pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask );
CalcAnimation( pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[1], cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[1] / (weight[0] + weight[1]), boneMask );
CalcAnimation( pStudioHdr, pos3, q3, seqdesc, sequence, iAnimIndices[2], cycle, boneMask );
BlendBones( pStudioHdr, q, pos, seqdesc, sequence, q3, pos3, weight[2], boneMask );
}
}
}
g_VectorPool.Free( pos2 );
g_QaternionPool.Free( q2 );
g_VectorPool.Free( pos3 );
g_QaternionPool.Free( q3 );
return bResult;
}
//-----------------------------------------------------------------------------
// Purpose: calculate a pose for a single sequence
// adds autolayers, runs local ik rukes
//-----------------------------------------------------------------------------
void CBoneSetup::AddSequenceLayers(
Vector pos[],
Quaternion q[],
mstudioseqdesc_t &seqdesc,
int sequence,
float cycle,
float flWeight,
float flTime,
CIKContext *pIKContext
)
{
for (int i = 0; i < seqdesc.numautolayers; i++)
{
mstudioautolayer_t *pLayer = seqdesc.pAutolayer( i );
if (pLayer->flags & STUDIO_AL_LOCAL)
continue;
float layerCycle = cycle;
float layerWeight = flWeight;
if (pLayer->start != pLayer->end)
{
float s = 1.0;
float index;
if (!(pLayer->flags & STUDIO_AL_POSE))
{
index = cycle;
}
else
{
int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence );
int iPose = m_pStudioHdr->GetSharedPoseParameter( iSequence, pLayer->iPose );
if (iPose != -1)
{
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)m_pStudioHdr)->pPoseParameter( iPose );
index = m_flPoseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start;
}
else
{
index = 0;
}
}
if (index < pLayer->start)
continue;
if (index >= pLayer->end)
continue;
if (index < pLayer->peak && pLayer->start != pLayer->peak)
{
s = (index - pLayer->start) / (pLayer->peak - pLayer->start);
}
else if (index > pLayer->tail && pLayer->end != pLayer->tail)
{
s = (pLayer->end - index) / (pLayer->end - pLayer->tail);
}
if (pLayer->flags & STUDIO_AL_SPLINE)
{
s = SimpleSpline( s );
}
if ((pLayer->flags & STUDIO_AL_XFADE) && (index > pLayer->tail))
{
layerWeight = ( s * flWeight ) / ( 1 - flWeight + s * flWeight );
}
else if (pLayer->flags & STUDIO_AL_NOBLEND)
{
layerWeight = s;
}
else
{
layerWeight = flWeight * s;
}
if (!(pLayer->flags & STUDIO_AL_POSE))
{
layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start);
}
}
int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence );
AccumulatePose( pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext );
}
}
//-----------------------------------------------------------------------------
// Purpose: calculate a pose for a single sequence
// adds autolayers, runs local ik rukes
//-----------------------------------------------------------------------------
void CBoneSetup::AddLocalLayers(
Vector pos[],
Quaternion q[],
mstudioseqdesc_t &seqdesc,
int sequence,
float cycle,
float flWeight,
float flTime,
CIKContext *pIKContext
)
{
if (!(seqdesc.flags & STUDIO_LOCAL))
{
return;
}
for (int i = 0; i < seqdesc.numautolayers; i++)
{
mstudioautolayer_t *pLayer = seqdesc.pAutolayer( i );
if (!(pLayer->flags & STUDIO_AL_LOCAL))
continue;
float layerCycle = cycle;
float layerWeight = flWeight;
if (pLayer->start != pLayer->end)
{
float s = 1.0;
if (cycle < pLayer->start)
continue;
if (cycle >= pLayer->end)
continue;
if (cycle < pLayer->peak && pLayer->start != pLayer->peak)
{
s = (cycle - pLayer->start) / (pLayer->peak - pLayer->start);
}
else if (cycle > pLayer->tail && pLayer->end != pLayer->tail)
{
s = (pLayer->end - cycle) / (pLayer->end - pLayer->tail);
}
if (pLayer->flags & STUDIO_AL_SPLINE)
{
s = SimpleSpline( s );
}
if ((pLayer->flags & STUDIO_AL_XFADE) && (cycle > pLayer->tail))
{
layerWeight = ( s * flWeight ) / ( 1 - flWeight + s * flWeight );
}
else if (pLayer->flags & STUDIO_AL_NOBLEND)
{
layerWeight = s;
}
else
{
layerWeight = flWeight * s;
}
layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start);
}
int iSequence = m_pStudioHdr->iRelativeSeq( sequence, pLayer->iSequence );
AccumulatePose( pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext );
}
}
//-----------------------------------------------------------------------------
// Purpose: my sleezy attempt at an interface only class
//-----------------------------------------------------------------------------
IBoneSetup::IBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger )
{
m_pBoneSetup = new CBoneSetup( pStudioHdr, boneMask, poseParameter, pPoseDebugger );
}
IBoneSetup::~IBoneSetup( void )
{
if ( m_pBoneSetup )
{
delete m_pBoneSetup;
}
}
void IBoneSetup::InitPose( Vector pos[], Quaternion q[] )
{
::InitPose( m_pBoneSetup->m_pStudioHdr, pos, q, m_pBoneSetup->m_boneMask );
}
void IBoneSetup::AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext )
{
m_pBoneSetup->AccumulatePose( pos, q, sequence, cycle, flWeight, flTime, pIKContext );
}
void IBoneSetup::CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext )
{
m_pBoneSetup->CalcAutoplaySequences( pos, q, flRealTime, pIKContext );
}
void CalcBoneAdj( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], const float controllers[], int boneMask );
// takes a "controllers[]" array normalized to 0..1 and adds in the adjustments to pos[], and q[].
void IBoneSetup::CalcBoneAdj( Vector pos[], Quaternion q[], const float controllers[] )
{
::CalcBoneAdj( m_pBoneSetup->m_pStudioHdr, pos, q, controllers, m_pBoneSetup->m_boneMask );
}
CStudioHdr *IBoneSetup::GetStudioHdr()
{
return (CStudioHdr *)m_pBoneSetup->m_pStudioHdr;
}
CBoneSetup::CBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger )
{
m_pStudioHdr = pStudioHdr;
m_boneMask = boneMask;
m_flPoseParameter = poseParameter;
m_pPoseDebugger = pPoseDebugger;
}
#if 0
//-----------------------------------------------------------------------------
// Purpose: calculate a pose for a single sequence
// adds autolayers, runs local ik rukes
//-----------------------------------------------------------------------------
void CalcPose(
const CStudioHdr *pStudioHdr,
CIKContext *pIKContext,
Vector pos[],
Quaternion q[],
int sequence,
float cycle,
const float poseParameter[],
int boneMask,
float flWeight,
float flTime
)
{
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( sequence );
Assert( flWeight >= 0.0f && flWeight <= 1.0f );
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
flWeight = clamp( flWeight, 0.0f, 1.0f );
// add any IK locks to prevent numautolayers from moving extremities
CIKContext seq_ik;
if (seqdesc.numiklocks)
{
seq_ik.Init( pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, boneMask ); // local space relative so absolute position doesn't mater
seq_ik.AddSequenceLocks( seqdesc, pos, q );
}
CalcPoseSingle( pStudioHdr, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flTime );
if ( pIKContext )
{
pIKContext->AddDependencies( seqdesc, sequence, cycle, poseParameter, flWeight );
}
AddSequenceLayers( pStudioHdr, pIKContext, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flWeight, flTime );
if (seqdesc.numiklocks)
{
seq_ik.SolveSequenceLocks( seqdesc, pos, q );
}
}
#endif
//-----------------------------------------------------------------------------
// Purpose: accumulate a pose for a single sequence on top of existing animation
// adds autolayers, runs local ik rukes
//-----------------------------------------------------------------------------
void CBoneSetup::AccumulatePose(
Vector pos[],
Quaternion q[],
int sequence,
float cycle,
float flWeight,
float flTime,
CIKContext *pIKContext
)
{
Vector pos2[MAXSTUDIOBONES];
QuaternionAligned q2[MAXSTUDIOBONES];
Assert( flWeight >= 0.0f && flWeight <= 1.0f );
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
flWeight = clamp( flWeight, 0.0f, 1.0f );
if ( sequence < 0 )
return;
#ifdef CLIENT_DLL
// Trigger pose debugger
if (m_pPoseDebugger)
{
m_pPoseDebugger->AccumulatePose( m_pStudioHdr, pIKContext, pos, q, sequence, cycle, m_flPoseParameter, m_boneMask, flWeight, flTime );
}
#endif
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc( sequence );
// add any IK locks to prevent extremities from moving
CIKContext seq_ik;
if (seqdesc.numiklocks)
{
seq_ik.Init( m_pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, m_boneMask ); // local space relative so absolute position doesn't mater
seq_ik.AddSequenceLocks( seqdesc, pos, q );
}
if (seqdesc.flags & STUDIO_LOCAL)
{
::InitPose( m_pStudioHdr, pos2, q2, m_boneMask );
}
if (CalcPoseSingle( m_pStudioHdr, pos2, q2, seqdesc, sequence, cycle, m_flPoseParameter, m_boneMask, flTime ))
{
// this weight is wrong, the IK rules won't composite at the correct intensity
AddLocalLayers( pos2, q2, seqdesc, sequence, cycle, 1.0, flTime, pIKContext );
SlerpBones( m_pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, flWeight, m_boneMask );
}
if ( pIKContext )
{
pIKContext->AddDependencies( seqdesc, sequence, cycle, m_flPoseParameter, flWeight );
}
AddSequenceLayers( pos, q, seqdesc, sequence, cycle, flWeight, flTime, pIKContext );
if (seqdesc.numiklocks)
{
seq_ik.SolveSequenceLocks( seqdesc, pos, q );
}
}
//-----------------------------------------------------------------------------
// Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
// 0 returns q1, pos1. 1 returns q2, pos2
//-----------------------------------------------------------------------------
void CalcBoneAdj(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
const float controllers[],
int boneMask
)
{
int i, j, k;
float value;
mstudiobonecontroller_t *pbonecontroller;
Vector p0;
RadianEuler a0;
Quaternion q0;
for (j = 0; j < pStudioHdr->numbonecontrollers(); j++)
{
pbonecontroller = pStudioHdr->pBonecontroller( j );
k = pbonecontroller->bone;
if (pStudioHdr->boneFlags( k ) & boneMask)
{
i = pbonecontroller->inputfield;
value = controllers[i];
if (value < 0) value = 0;
if (value > 1.0) value = 1.0;
value = (1.0 - value) * pbonecontroller->start + value * pbonecontroller->end;
switch(pbonecontroller->type & STUDIO_TYPES)
{
case STUDIO_XR:
a0.Init( value * (M_PI / 180.0), 0, 0 );
AngleQuaternion( a0, q0 );
QuaternionSM( 1.0, q0, q[k], q[k] );
break;
case STUDIO_YR:
a0.Init( 0, value * (M_PI / 180.0), 0 );
AngleQuaternion( a0, q0 );
QuaternionSM( 1.0, q0, q[k], q[k] );
break;
case STUDIO_ZR:
a0.Init( 0, 0, value * (M_PI / 180.0) );
AngleQuaternion( a0, q0 );
QuaternionSM( 1.0, q0, q[k], q[k] );
break;
case STUDIO_X:
pos[k].x += value;
break;
case STUDIO_Y:
pos[k].y += value;
break;
case STUDIO_Z:
pos[k].z += value;
break;
}
}
}
}
void CalcBoneDerivatives( Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t &current, float dt )
{
float scale = 1.0;
if ( dt > 0 )
{
scale = 1.0 / dt;
}
Vector endPosition, startPosition, deltaAxis;
QAngle endAngles, startAngles;
float deltaAngle;
MatrixAngles( prev, startAngles, startPosition );
MatrixAngles( current, endAngles, endPosition );
velocity.x = (endPosition.x - startPosition.x) * scale;
velocity.y = (endPosition.y - startPosition.y) * scale;
velocity.z = (endPosition.z - startPosition.z) * scale;
RotationDeltaAxisAngle( startAngles, endAngles, deltaAxis, deltaAngle );
VectorScale( deltaAxis, (deltaAngle * scale), angVel );
}
void CalcBoneVelocityFromDerivative( const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &current )
{
Vector vecLocalVelocity;
AngularImpulse LocalAngVel;
Quaternion q;
float angle;
MatrixAngles( current, q, vecLocalVelocity );
QuaternionAxisAngle( q, LocalAngVel, angle );
LocalAngVel *= angle;
matrix3x4_t matAngles;
AngleMatrix( vecAngles, matAngles );
VectorTransform( vecLocalVelocity, matAngles, velocity );
VectorTransform( LocalAngVel, matAngles, angVel );
}
class CIKSolver
{
public:
//-------- SOLVE TWO LINK INVERSE KINEMATICS -------------
// Author: Ken Perlin
//
// Given a two link joint from [0,0,0] to end effector position P,
// let link lengths be a and b, and let norm |P| = c. Clearly a+b <= c.
//
// Problem: find a "knee" position Q such that |Q| = a and |P-Q| = b.
//
// In the case of a point on the x axis R = [c,0,0], there is a
// closed form solution S = [d,e,0], where |S| = a and |R-S| = b:
//
// d2+e2 = a2 -- because |S| = a
// (c-d)2+e2 = b2 -- because |R-S| = b
//
// c2-2cd+d2+e2 = b2 -- combine the two equations
// c2-2cd = b2 - a2
// c-2d = (b2-a2)/c
// d - c/2 = (a2-b2)/c / 2
//
// d = (c + (a2-b2/c) / 2 -- to solve for d and e.
// e = sqrt(a2-d2)
static float findD(float a, float b, float c) {
return (c + (a*a-b*b)/c) / 2;
}
static float findE(float a, float d) { return sqrt(a*a-d*d); }
// This leads to a solution to the more general problem:
//
// (1) R = Mfwd(P) -- rotate P onto the x axis
// (2) Solve for S
// (3) Q = Minv(S) -- rotate back again
float Mfwd[3][3];
float Minv[3][3];
bool solve(float A, float B, float const P[], float const D[], float Q[]) {
float R[3];
defineM(P,D);
rot(Minv,P,R);
float r = length(R);
float d = findD(A,B,r);
float e = findE(A,d);
float S[3] = {d,e,0};
rot(Mfwd,S,Q);
return d > (r - B) && d < A;
}
// If "knee" position Q needs to be as close as possible to some point D,
// then choose M such that M(D) is in the y>0 half of the z=0 plane.
//
// Given that constraint, define the forward and inverse of M as follows:
void defineM(float const P[], float const D[]) {
float *X = Minv[0], *Y = Minv[1], *Z = Minv[2];
// Minv defines a coordinate system whose x axis contains P, so X = unit(P).
int i;
for (i = 0 ; i < 3 ; i++)
X[i] = P[i];
normalize(X);
// Its y axis is perpendicular to P, so Y = unit( E - X(E·X) ).
float dDOTx = dot(D,X);
for (i = 0 ; i < 3 ; i++)
Y[i] = D[i] - dDOTx * X[i];
normalize(Y);
// Its z axis is perpendicular to both X and Y, so Z = X×Y.
cross(X,Y,Z);
// Mfwd = (Minv)T, since transposing inverts a rotation matrix.
for (i = 0 ; i < 3 ; i++) {
Mfwd[i][0] = Minv[0][i];
Mfwd[i][1] = Minv[1][i];
Mfwd[i][2] = Minv[2][i];
}
}
//------------ GENERAL VECTOR MATH SUPPORT -----------
static float dot(float const a[], float const b[]) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
static float length(float const v[]) { return sqrt( dot(v,v) ); }
static void normalize(float v[]) {
float norm = length(v);
for (int i = 0 ; i < 3 ; i++)
v[i] /= norm;
}
static void cross(float const a[], float const b[], float c[]) {
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
static void rot(float const M[3][3], float const src[], float dst[]) {
for (int i = 0 ; i < 3 ; i++)
dst[i] = dot(M[i],src);
}
};
//-----------------------------------------------------------------------------
// Purpose: visual debugging code
//-----------------------------------------------------------------------------
#if 1
inline void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { };
#else
extern void drawLine( const Vector &p1, const Vector &p2, int r = 0, int g = 0, int b = 1, bool noDepthTest = true, float duration = 0.1 );
void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration)
{
drawLine( origin, dest, r, g, b, noDepthTest, duration );
}
#endif
//-----------------------------------------------------------------------------
// Purpose: for a 2 bone chain, find the IK solution and reset the matrices
//-----------------------------------------------------------------------------
bool Studio_SolveIK( mstudioikchain_t *pikchain, Vector &targetFoot, matrix3x4_t *pBoneToWorld )
{
if (pikchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
{
Vector targetKneeDir, targetKneePos;
// FIXME: knee length should be as long as the legs
Vector tmp = pikchain->pLink( 0 )->kneeDir;
VectorRotate( tmp, pBoneToWorld[ pikchain->pLink( 0 )->bone ], targetKneeDir );
MatrixPosition( pBoneToWorld[ pikchain->pLink( 1 )->bone ], targetKneePos );
return Studio_SolveIK( pikchain->pLink( 0 )->bone, pikchain->pLink( 1 )->bone, pikchain->pLink( 2 )->bone, targetFoot, targetKneePos, targetKneeDir, pBoneToWorld );
}
else
{
return Studio_SolveIK( pikchain->pLink( 0 )->bone, pikchain->pLink( 1 )->bone, pikchain->pLink( 2 )->bone, targetFoot, pBoneToWorld );
}
}
#define KNEEMAX_EPSILON 0.9998 // (0.9998 is about 1 degree)
//-----------------------------------------------------------------------------
// Purpose: Solve Knee position for a known hip and foot location, but no specific knee direction preference
//-----------------------------------------------------------------------------
bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4_t *pBoneToWorld )
{
Vector worldFoot, worldKnee, worldThigh;
MatrixPosition( pBoneToWorld[ iThigh ], worldThigh );
MatrixPosition( pBoneToWorld[ iKnee ], worldKnee );
MatrixPosition( pBoneToWorld[ iFoot ], worldFoot );
//debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 );
//debugLine( worldKnee, worldFoot, 0, 0, 255, true, 0 );
Vector ikFoot, ikKnee;
ikFoot = targetFoot - worldThigh;
ikKnee = worldKnee - worldThigh;
float l1 = (worldKnee-worldThigh).Length();
float l2 = (worldFoot-worldKnee).Length();
float l3 = (worldFoot-worldThigh).Length();
// leg too straight to figure out knee?
if (l3 > (l1 + l2) * KNEEMAX_EPSILON)
{
return false;
}
Vector ikHalf = (worldFoot-worldThigh) * (l1 / l3);
// FIXME: what to do when the knee completely straight?
Vector ikKneeDir = ikKnee - ikHalf;
VectorNormalize( ikKneeDir );
return Studio_SolveIK( iThigh, iKnee, iFoot, targetFoot, worldKnee, ikKneeDir, pBoneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose: Realign the matrix so that its X axis points along the desired axis.
//-----------------------------------------------------------------------------
void Studio_AlignIKMatrix( matrix3x4_t &mMat, const Vector &vAlignTo )
{
Vector tmp1, tmp2, tmp3;
// Column 0 (X) becomes the vector.
tmp1 = vAlignTo;
VectorNormalize( tmp1 );
MatrixSetColumn( tmp1, 0, mMat );
// Column 1 (Y) is the cross of the vector and column 2 (Z).
MatrixGetColumn( mMat, 2, tmp3 );
tmp2 = tmp3.Cross( tmp1 );
VectorNormalize( tmp2 );
// FIXME: check for X being too near to Z
MatrixSetColumn( tmp2, 1, mMat );
// Column 2 (Z) is the cross of columns 0 (X) and 1 (Y).
tmp3 = tmp1.Cross( tmp2 );
MatrixSetColumn( tmp3, 2, mMat );
}
//-----------------------------------------------------------------------------
// Purpose: Solve Knee position for a known hip and foot location, and a known knee direction
//-----------------------------------------------------------------------------
bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4_t *pBoneToWorld )
{
Vector worldFoot, worldKnee, worldThigh;
MatrixPosition( pBoneToWorld[ iThigh ], worldThigh );
MatrixPosition( pBoneToWorld[ iKnee ], worldKnee );
MatrixPosition( pBoneToWorld[ iFoot ], worldFoot );
//debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 );
//debugLine( worldThigh, worldThigh + targetKneeDir, 0, 0, 255, true, 0 );
// debugLine( worldKnee, targetKnee, 0, 0, 255, true, 0 );
Vector ikFoot, ikTargetKnee, ikKnee;
ikFoot = targetFoot - worldThigh;
ikKnee = targetKneePos - worldThigh;
float l1 = (worldKnee-worldThigh).Length();
float l2 = (worldFoot-worldKnee).Length();
// exaggerate knee targets for legs that are nearly straight
// FIXME: should be configurable, and the ikKnee should be from the original animation, not modifed
float d = (targetFoot-worldThigh).Length() - min( l1, l2 );
d = max( l1 + l2, d );
// FIXME: too short knee directions cause trouble
d = d * 100;
ikTargetKnee = ikKnee + targetKneeDir * d;
// debugLine( worldKnee, worldThigh + ikTargetKnee, 0, 0, 255, true, 0 );
int color[3] = { 0, 255, 0 };
// too far away? (0.9998 is about 1 degree)
if (ikFoot.Length() > (l1 + l2) * KNEEMAX_EPSILON)
{
VectorNormalize( ikFoot );
VectorScale( ikFoot, (l1 + l2) * KNEEMAX_EPSILON, ikFoot );
color[0] = 255; color[1] = 0; color[2] = 0;
}
// too close?
// limit distance to about an 80 degree knee bend
float minDist = max( fabs(l1 - l2) * 1.15, min( l1, l2 ) * 0.15 );
if (ikFoot.Length() < minDist)
{
// too close to get an accurate vector, just use original vector
ikFoot = (worldFoot - worldThigh);
VectorNormalize( ikFoot );
VectorScale( ikFoot, minDist, ikFoot );
}
CIKSolver ik;
if (ik.solve( l1, l2, ikFoot.Base(), ikTargetKnee.Base(), ikKnee.Base() ))
{
matrix3x4_t& mWorldThigh = pBoneToWorld[ iThigh ];
matrix3x4_t& mWorldKnee = pBoneToWorld[ iKnee ];
matrix3x4_t& mWorldFoot = pBoneToWorld[ iFoot ];
//debugLine( worldThigh, ikKnee + worldThigh, 255, 0, 0, true, 0 );
//debugLine( ikKnee + worldThigh, ikFoot + worldThigh, 255, 0, 0, true,0 );
// debugLine( worldThigh, ikKnee + worldThigh, color[0], color[1], color[2], true, 0 );
// debugLine( ikKnee + worldThigh, ikFoot + worldThigh, color[0], color[1], color[2], true,0 );
// build transformation matrix for thigh
Studio_AlignIKMatrix( mWorldThigh, ikKnee );
Studio_AlignIKMatrix( mWorldKnee, ikFoot - ikKnee );
mWorldKnee[0][3] = ikKnee.x + worldThigh.x;
mWorldKnee[1][3] = ikKnee.y + worldThigh.y;
mWorldKnee[2][3] = ikKnee.z + worldThigh.z;
mWorldFoot[0][3] = ikFoot.x + worldThigh.x;
mWorldFoot[1][3] = ikFoot.y + worldThigh.y;
mWorldFoot[2][3] = ikFoot.z + worldThigh.z;
return true;
}
else
{
/*
debugLine( worldThigh, worldThigh + ikKnee, 255, 0, 0, true, 0 );
debugLine( worldThigh + ikKnee, worldThigh + ikFoot, 255, 0, 0, true, 0 );
debugLine( worldThigh + ikFoot, worldThigh, 255, 0, 0, true, 0 );
debugLine( worldThigh + ikKnee, worldThigh + ikTargetKnee, 255, 0, 0, true, 0 );
*/
return false;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
float Studio_IKRuleWeight( mstudioikrule_t &ikRule, const mstudioanimdesc_t *panim, float flCycle, int &iFrame, float &fraq )
{
if (ikRule.end > 1.0f && flCycle < ikRule.start)
{
flCycle = flCycle + 1.0f;
}
float value = 0.0f;
fraq = (panim->numframes - 1) * (flCycle - ikRule.start) + ikRule.iStart;
iFrame = (int)fraq;
fraq = fraq - iFrame;
if (flCycle < ikRule.start)
{
iFrame = ikRule.iStart;
fraq = 0.0f;
return 0.0f;
}
else if (flCycle < ikRule.peak )
{
value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start);
}
else if (flCycle < ikRule.tail )
{
return 1.0f;
}
else if (flCycle < ikRule.end )
{
value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
}
else
{
fraq = (panim->numframes - 1) * (ikRule.end - ikRule.start) + ikRule.iStart;
iFrame = (int)fraq;
fraq = fraq - iFrame;
}
return SimpleSpline( value );
}
float Studio_IKRuleWeight( ikcontextikrule_t &ikRule, float flCycle )
{
if (ikRule.end > 1.0f && flCycle < ikRule.start)
{
flCycle = flCycle + 1.0f;
}
float value = 0.0f;
if (flCycle < ikRule.start)
{
return 0.0f;
}
else if (flCycle < ikRule.peak )
{
value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start);
}
else if (flCycle < ikRule.tail )
{
return 1.0f;
}
else if (flCycle < ikRule.end )
{
value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
}
return 3.0f * value * value - 2.0f * value * value * value;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool Studio_IKShouldLatch( ikcontextikrule_t &ikRule, float flCycle )
{
if (ikRule.end > 1.0f && flCycle < ikRule.start)
{
flCycle = flCycle + 1.0f;
}
if (flCycle < ikRule.peak )
{
return false;
}
else if (flCycle < ikRule.end )
{
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
float Studio_IKTail( ikcontextikrule_t &ikRule, float flCycle )
{
if (ikRule.end > 1.0f && flCycle < ikRule.start)
{
flCycle = flCycle + 1.0f;
}
if (flCycle <= ikRule.tail )
{
return 0.0f;
}
else if (flCycle < ikRule.end )
{
return ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
}
return 0.0;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool Studio_IKAnimationError( const CStudioHdr *pStudioHdr, mstudioikrule_t *pRule, const mstudioanimdesc_t *panim, float flCycle, Vector &pos, Quaternion &q, float &flWeight )
{
float fraq;
int iFrame;
flWeight = Studio_IKRuleWeight( *pRule, panim, flCycle, iFrame, fraq );
Assert( fraq >= 0.0 && fraq < 1.0 );
Assert( flWeight >= 0.0f && flWeight <= 1.0f );
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
flWeight = clamp( flWeight, 0.0f, 1.0f );
if (pRule->type != IK_GROUND && flWeight < 0.0001)
return false;
mstudioikerror_t *pError = pRule->pError( iFrame );
if (pError != NULL)
{
if (fraq < 0.001)
{
q = pError[0].q;
pos = pError[0].pos;
}
else
{
QuaternionBlend( pError[0].q, pError[1].q, fraq, q );
pos = pError[0].pos * (1.0f - fraq) + pError[1].pos * fraq;
}
return true;
}
mstudiocompressedikerror_t *pCompressed = pRule->pCompressedError();
if (pCompressed != NULL)
{
CalcDecompressedAnimation( pCompressed, iFrame - pRule->iStart, fraq, pos, q );
return true;
}
// no data, disable IK rule
Assert( 0 );
flWeight = 0.0f;
return false;
}
//-----------------------------------------------------------------------------
// Purpose: For a specific sequence:rule, find where it starts, stops, and what
// the estimated offset from the connection point is.
// return true if the rule is within bounds.
//-----------------------------------------------------------------------------
bool Studio_IKSequenceError( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, int iRule, const float poseParameter[], mstudioanimdesc_t *panim[4], float weight[4], ikcontextikrule_t &ikRule )
{
int i;
memset( &ikRule, 0, sizeof(ikRule) );
ikRule.start = ikRule.peak = ikRule.tail = ikRule.end = 0;
mstudioikrule_t *prevRule = NULL;
// find overall influence
for (i = 0; i < 4; i++)
{
if (weight[i])
{
if (iRule >= panim[i]->numikrules || panim[i]->numikrules != panim[0]->numikrules)
{
Assert( 0 );
return false;
}
mstudioikrule_t *pRule = panim[i]->pIKRule( iRule );
if (pRule == NULL)
return false;
float dt = 0.0;
if (prevRule != NULL)
{
if (pRule->start - prevRule->start > 0.5)
{
dt = -1.0;
}
else if (pRule->start - prevRule->start < -0.5)
{
dt = 1.0;
}
}
else
{
prevRule = pRule;
}
ikRule.start += (pRule->start + dt) * weight[i];
ikRule.peak += (pRule->peak + dt) * weight[i];
ikRule.tail += (pRule->tail + dt) * weight[i];
ikRule.end += (pRule->end + dt) * weight[i];
}
}
if (ikRule.start > 1.0)
{
ikRule.start -= 1.0;
ikRule.peak -= 1.0;
ikRule.tail -= 1.0;
ikRule.end -= 1.0;
}
else if (ikRule.start < 0.0)
{
ikRule.start += 1.0;
ikRule.peak += 1.0;
ikRule.tail += 1.0;
ikRule.end += 1.0;
}
ikRule.flWeight = Studio_IKRuleWeight( ikRule, flCycle );
if (ikRule.flWeight <= 0.001f)
{
// go ahead and allow IK_GROUND rules a virtual looping section
if ( panim[0]->pIKRule( iRule ) == NULL )
return false;
if ((panim[0]->flags & STUDIO_LOOPING) && panim[0]->pIKRule( iRule )->type == IK_GROUND && ikRule.end - ikRule.start > 0.75 )
{
ikRule.flWeight = 0.001;
flCycle = ikRule.end - 0.001;
}
else
{
return false;
}
}
Assert( ikRule.flWeight > 0.0f );
ikRule.pos.Init();
ikRule.q.Init();
// find target error
float total = 0.0f;
for (i = 0; i < 4; i++)
{
if (weight[i])
{
Vector pos1;
Quaternion q1;
float w;
mstudioikrule_t *pRule = panim[i]->pIKRule( iRule );
if (pRule == NULL)
return false;
ikRule.chain = pRule->chain; // FIXME: this is anim local
ikRule.bone = pRule->bone; // FIXME: this is anim local
ikRule.type = pRule->type;
ikRule.slot = pRule->slot;
ikRule.height += pRule->height * weight[i];
ikRule.floor += pRule->floor * weight[i];
ikRule.radius += pRule->radius * weight[i];
ikRule.drop += pRule->drop * weight[i];
ikRule.top += pRule->top * weight[i];
// keep track of tail condition
ikRule.release += Studio_IKTail( ikRule, flCycle ) * weight[i];
// only check rules with error values
switch( ikRule.type )
{
case IK_SELF:
case IK_WORLD:
case IK_GROUND:
case IK_ATTACHMENT:
{
int bResult = Studio_IKAnimationError( pStudioHdr, pRule, panim[i], flCycle, pos1, q1, w );
if (bResult)
{
ikRule.pos = ikRule.pos + pos1 * weight[i];
QuaternionAccumulate( ikRule.q, weight[i], q1, ikRule.q );
total += weight[i];
}
}
break;
default:
total += weight[i];
break;
}
ikRule.latched = Studio_IKShouldLatch( ikRule, flCycle ) * ikRule.flWeight;
if (ikRule.type == IK_ATTACHMENT)
{
ikRule.szLabel = pRule->pszAttachment();
}
}
}
if (total <= 0.0001f)
{
return false;
}
if (total < 0.999f)
{
VectorScale( ikRule.pos, 1.0f / total, ikRule.pos );
QuaternionScale( ikRule.q, 1.0f / total, ikRule.q );
}
if (ikRule.type == IK_SELF && ikRule.bone != -1)
{
// FIXME: this is anim local, not seq local!
ikRule.bone = pStudioHdr->RemapSeqBone( iSequence, ikRule.bone );
if (ikRule.bone == -1)
return false;
}
QuaternionNormalize( ikRule.q );
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CIKContext::CIKContext()
{
m_target.EnsureCapacity( 12 ); // FIXME: this sucks, shouldn't it be grown?
m_iFramecounter = -1;
m_pStudioHdr = NULL;
m_flTime = -1.0f;
m_target.SetSize( 0 );
}
void CIKContext::Init( const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask )
{
m_pStudioHdr = pStudioHdr;
m_ikChainRule.RemoveAll(); // m_numikrules = 0;
if (pStudioHdr->numikchains())
{
m_ikChainRule.SetSize( pStudioHdr->numikchains() );
// FIXME: Brutal hackery to prevent a crash
if (m_target.Count() == 0)
{
m_target.SetSize(12);
memset( m_target.Base(), 0, sizeof(m_target[0])*m_target.Count() );
ClearTargets();
}
}
else
{
m_target.SetSize( 0 );
}
AngleMatrix( angles, pos, m_rootxform );
m_iFramecounter = iFramecounter;
m_flTime = flTime;
m_boneMask = boneMask;
}
void CIKContext::AddDependencies( mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight )
{
int i;
if ( m_pStudioHdr->numikchains() == 0)
return;
if (seqdesc.numikrules == 0)
return;
ikcontextikrule_t ikrule;
Assert( flWeight >= 0.0f && flWeight <= 1.0f );
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
flWeight = clamp( flWeight, 0.0f, 1.0f );
// unify this
if (seqdesc.flags & STUDIO_REALTIME)
{
float cps = Studio_CPS( m_pStudioHdr, seqdesc, iSequence, poseParameters );
flCycle = m_flTime * cps;
flCycle = flCycle - (int)flCycle;
}
else if (flCycle < 0 || flCycle >= 1)
{
if (seqdesc.flags & STUDIO_LOOPING)
{
flCycle = flCycle - (int)flCycle;
if (flCycle < 0) flCycle += 1;
}
else
{
flCycle = max( 0.f, min( flCycle, 0.9999f ) );
}
}
mstudioanimdesc_t *panim[4];
float weight[4];
Studio_SeqAnims( m_pStudioHdr, seqdesc, iSequence, poseParameters, panim, weight );
// FIXME: add proper number of rules!!!
for (i = 0; i < seqdesc.numikrules; i++)
{
if ( !Studio_IKSequenceError( m_pStudioHdr, seqdesc, iSequence, flCycle, i, poseParameters, panim, weight, ikrule ) )
continue;
// don't add rule if the bone isn't going to be calculated
int bone = m_pStudioHdr->pIKChain( ikrule.chain )->pLink( 2 )->bone;
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
continue;
// or if its relative bone isn't going to be calculated
if ( ikrule.bone >= 0 && !(m_pStudioHdr->boneFlags( ikrule.bone ) & m_boneMask))
continue;
// FIXME: Brutal hackery to prevent a crash
if (m_target.Count() == 0)
{
m_target.SetSize(12);
memset( m_target.Base(), 0, sizeof(m_target[0])*m_target.Count() );
ClearTargets();
}
ikrule.flRuleWeight = flWeight;
if (ikrule.flRuleWeight * ikrule.flWeight > 0.999)
{
if ( ikrule.type != IK_UNLATCH)
{
// clear out chain if rule is 100%
m_ikChainRule.Element( ikrule.chain ).RemoveAll( );
if ( ikrule.type == IK_RELEASE)
{
continue;
}
}
}
int nIndex = m_ikChainRule.Element( ikrule.chain ).AddToTail( );
m_ikChainRule.Element( ikrule.chain ).Element( nIndex ) = ikrule;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::AddAutoplayLocks( Vector pos[], Quaternion q[] )
{
// skip all array access if no autoplay locks.
if (m_pStudioHdr->GetNumIKAutoplayLocks() == 0)
{
return;
}
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int ikOffset = m_ikLock.AddMultipleToTail( m_pStudioHdr->GetNumIKAutoplayLocks() );
memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKAutoplayLocks() );
for (int i = 0; i < m_pStudioHdr->GetNumIKAutoplayLocks(); i++)
{
const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock( i );
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( lock.chain );
int bone = pchain->pLink( 2 )->bone;
// don't bother with iklock if the bone isn't going to be calculated
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
continue;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
ikcontextikrule_t &ikrule = m_ikLock[ i + ikOffset ];
ikrule.chain = lock.chain;
ikrule.slot = i;
ikrule.type = IK_WORLD;
MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos );
// save off current knee direction
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
{
Vector tmp = pchain->pLink( 0 )->kneeDir;
VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir );
MatrixPosition( boneToWorld[ pchain->pLink( 1 )->bone ], ikrule.kneePos );
}
else
{
ikrule.kneeDir.Init( );
}
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::AddSequenceLocks( mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[] )
{
if ( m_pStudioHdr->numikchains() == 0)
{
return;
}
if ( seqdesc.numiklocks == 0 )
{
return;
}
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int ikOffset = m_ikLock.AddMultipleToTail( seqdesc.numiklocks );
memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t) * seqdesc.numiklocks );
for (int i = 0; i < seqdesc.numiklocks; i++)
{
mstudioiklock_t *plock = seqdesc.pIKLock( i );
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( plock->chain );
int bone = pchain->pLink( 2 )->bone;
// don't bother with iklock if the bone isn't going to be calculated
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
continue;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
ikcontextikrule_t &ikrule = m_ikLock[i+ikOffset];
ikrule.chain = i;
ikrule.slot = i;
ikrule.type = IK_WORLD;
MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos );
// save off current knee direction
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
{
VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir );
}
else
{
ikrule.kneeDir.Init( );
}
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose: build boneToWorld transforms for a specific bone
//-----------------------------------------------------------------------------
void CIKContext::BuildBoneChain(
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t *pBoneToWorld,
CBoneBitList &boneComputed )
{
Assert( m_pStudioHdr->boneFlags( iBone ) & m_boneMask );
::BuildBoneChain( m_pStudioHdr, m_rootxform, pos, q, iBone, pBoneToWorld, boneComputed );
}
//-----------------------------------------------------------------------------
// Purpose: build boneToWorld transforms for a specific bone
//-----------------------------------------------------------------------------
void BuildBoneChain(
const CStudioHdr *pStudioHdr,
const matrix3x4_t &rootxform,
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t *pBoneToWorld,
CBoneBitList &boneComputed )
{
if ( boneComputed.IsBoneMarked(iBone) )
return;
matrix3x4_t bonematrix;
QuaternionMatrix( q[iBone], pos[iBone], bonematrix );
int parent = pStudioHdr->boneParent( iBone );
if (parent == -1)
{
ConcatTransforms( rootxform, bonematrix, pBoneToWorld[iBone] );
}
else
{
// evil recursive!!!
BuildBoneChain( pStudioHdr, rootxform, pos, q, parent, pBoneToWorld, boneComputed );
ConcatTransforms( pBoneToWorld[parent], bonematrix, pBoneToWorld[iBone]);
}
boneComputed.MarkBone(iBone);
}
//-----------------------------------------------------------------------------
// Purpose: turn a specific bones boneToWorld transform into a pos and q in parents bonespace
//-----------------------------------------------------------------------------
void SolveBone(
const CStudioHdr *pStudioHdr,
int iBone,
matrix3x4_t *pBoneToWorld,
Vector pos[],
Quaternion q[]
)
{
int iParent = pStudioHdr->boneParent( iBone );
matrix3x4_t worldToBone;
MatrixInvert( pBoneToWorld[iParent], worldToBone );
matrix3x4_t local;
ConcatTransforms( worldToBone, pBoneToWorld[iBone], local );
MatrixAngles( local, q[iBone], pos[iBone] );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKTarget::SetOwner( int entindex, const Vector &pos, const QAngle &angles )
{
latched.owner = entindex;
latched.absOrigin = pos;
latched.absAngles = angles;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKTarget::ClearOwner( void )
{
latched.owner = -1;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
int CIKTarget::GetOwner( void )
{
return latched.owner;
}
//-----------------------------------------------------------------------------
// Purpose: update the latched IK values that are in a moving frame of reference
//-----------------------------------------------------------------------------
void CIKTarget::UpdateOwner( int entindex, const Vector &pos, const QAngle &angles )
{
if (pos == latched.absOrigin && angles == latched.absAngles)
return;
matrix3x4_t in, out;
AngleMatrix( angles, pos, in );
AngleIMatrix( latched.absAngles, latched.absOrigin, out );
matrix3x4_t tmp1, tmp2;
QuaternionMatrix( latched.q, latched.pos, tmp1 );
ConcatTransforms( out, tmp1, tmp2 );
ConcatTransforms( in, tmp2, tmp1 );
MatrixAngles( tmp1, latched.q, latched.pos );
}
//-----------------------------------------------------------------------------
// Purpose: sets the ground position of an ik target
//-----------------------------------------------------------------------------
void CIKTarget::SetPos( const Vector &pos )
{
est.pos = pos;
}
//-----------------------------------------------------------------------------
// Purpose: sets the ground "identity" orientation of an ik target
//-----------------------------------------------------------------------------
void CIKTarget::SetAngles( const QAngle &angles )
{
AngleQuaternion( angles, est.q );
}
//-----------------------------------------------------------------------------
// Purpose: sets the ground "identity" orientation of an ik target
//-----------------------------------------------------------------------------
void CIKTarget::SetQuaternion( const Quaternion &q )
{
est.q = q;
}
//-----------------------------------------------------------------------------
// Purpose: calculates a ground "identity" orientation based on the surface
// normal of the ground and the desired ground identity orientation
//-----------------------------------------------------------------------------
void CIKTarget::SetNormal( const Vector &normal )
{
// recalculate foot angle based on slope of surface
matrix3x4_t m1;
Vector forward, right;
QuaternionMatrix( est.q, m1 );
MatrixGetColumn( m1, 1, right );
forward = CrossProduct( right, normal );
right = CrossProduct( normal, forward );
MatrixSetColumn( forward, 0, m1 );
MatrixSetColumn( right, 1, m1 );
MatrixSetColumn( normal, 2, m1 );
QAngle a1;
Vector p1;
MatrixAngles( m1, est.q, p1 );
}
//-----------------------------------------------------------------------------
// Purpose: estimates the ground impact at the center location assuming a the edge of
// an Z axis aligned disc collided with it the surface.
//-----------------------------------------------------------------------------
void CIKTarget::SetPosWithNormalOffset( const Vector &pos, const Vector &normal )
{
// assume it's a disc edge intersecting with the floor, so try to estimate the z location of the center
est.pos = pos;
if (normal.z > 0.9999)
{
return;
}
// clamp at 45 degrees
else if (normal.z > 0.707)
{
// tan == sin / cos
float tan = sqrt( 1 - normal.z * normal.z ) / normal.z;
est.pos.z = est.pos.z - est.radius * tan;
}
else
{
est.pos.z = est.pos.z - est.radius;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKTarget::SetOnWorld( bool bOnWorld )
{
est.onWorld = bOnWorld;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CIKTarget::IsActive()
{
return (est.flWeight > 0.0f);
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKTarget::IKFailed( void )
{
latched.deltaPos.Init();
latched.deltaQ.Init();
latched.pos = ideal.pos;
latched.q = ideal.q;
est.latched = 0.0;
est.flWeight = 0.0;
est.onWorld = false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKTarget::MoveReferenceFrame( Vector &deltaPos, QAngle &deltaAngles )
{
est.pos -= deltaPos;
latched.pos -= deltaPos;
offset.pos -= deltaPos;
ideal.pos -= deltaPos;
}
//-----------------------------------------------------------------------------
// Purpose: Invalidate any IK locks.
//-----------------------------------------------------------------------------
void CIKContext::ClearTargets( void )
{
int i;
for (i = 0; i < m_target.Count(); i++)
{
m_target[i].latched.iFramecounter = -9999;
}
}
//-----------------------------------------------------------------------------
// Purpose: Run through the rules that survived and turn a specific bones boneToWorld
// transform into a pos and q in parents bonespace
//-----------------------------------------------------------------------------
void CIKContext::UpdateTargets( Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed )
{
int i, j;
for (i = 0; i < m_target.Count(); i++)
{
m_target[i].est.flWeight = 0.0f;
m_target[i].est.latched = 1.0f;
m_target[i].est.release = 1.0f;
m_target[i].est.height = 0.0f;
m_target[i].est.floor = 0.0f;
m_target[i].est.radius = 0.0f;
m_target[i].offset.pos.Init();
m_target[i].offset.q.Init();
}
AutoIKRelease( );
for (j = 0; j < m_ikChainRule.Count(); j++)
{
for (i = 0; i < m_ikChainRule.Element( j ).Count(); i++)
{
ikcontextikrule_t *pRule = &m_ikChainRule.Element( j ).Element( i );
// ikchainresult_t *pChainRule = &chainRule[ m_ikRule[i].chain ];
switch( pRule->type )
{
case IK_ATTACHMENT:
case IK_GROUND:
// case IK_SELF:
{
matrix3x4_t footTarget;
CIKTarget *pTarget = &m_target[pRule->slot];
pTarget->chain = pRule->chain;
pTarget->type = pRule->type;
if (pRule->type == IK_ATTACHMENT)
{
pTarget->offset.pAttachmentName = pRule->szLabel;
}
else
{
pTarget->offset.pAttachmentName = NULL;
}
if (pRule->flRuleWeight == 1.0f || pTarget->est.flWeight == 0.0f)
{
pTarget->offset.q = pRule->q;
pTarget->offset.pos = pRule->pos;
pTarget->est.height = pRule->height;
pTarget->est.floor = pRule->floor;
pTarget->est.radius = pRule->radius;
pTarget->est.latched = pRule->latched * pRule->flRuleWeight;
pTarget->est.release = pRule->release;
pTarget->est.flWeight = pRule->flWeight * pRule->flRuleWeight;
}
else
{
QuaternionSlerp( pTarget->offset.q, pRule->q, pRule->flRuleWeight, pTarget->offset.q );
pTarget->offset.pos = Lerp( pRule->flRuleWeight, pTarget->offset.pos, pRule->pos );
pTarget->est.height = Lerp( pRule->flRuleWeight, pTarget->est.height, pRule->height );
pTarget->est.floor = Lerp( pRule->flRuleWeight, pTarget->est.floor, pRule->floor );
pTarget->est.radius = Lerp( pRule->flRuleWeight, pTarget->est.radius, pRule->radius );
//pTarget->est.latched = Lerp( pRule->flRuleWeight, pTarget->est.latched, pRule->latched );
pTarget->est.latched = min( pTarget->est.latched, pRule->latched );
pTarget->est.release = Lerp( pRule->flRuleWeight, pTarget->est.release, pRule->release );
pTarget->est.flWeight = Lerp( pRule->flRuleWeight, pTarget->est.flWeight, pRule->flWeight );
}
if ( pRule->type == IK_GROUND )
{
pTarget->latched.deltaPos.z = 0;
pTarget->est.pos.z = pTarget->est.floor + m_rootxform[2][3];
}
}
break;
case IK_UNLATCH:
{
CIKTarget *pTarget = &m_target[pRule->slot];
if (pRule->latched > 0.0)
pTarget->est.latched = 0.0;
else
pTarget->est.latched = min( pTarget->est.latched, 1.0f - pRule->flWeight );
}
break;
case IK_RELEASE:
{
CIKTarget *pTarget = &m_target[pRule->slot];
if (pRule->latched > 0.0)
pTarget->est.latched = 0.0;
else
pTarget->est.latched = min( pTarget->est.latched, 1.0f - pRule->flWeight );
pTarget->est.flWeight = (pTarget->est.flWeight) * (1 - pRule->flWeight * pRule->flRuleWeight);
}
break;
}
}
}
for (i = 0; i < m_target.Count(); i++)
{
CIKTarget *pTarget = &m_target[i];
if (pTarget->est.flWeight > 0.0)
{
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pTarget->chain );
// ikchainresult_t *pChainRule = &chainRule[ i ];
int bone = pchain->pLink( 2 )->bone;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
// xform IK target error into world space
matrix3x4_t local;
matrix3x4_t worldFootpad;
QuaternionMatrix( pTarget->offset.q, pTarget->offset.pos, local );
MatrixInvert( local, local );
ConcatTransforms( boneToWorld[bone], local, worldFootpad );
if (pTarget->est.latched == 1.0)
{
pTarget->latched.bNeedsLatch = true;
}
else
{
pTarget->latched.bNeedsLatch = false;
}
// disable latched position if it looks invalid
if (m_iFramecounter < 0 || pTarget->latched.iFramecounter < m_iFramecounter - 1 || pTarget->latched.iFramecounter > m_iFramecounter)
{
pTarget->latched.bHasLatch = false;
pTarget->latched.influence = 0.0;
}
pTarget->latched.iFramecounter = m_iFramecounter;
// find ideal contact position
MatrixAngles( worldFootpad, pTarget->ideal.q, pTarget->ideal.pos );
pTarget->est.q = pTarget->ideal.q;
pTarget->est.pos = pTarget->ideal.pos;
float latched = pTarget->est.latched;
if (pTarget->latched.bHasLatch)
{
if (pTarget->est.latched == 1.0)
{
// keep track of latch position error from ideal contact position
pTarget->latched.deltaPos = pTarget->latched.pos - pTarget->est.pos;
QuaternionSM( -1, pTarget->est.q, pTarget->latched.q, pTarget->latched.deltaQ );
pTarget->est.q = pTarget->latched.q;
pTarget->est.pos = pTarget->latched.pos;
}
else if (pTarget->est.latched > 0.0)
{
// ramp out latch differences during decay phase of rule
if (latched > 0 && latched < pTarget->latched.influence)
{
// latching has decreased
float dt = pTarget->latched.influence - latched;
if (pTarget->latched.influence > 0.0)
dt = dt / pTarget->latched.influence;
VectorScale( pTarget->latched.deltaPos, (1-dt), pTarget->latched.deltaPos );
QuaternionScale( pTarget->latched.deltaQ, (1-dt), pTarget->latched.deltaQ );
}
// move ideal contact position by latched error factor
pTarget->est.pos = pTarget->est.pos + pTarget->latched.deltaPos;
QuaternionMA( pTarget->est.q, 1, pTarget->latched.deltaQ, pTarget->est.q );
pTarget->latched.q = pTarget->est.q;
pTarget->latched.pos = pTarget->est.pos;
}
else
{
pTarget->latched.bHasLatch = false;
pTarget->latched.q = pTarget->est.q;
pTarget->latched.pos = pTarget->est.pos;
pTarget->latched.deltaPos.Init();
pTarget->latched.deltaQ.Init();
}
pTarget->latched.influence = latched;
}
// check for illegal requests
Vector p1, p2, p3;
MatrixPosition( boneToWorld[pchain->pLink( 0 )->bone], p1 ); // hip
MatrixPosition( boneToWorld[pchain->pLink( 1 )->bone], p2 ); // knee
MatrixPosition( boneToWorld[pchain->pLink( 2 )->bone], p3 ); // foot
float d1 = (p2 - p1).Length();
float d2 = (p3 - p2).Length();
if (pTarget->latched.bHasLatch)
{
//float d3 = (p3 - p1).Length();
float d4 = (p3 + pTarget->latched.deltaPos - p1).Length();
// unstick feet when distance is too great
if ((d4 < fabs( d1 - d2 ) || d4 * 0.95 > d1 + d2) && pTarget->est.latched > 0.2)
{
pTarget->error.flTime = m_flTime;
}
// unstick feet when angle is too great
if (pTarget->est.latched > 0.2)
{
float d = fabs( pTarget->latched.deltaQ.w ) * 2.0f - 1.0f; // QuaternionDotProduct( pTarget->latched.q, pTarget->est.q );
// FIXME: cos(45), make property of chain
if (d < 0.707)
{
pTarget->error.flTime = m_flTime;
}
}
}
Vector dt = pTarget->est.pos - p1;
pTarget->trace.hipToFoot = VectorNormalize( dt );
pTarget->trace.hipToKnee = d1;
pTarget->trace.kneeToFoot = d2;
pTarget->trace.hip = p1;
pTarget->trace.knee = p2;
pTarget->trace.closest = p1 + dt * (fabs( d1 - d2 ) * 1.01);
pTarget->trace.farthest = p1 + dt * (d1 + d2) * 0.99;
pTarget->trace.lowest = p1 + Vector( 0, 0, -1 ) * (d1 + d2) * 0.99;
// pTarget->trace.endpos = pTarget->est.pos;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: insert release rules if the ik rules were in error
//-----------------------------------------------------------------------------
void CIKContext::AutoIKRelease( void )
{
int i;
for (i = 0; i < m_target.Count(); i++)
{
CIKTarget *pTarget = &m_target[i];
float dt = m_flTime - pTarget->error.flTime;
if (pTarget->error.bInError || dt < 0.5)
{
if (!pTarget->error.bInError)
{
pTarget->error.ramp = 0.0;
pTarget->error.flErrorTime = pTarget->error.flTime;
pTarget->error.bInError = true;
}
float ft = m_flTime - pTarget->error.flErrorTime;
if (dt < 0.25)
{
pTarget->error.ramp = min( pTarget->error.ramp + ft * 4.0, 1.0 );
}
else
{
pTarget->error.ramp = max( pTarget->error.ramp - ft * 4.0, 0.0 );
}
if (pTarget->error.ramp > 0.0)
{
ikcontextikrule_t ikrule;
ikrule.chain = pTarget->chain;
ikrule.bone = 0;
ikrule.type = IK_RELEASE;
ikrule.slot = i;
ikrule.flWeight = SimpleSpline( pTarget->error.ramp );
ikrule.flRuleWeight = 1.0;
ikrule.latched = dt < 0.25 ? 0.0 : ikrule.flWeight;
// don't bother with AutoIKRelease if the bone isn't going to be calculated
// this code is crashing for some unknown reason.
if ( pTarget->chain >= 0 && pTarget->chain < m_pStudioHdr->numikchains())
{
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pTarget->chain );
if (pchain != NULL)
{
int bone = pchain->pLink( 2 )->bone;
if (bone >= 0 && bone < m_pStudioHdr->numbones())
{
mstudiobone_t *pBone = m_pStudioHdr->pBone( bone );
if (pBone != NULL)
{
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
{
pTarget->error.bInError = false;
continue;
}
/*
char buf[256];
sprintf( buf, "dt %.4f ft %.4f weight %.4f latched %.4f\n", dt, ft, ikrule.flWeight, ikrule.latched );
OutputDebugString( buf );
*/
int nIndex = m_ikChainRule.Element( ikrule.chain ).AddToTail( );
m_ikChainRule.Element( ikrule.chain ).Element( nIndex ) = ikrule;
}
else
{
DevWarning( 1, "AutoIKRelease (%s) got a NULL pBone %d\n", m_pStudioHdr->pszName(), bone );
}
}
else
{
DevWarning( 1, "AutoIKRelease (%s) got an out of range bone %d (%d)\n", m_pStudioHdr->pszName(), bone, m_pStudioHdr->numbones() );
}
}
else
{
DevWarning( 1, "AutoIKRelease (%s) got a NULL pchain %d\n", m_pStudioHdr->pszName(), pTarget->chain );
}
}
else
{
DevWarning( 1, "AutoIKRelease (%s) got an out of range chain %d (%d)\n", m_pStudioHdr->pszName(), pTarget->chain, m_pStudioHdr->numikchains());
}
}
else
{
pTarget->error.bInError = false;
}
pTarget->error.flErrorTime = m_flTime;
}
}
}
void CIKContext::SolveDependencies( Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed )
{
// ASSERT_NO_REENTRY();
matrix3x4_t worldTarget;
int i, j;
ikchainresult_t chainResult[32]; // allocate!!!
// init chain rules
for (i = 0; i < m_pStudioHdr->numikchains(); i++)
{
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i );
ikchainresult_t *pChainResult = &chainResult[ i ];
int bone = pchain->pLink( 2 )->bone;
pChainResult->target = -1;
pChainResult->flWeight = 0.0;
// don't bother with chain if the bone isn't going to be calculated
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
continue;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
MatrixAngles( boneToWorld[bone], pChainResult->q, pChainResult->pos );
}
for (j = 0; j < m_ikChainRule.Count(); j++)
{
for (i = 0; i < m_ikChainRule.Element( j ).Count(); i++)
{
ikcontextikrule_t *pRule = &m_ikChainRule.Element( j ).Element( i );
ikchainresult_t *pChainResult = &chainResult[ pRule->chain ];
pChainResult->target = -1;
switch( pRule->type )
{
case IK_SELF:
{
// xform IK target error into world space
matrix3x4_t local;
QuaternionMatrix( pRule->q, pRule->pos, local );
// eval target bone space
if (pRule->bone != -1)
{
BuildBoneChain( pos, q, pRule->bone, boneToWorld, boneComputed );
ConcatTransforms( boneToWorld[pRule->bone], local, worldTarget );
}
else
{
ConcatTransforms( m_rootxform, local, worldTarget );
}
float flWeight = pRule->flWeight * pRule->flRuleWeight;
pChainResult->flWeight = pChainResult->flWeight * (1 - flWeight) + flWeight;
Vector p2;
Quaternion q2;
// target p and q
MatrixAngles( worldTarget, q2, p2 );
// debugLine( pChainResult->pos, p2, 0, 0, 255, true, 0.1 );
// blend in position and angles
pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight;
QuaternionSlerp( pChainResult->q, q2, flWeight, pChainResult->q );
}
break;
case IK_WORLD:
Assert( 0 );
break;
case IK_ATTACHMENT:
break;
case IK_GROUND:
break;
case IK_RELEASE:
{
// move target back towards original location
float flWeight = pRule->flWeight * pRule->flRuleWeight;
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( pRule->chain );
int bone = pchain->pLink( 2 )->bone;
Vector p2;
Quaternion q2;
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
MatrixAngles( boneToWorld[bone], q2, p2 );
// blend in position and angles
pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight;
QuaternionSlerp( pChainResult->q, q2, flWeight, pChainResult->q );
}
break;
case IK_UNLATCH:
{
/*
pChainResult->flWeight = pChainResult->flWeight * (1 - pRule->flWeight) + pRule->flWeight;
pChainResult->pos = pChainResult->pos * (1.0 - pRule->flWeight ) + pChainResult->local.pos * pRule->flWeight;
QuaternionSlerp( pChainResult->q, pChainResult->local.q, pRule->flWeight, pChainResult->q );
*/
}
break;
}
}
}
for (i = 0; i < m_target.Count(); i++)
{
CIKTarget *pTarget = &m_target[i];
if (m_target[i].est.flWeight > 0.0)
{
matrix3x4_t worldFootpad;
matrix3x4_t local;
//mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( m_target[i].chain );
ikchainresult_t *pChainResult = &chainResult[ pTarget->chain ];
AngleMatrix(pTarget->offset.q, pTarget->offset.pos, local );
AngleMatrix( pTarget->est.q, pTarget->est.pos, worldFootpad );
ConcatTransforms( worldFootpad, local, worldTarget );
Vector p2;
Quaternion q2;
// target p and q
MatrixAngles( worldTarget, q2, p2 );
// MatrixAngles( worldTarget, pChainResult->q, pChainResult->pos );
// blend in position and angles
pChainResult->flWeight = pTarget->est.flWeight;
pChainResult->pos = pChainResult->pos * (1.0 - pChainResult->flWeight ) + p2 * pChainResult->flWeight;
QuaternionSlerp( pChainResult->q, q2, pChainResult->flWeight, pChainResult->q );
}
if (pTarget->latched.bNeedsLatch)
{
// keep track of latch position
pTarget->latched.bHasLatch = true;
pTarget->latched.q = pTarget->est.q;
pTarget->latched.pos = pTarget->est.pos;
}
}
for (i = 0; i < m_pStudioHdr->numikchains(); i++)
{
ikchainresult_t *pChainResult = &chainResult[ i ];
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i );
if (pChainResult->flWeight > 0.0)
{
Vector tmp;
MatrixPosition( boneToWorld[pchain->pLink( 2 )->bone], tmp );
// debugLine( pChainResult->pos, tmp, 255, 255, 255, true, 0.1 );
// do exact IK solution
// FIXME: once per link!
if (Studio_SolveIK(pchain, pChainResult->pos, boneToWorld ))
{
Vector p3;
MatrixGetColumn( boneToWorld[pchain->pLink( 2 )->bone], 3, p3 );
QuaternionMatrix( pChainResult->q, p3, boneToWorld[pchain->pLink( 2 )->bone] );
// rebuild chain
// FIXME: is this needed if everyone past this uses the boneToWorld array?
SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q );
SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q );
SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q );
}
else
{
// FIXME: need to invalidate the targets that forced this...
if (pChainResult->target != -1)
{
CIKTarget *pTarget = &m_target[pChainResult->target];
VectorScale( pTarget->latched.deltaPos, 0.8, pTarget->latched.deltaPos );
QuaternionScale( pTarget->latched.deltaQ, 0.8, pTarget->latched.deltaQ );
}
}
}
}
#if 0
Vector p1, p2, p3;
Quaternion q1, q2, q3;
// current p and q
MatrixAngles( boneToWorld[bone], q1, p1 );
// target p and q
MatrixAngles( worldTarget, q2, p2 );
// blend in position and angles
p3 = p1 * (1.0 - m_ikRule[i].flWeight ) + p2 * m_ikRule[i].flWeight;
// do exact IK solution
// FIXME: once per link!
Studio_SolveIK(pchain, p3, boneToWorld );
// force angle (bad?)
QuaternionSlerp( q1, q2, m_ikRule[i].flWeight, q3 );
MatrixGetColumn( boneToWorld[bone], 3, p3 );
QuaternionMatrix( q3, p3, boneToWorld[bone] );
// rebuild chain
SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q );
SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q );
SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q );
#endif
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::SolveAutoplayLocks(
Vector pos[],
Quaternion q[]
)
{
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int i;
for (i = 0; i < m_ikLock.Count(); i++)
{
const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock( i );
SolveLock( &lock, i, pos, q, boneToWorld, boneComputed );
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::SolveSequenceLocks(
mstudioseqdesc_t &seqdesc,
Vector pos[],
Quaternion q[]
)
{
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int i;
for (i = 0; i < m_ikLock.Count(); i++)
{
mstudioiklock_t *plock = seqdesc.pIKLock( i );
SolveLock( plock, i, pos, q, boneToWorld, boneComputed );
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::AddAllLocks( Vector pos[], Quaternion q[] )
{
// skip all array access if no autoplay locks.
if (m_pStudioHdr->GetNumIKChains() == 0)
{
return;
}
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int ikOffset = m_ikLock.AddMultipleToTail( m_pStudioHdr->GetNumIKChains() );
memset( &m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKChains() );
for (int i = 0; i < m_pStudioHdr->GetNumIKChains(); i++)
{
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( i );
int bone = pchain->pLink( 2 )->bone;
// don't bother with iklock if the bone isn't going to be calculated
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
continue;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
ikcontextikrule_t &ikrule = m_ikLock[ i + ikOffset ];
ikrule.chain = i;
ikrule.slot = i;
ikrule.type = IK_WORLD;
MatrixAngles( boneToWorld[bone], ikrule.q, ikrule.pos );
// save off current knee direction
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
{
Vector tmp = pchain->pLink( 0 )->kneeDir;
VectorRotate( pchain->pLink( 0 )->kneeDir, boneToWorld[ pchain->pLink( 0 )->bone ], ikrule.kneeDir );
MatrixPosition( boneToWorld[ pchain->pLink( 1 )->bone ], ikrule.kneePos );
}
else
{
ikrule.kneeDir.Init( );
}
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::SolveAllLocks(
Vector pos[],
Quaternion q[]
)
{
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
CBoneBitList boneComputed;
int i;
mstudioiklock_t lock;
for (i = 0; i < m_ikLock.Count(); i++)
{
lock.chain = i;
lock.flPosWeight = 1.0;
lock.flLocalQWeight = 0.0;
lock.flags = 0;
SolveLock( &lock, i, pos, q, boneToWorld, boneComputed );
}
g_MatrixPool.Free( boneToWorld );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CIKContext::SolveLock(
const mstudioiklock_t *plock,
int i,
Vector pos[],
Quaternion q[],
matrix3x4_t boneToWorld[],
CBoneBitList &boneComputed
)
{
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( plock->chain );
int bone = pchain->pLink( 2 )->bone;
// don't bother with iklock if the bone isn't going to be calculated
if ( !(m_pStudioHdr->boneFlags( bone ) & m_boneMask))
return;
// eval current ik'd bone
BuildBoneChain( pos, q, bone, boneToWorld, boneComputed );
Vector p1, p2, p3;
Quaternion q2, q3;
// current p and q
MatrixPosition( boneToWorld[bone], p1 );
// blend in position
p3 = p1 * (1.0 - plock->flPosWeight ) + m_ikLock[i].pos * plock->flPosWeight;
// do exact IK solution
if (m_ikLock[i].kneeDir.LengthSqr() > 0)
{
Studio_SolveIK(pchain->pLink( 0 )->bone, pchain->pLink( 1 )->bone, pchain->pLink( 2 )->bone, p3, m_ikLock[i].kneePos, m_ikLock[i].kneeDir, boneToWorld );
}
else
{
Studio_SolveIK(pchain, p3, boneToWorld );
}
// slam orientation
MatrixPosition( boneToWorld[bone], p3 );
QuaternionMatrix( m_ikLock[i].q, p3, boneToWorld[bone] );
// rebuild chain
q2 = q[ bone ];
SolveBone( m_pStudioHdr, pchain->pLink( 2 )->bone, boneToWorld, pos, q );
QuaternionSlerp( q[bone], q2, plock->flLocalQWeight, q[bone] );
SolveBone( m_pStudioHdr, pchain->pLink( 1 )->bone, boneToWorld, pos, q );
SolveBone( m_pStudioHdr, pchain->pLink( 0 )->bone, boneToWorld, pos, q );
}
//-----------------------------------------------------------------------------
// Purpose: run all animations that automatically play and are driven off of poseParameters
//-----------------------------------------------------------------------------
void CBoneSetup::CalcAutoplaySequences(
Vector pos[],
Quaternion q[],
float flRealTime,
CIKContext *pIKContext
)
{
// ASSERT_NO_REENTRY();
int i;
if ( pIKContext )
{
pIKContext->AddAutoplayLocks( pos, q );
}
unsigned short *pList = NULL;
int count = m_pStudioHdr->GetAutoplayList( &pList );
for (i = 0; i < count; i++)
{
int sequenceIndex = pList[i];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc( sequenceIndex );
if (seqdesc.flags & STUDIO_AUTOPLAY)
{
float cycle = 0;
float cps = Studio_CPS( m_pStudioHdr, seqdesc, sequenceIndex, m_flPoseParameter );
cycle = flRealTime * cps;
cycle = cycle - (int)cycle;
AccumulatePose( pos, q, sequenceIndex, cycle, 1.0, flRealTime, pIKContext );
}
}
if ( pIKContext )
{
pIKContext->SolveAutoplayLocks( pos, q );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void Studio_BuildMatrices(
const CStudioHdr *pStudioHdr,
const QAngle& angles,
const Vector& origin,
const Vector pos[],
const Quaternion q[],
int iBone,
float flScale,
matrix3x4_t bonetoworld[MAXSTUDIOBONES],
int boneMask
)
{
int i, j;
int chain[MAXSTUDIOBONES] = {};
int chainlength = 0;
if (iBone < -1 || iBone >= pStudioHdr->numbones())
iBone = 0;
// build list of what bones to use
if (iBone == -1)
{
// all bones
chainlength = pStudioHdr->numbones();
for (i = 0; i < pStudioHdr->numbones(); i++)
{
chain[chainlength - i - 1] = i;
}
}
else
{
// only the parent bones
i = iBone;
while (i != -1)
{
chain[chainlength++] = i;
i = pStudioHdr->boneParent( i );
}
}
matrix3x4_t bonematrix;
matrix3x4_t rotationmatrix; // model to world transformation
AngleMatrix( angles, origin, rotationmatrix );
// Account for a change in scale
if ( flScale < 1.0f-FLT_EPSILON || flScale > 1.0f+FLT_EPSILON )
{
Vector vecOffset;
MatrixGetColumn( rotationmatrix, 3, vecOffset );
vecOffset -= origin;
vecOffset *= flScale;
vecOffset += origin;
MatrixSetColumn( vecOffset, 3, rotationmatrix );
// Scale it uniformly
VectorScale( rotationmatrix[0], flScale, rotationmatrix[0] );
VectorScale( rotationmatrix[1], flScale, rotationmatrix[1] );
VectorScale( rotationmatrix[2], flScale, rotationmatrix[2] );
}
for (j = chainlength - 1; j >= 0; j--)
{
i = chain[j];
if (pStudioHdr->boneFlags(i) & boneMask)
{
QuaternionMatrix( q[i], pos[i], bonematrix );
if (pStudioHdr->boneParent(i) == -1)
{
ConcatTransforms (rotationmatrix, bonematrix, bonetoworld[i]);
}
else
{
ConcatTransforms (bonetoworld[pStudioHdr->boneParent(i)], bonematrix, bonetoworld[i]);
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: look at single column vector of another bones local transformation
// and generate a procedural transformation based on how that column
// points down the 6 cardinal axis (all negative weights are clamped to 0).
//-----------------------------------------------------------------------------
void DoAxisInterpBone(
mstudiobone_t *pbones,
int ibone,
CBoneAccessor &bonetoworld
)
{
matrix3x4_t bonematrix;
Vector control;
mstudioaxisinterpbone_t *pProc = (mstudioaxisinterpbone_t *)pbones[ibone].pProcedure( );
const matrix3x4_t &controlBone = bonetoworld.GetBone( pProc->control );
if (pProc && pbones[pProc->control].parent != -1)
{
Vector tmp;
// pull out the control column
tmp.x = controlBone[0][pProc->axis];
tmp.y = controlBone[1][pProc->axis];
tmp.z = controlBone[2][pProc->axis];
// invert it back into parent's space.
VectorIRotate( tmp, bonetoworld.GetBone( pbones[pProc->control].parent ), control );
#if 0
matrix3x4_t tmpmatrix;
matrix3x4_t controlmatrix;
MatrixInvert( bonetoworld.GetBone( pbones[pProc->control].parent ), tmpmatrix );
ConcatTransforms( tmpmatrix, bonetoworld.GetBone( pProc->control ), controlmatrix );
// pull out the control column
control.x = controlmatrix[0][pProc->axis];
control.y = controlmatrix[1][pProc->axis];
control.z = controlmatrix[2][pProc->axis];
#endif
}
else
{
// pull out the control column
control.x = controlBone[0][pProc->axis];
control.y = controlBone[1][pProc->axis];
control.z = controlBone[2][pProc->axis];
}
Quaternion *q1, *q2, *q3;
Vector *p1, *p2, *p3;
// find axial control inputs
float a1 = control.x;
float a2 = control.y;
float a3 = control.z;
if (a1 >= 0)
{
q1 = &pProc->quat[0];
p1 = &pProc->pos[0];
}
else
{
a1 = -a1;
q1 = &pProc->quat[1];
p1 = &pProc->pos[1];
}
if (a2 >= 0)
{
q2 = &pProc->quat[2];
p2 = &pProc->pos[2];
}
else
{
a2 = -a2;
q2 = &pProc->quat[3];
p2 = &pProc->pos[3];
}
if (a3 >= 0)
{
q3 = &pProc->quat[4];
p3 = &pProc->pos[4];
}
else
{
a3 = -a3;
q3 = &pProc->quat[5];
p3 = &pProc->pos[5];
}
// do a three-way blend
Vector p;
Quaternion v, tmp;
if (a1 + a2 > 0)
{
float t = 1.0 / (a1 + a2 + a3);
// FIXME: do a proper 3-way Quat blend!
QuaternionSlerp( *q2, *q1, a1 / (a1 + a2), tmp );
QuaternionSlerp( tmp, *q3, a3 * t, v );
VectorScale( *p1, a1 * t, p );
VectorMA( p, a2 * t, *p2, p );
VectorMA( p, a3 * t, *p3, p );
}
else
{
QuaternionSlerp( *q3, *q3, 0, v ); // ??? no quat copy?
p = *p3;
}
QuaternionMatrix( v, p, bonematrix );
ConcatTransforms (bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone ));
}
//-----------------------------------------------------------------------------
// Purpose: Generate a procedural transformation based on how that another bones
// local transformation matches a set of target orientations.
//-----------------------------------------------------------------------------
void DoQuatInterpBone(
mstudiobone_t *pbones,
int ibone,
CBoneAccessor &bonetoworld
)
{
matrix3x4_t bonematrix;
Vector control;
mstudioquatinterpbone_t *pProc = (mstudioquatinterpbone_t *)pbones[ibone].pProcedure( );
if (pProc && pbones[pProc->control].parent != -1)
{
Quaternion src;
float weight[32];
float scale = 0.0;
Quaternion quat;
Vector pos;
matrix3x4_t tmpmatrix;
matrix3x4_t controlmatrix;
MatrixInvert( bonetoworld.GetBone( pbones[pProc->control].parent), tmpmatrix );
ConcatTransforms( tmpmatrix, bonetoworld.GetBone( pProc->control ), controlmatrix );
MatrixAngles( controlmatrix, src, pos ); // FIXME: make a version without pos
int i;
for (i = 0; i < pProc->numtriggers; i++)
{
float dot = fabs( QuaternionDotProduct( pProc->pTrigger( i )->trigger, src ) );
// FIXME: a fast acos should be acceptable
dot = clamp( dot, -1.f, 1.f );
weight[i] = 1 - (2 * acos( dot ) * pProc->pTrigger( i )->inv_tolerance );
weight[i] = max( 0.f, weight[i] );
scale += weight[i];
}
if (scale <= 0.001) // EPSILON?
{
AngleMatrix( pProc->pTrigger( 0 )->quat, pProc->pTrigger( 0 )->pos, bonematrix );
ConcatTransforms ( bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone ) );
return;
}
scale = 1.0 / scale;
quat.Init( 0, 0, 0, 0);
pos.Init( );
for (i = 0; i < pProc->numtriggers; i++)
{
if (weight[i])
{
float s = weight[i] * scale;
mstudioquatinterpinfo_t *pTrigger = pProc->pTrigger( i );
QuaternionAlign( pTrigger->quat, quat, quat );
quat.x = quat.x + s * pTrigger->quat.x;
quat.y = quat.y + s * pTrigger->quat.y;
quat.z = quat.z + s * pTrigger->quat.z;
quat.w = quat.w + s * pTrigger->quat.w;
pos.x = pos.x + s * pTrigger->pos.x;
pos.y = pos.y + s * pTrigger->pos.y;
pos.z = pos.z + s * pTrigger->pos.z;
}
}
Assert( QuaternionNormalize( quat ) != 0);
QuaternionMatrix( quat, pos, bonematrix );
}
ConcatTransforms (bonetoworld.GetBone( pbones[ibone].parent ), bonematrix, bonetoworld.GetBoneForWrite( ibone ));
}
/*
* This is for DoAimAtBone below, was just for testing, not needed in general
* but to turn it back on, uncomment this and the section in DoAimAtBone() below
*
static ConVar aim_constraint( "aim_constraint", "1", FCVAR_REPLICATED, "Toggle <aimconstraint> Helper Bones" );
*/
//-----------------------------------------------------------------------------
// Purpose: Generate a procedural transformation so that one bone points at
// another point on the model
//-----------------------------------------------------------------------------
void DoAimAtBone(
mstudiobone_t *pBones,
int iBone,
CBoneAccessor &bonetoworld,
const CStudioHdr *pStudioHdr
)
{
mstudioaimatbone_t *pProc = (mstudioaimatbone_t *)pBones[iBone].pProcedure();
if ( !pProc )
{
return;
}
/*
* Uncomment this if the ConVar above is uncommented
*
if ( !aim_constraint.GetBool() )
{
// If the aim constraint is turned off then just copy the parent transform
// plus the offset value
matrix3x4_t boneToWorldSpace;
MatrixCopy ( bonetoworld.GetBone( pProc->parent ), boneToWorldSpace );
Vector boneWorldPosition;
VectorTransform( pProc->basepos, boneToWorldSpace, boneWorldPosition );
MatrixSetColumn( boneWorldPosition, 3, boneToWorldSpace );
MatrixCopy( boneToWorldSpace, bonetoworld.GetBoneForWrite( iBone ) );
return;
}
*/
// The world matrix of the bone to change
matrix3x4_t boneMatrix;
// Guaranteed to be unit length
const Vector &userAimVector( pProc->aimvector );
// Guaranteed to be unit length
const Vector &userUpVector( pProc->upvector );
// Get to get position of bone but also for up reference
matrix3x4_t parentSpace;
MatrixCopy ( bonetoworld.GetBone( pProc->parent ), parentSpace );
// World space position of the bone to aim
Vector aimWorldPosition;
VectorTransform( pProc->basepos, parentSpace, aimWorldPosition );
// The worldspace matrix of the bone to aim at
matrix3x4_t aimAtSpace;
if ( pStudioHdr )
{
// This means it's AIMATATTACH
const mstudioattachment_t &attachment( ((CStudioHdr *)pStudioHdr)->pAttachment( pProc->aim ) );
ConcatTransforms(
bonetoworld.GetBone( attachment.localbone ),
attachment.local,
aimAtSpace );
}
else
{
MatrixCopy( bonetoworld.GetBone( pProc->aim ), aimAtSpace );
}
Vector aimAtWorldPosition;
MatrixGetColumn( aimAtSpace, 3, aimAtWorldPosition );
// make sure the redundant parent info is correct
Assert( pProc->parent == pBones[iBone].parent );
// make sure the redundant position info is correct
Assert( pProc->basepos.DistToSqr( pBones[iBone].pos ) < 0.1 );
// The aim and up data is relative to this bone, not the parent bone
matrix3x4_t bonematrix, boneLocalToWorld;
AngleMatrix( pBones[iBone].quat, pProc->basepos, bonematrix );
ConcatTransforms( bonetoworld.GetBone( pProc->parent ), bonematrix, boneLocalToWorld );
Vector aimVector;
VectorSubtract( aimAtWorldPosition, aimWorldPosition, aimVector );
VectorNormalizeFast( aimVector );
Vector axis;
CrossProduct( userAimVector, aimVector, axis );
VectorNormalizeFast( axis );
Assert( 1.0f - fabs( DotProduct( userAimVector, aimVector ) ) > FLT_EPSILON );
float angle( acosf( DotProduct( userAimVector, aimVector ) ) );
Quaternion aimRotation;
AxisAngleQuaternion( axis, RAD2DEG( angle ), aimRotation );
if ( ( 1.0f - fabs( DotProduct( userUpVector, userAimVector ) ) ) > FLT_EPSILON )
{
matrix3x4_t aimRotationMatrix;
QuaternionMatrix( aimRotation, aimRotationMatrix );
Vector tmpV;
Vector tmp_pUp;
VectorRotate( userUpVector, aimRotationMatrix, tmp_pUp );
VectorScale( aimVector, DotProduct( aimVector, tmp_pUp ), tmpV );
Vector pUp;
VectorSubtract( tmp_pUp, tmpV, pUp );
VectorNormalizeFast( pUp );
Vector tmp_pParentUp;
VectorRotate( userUpVector, boneLocalToWorld, tmp_pParentUp );
VectorScale( aimVector, DotProduct( aimVector, tmp_pParentUp ), tmpV );
Vector pParentUp;
VectorSubtract( tmp_pParentUp, tmpV, pParentUp );
VectorNormalizeFast( pParentUp );
Quaternion upRotation;
//Assert( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON );
if( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON )
{
angle = acos( DotProduct( pUp, pParentUp ) );
CrossProduct( pUp, pParentUp, axis );
}
else
{
angle = 0;
axis = pUp;
}
VectorNormalizeFast( axis );
AxisAngleQuaternion( axis, RAD2DEG( angle ), upRotation );
Quaternion boneRotation;
QuaternionMult( upRotation, aimRotation, boneRotation );
QuaternionMatrix( boneRotation, aimWorldPosition, boneMatrix );
}
else
{
QuaternionMatrix( aimRotation, aimWorldPosition, boneMatrix );
}
MatrixCopy( boneMatrix, bonetoworld.GetBoneForWrite( iBone ) );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CalcProceduralBone(
const CStudioHdr *pStudioHdr,
int iBone,
CBoneAccessor &bonetoworld
)
{
mstudiobone_t *pbones = pStudioHdr->pBone( 0 );
if ( pStudioHdr->boneFlags(iBone) & BONE_ALWAYS_PROCEDURAL )
{
switch( pbones[iBone].proctype )
{
case STUDIO_PROC_AXISINTERP:
DoAxisInterpBone( pbones, iBone, bonetoworld );
return true;
case STUDIO_PROC_QUATINTERP:
DoQuatInterpBone( pbones, iBone, bonetoworld );
return true;
case STUDIO_PROC_AIMATBONE:
DoAimAtBone( pbones, iBone, bonetoworld, NULL );
return true;
case STUDIO_PROC_AIMATATTACH:
DoAimAtBone( pbones, iBone, bonetoworld, pStudioHdr );
return true;
default:
return false;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Lookup a bone controller
//-----------------------------------------------------------------------------
static mstudiobonecontroller_t* FindController( const CStudioHdr *pStudioHdr, int iController)
{
// find first controller that matches the index
for (int i = 0; i < pStudioHdr->numbonecontrollers(); i++)
{
if (pStudioHdr->pBonecontroller( i )->inputfield == iController)
return pStudioHdr->pBonecontroller( i );
}
return NULL;
}
//-----------------------------------------------------------------------------
// Purpose: converts a ranged bone controller value into a 0..1 encoded value
// Output: ctlValue contains 0..1 encoding.
// returns clamped ranged value
//-----------------------------------------------------------------------------
float Studio_SetController( const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue )
{
if (! pStudioHdr)
return flValue;
mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController);
if(!pbonecontroller)
{
ctlValue = 0;
return flValue;
}
// wrap 0..360 if it's a rotational controller
if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR))
{
// ugly hack, invert value if end < start
if (pbonecontroller->end < pbonecontroller->start)
flValue = -flValue;
// does the controller not wrap?
if (pbonecontroller->start + 359.0 >= pbonecontroller->end)
{
if (flValue > ((pbonecontroller->start + pbonecontroller->end) / 2.0) + 180)
flValue = flValue - 360;
if (flValue < ((pbonecontroller->start + pbonecontroller->end) / 2.0) - 180)
flValue = flValue + 360;
}
else
{
if (flValue > 360)
flValue = flValue - (int)(flValue / 360.0) * 360.0;
else if (flValue < 0)
flValue = flValue + (int)((flValue / -360.0) + 1) * 360.0;
}
}
ctlValue = (flValue - pbonecontroller->start) / (pbonecontroller->end - pbonecontroller->start);
if (ctlValue < 0) ctlValue = 0;
if (ctlValue > 1) ctlValue = 1;
float flReturnVal = ((1.0 - ctlValue)*pbonecontroller->start + ctlValue *pbonecontroller->end);
// ugly hack, invert value if a rotational controller and end < start
if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR) &&
pbonecontroller->end < pbonecontroller->start )
{
flReturnVal *= -1;
}
return flReturnVal;
}
//-----------------------------------------------------------------------------
// Purpose: converts a 0..1 encoded bone controller value into a ranged value
// Output: returns ranged value
//-----------------------------------------------------------------------------
float Studio_GetController( const CStudioHdr *pStudioHdr, int iController, float ctlValue )
{
if (!pStudioHdr)
return 0.0;
mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController);
if(!pbonecontroller)
return 0;
return ctlValue * (pbonecontroller->end - pbonecontroller->start) + pbonecontroller->start;
}
//-----------------------------------------------------------------------------
// Purpose: Calculates default values for the pose parameters
// Output: fills in an array
//-----------------------------------------------------------------------------
void Studio_CalcDefaultPoseParameters( const CStudioHdr *pStudioHdr, float flPoseParameter[], int nCount )
{
int nPoseCount = pStudioHdr->GetNumPoseParameters();
int nNumParams = MIN( nCount, MAXSTUDIOPOSEPARAM );
for ( int i = 0; i < nNumParams; ++i )
{
// Default to middle of the pose parameter range
flPoseParameter[ i ] = 0.5f;
if ( i < nPoseCount )
{
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( i );
// Want to try for a zero state. If one doesn't exist set it to .5 by default.
if ( Pose.start < 0.0f && Pose.end > 0.0f )
{
float flPoseDelta = Pose.end - Pose.start;
flPoseParameter[i] = -Pose.start / flPoseDelta;
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose: converts a ranged pose parameter value into a 0..1 encoded value
// Output: ctlValue contains 0..1 encoding.
// returns clamped ranged value
//-----------------------------------------------------------------------------
float Studio_SetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue )
{
if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters())
{
return 0;
}
const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iParameter );
Assert( IsFinite( flValue ) );
if (PoseParam.loop)
{
float wrap = (PoseParam.start + PoseParam.end) / 2.0 + PoseParam.loop / 2.0;
float shift = PoseParam.loop - wrap;
flValue = flValue - PoseParam.loop * floor((flValue + shift) / PoseParam.loop);
}
ctlValue = (flValue - PoseParam.start) / (PoseParam.end - PoseParam.start);
if (ctlValue < 0) ctlValue = 0;
if (ctlValue > 1) ctlValue = 1;
Assert( IsFinite( ctlValue ) );
return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start;
}
//-----------------------------------------------------------------------------
// Purpose: converts a 0..1 encoded pose parameter value into a ranged value
// Output: returns ranged value
//-----------------------------------------------------------------------------
float Studio_GetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float ctlValue )
{
if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters())
{
return 0;
}
const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iParameter );
return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start;
}
#pragma warning (disable : 4701)
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
static int ClipRayToHitbox( const Ray_t &ray, mstudiobbox_t *pbox, matrix3x4_t& matrix, trace_t &tr )
{
const float flProjEpsilon = 0.01f;
// scale by current t so hits shorten the ray and increase the likelihood of early outs
Vector delta2;
VectorScale( ray.m_Delta, (0.5f * tr.fraction), delta2 );
// OPTIMIZE: Store this in the box instead of computing it here
// compute center in local space
Vector boxextents;
boxextents.x = (pbox->bbmin.x + pbox->bbmax.x) * 0.5;
boxextents.y = (pbox->bbmin.y + pbox->bbmax.y) * 0.5;
boxextents.z = (pbox->bbmin.z + pbox->bbmax.z) * 0.5;
Vector boxCenter;
// transform to world space
VectorTransform( boxextents, matrix, boxCenter );
// calc extents from local center
boxextents.x = pbox->bbmax.x - boxextents.x;
boxextents.y = pbox->bbmax.y - boxextents.y;
boxextents.z = pbox->bbmax.z - boxextents.z;
// OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more
// sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS.
// save the extents of the ray along
Vector extent, uextent;
Vector segmentCenter;
segmentCenter.x = ray.m_Start.x + delta2.x - boxCenter.x;
segmentCenter.y = ray.m_Start.y + delta2.y - boxCenter.y;
segmentCenter.z = ray.m_Start.z + delta2.z - boxCenter.z;
extent.Init();
// check box axes for separation
for ( int j = 0; j < 3; j++ )
{
extent[j] = delta2.x * matrix[0][j] + delta2.y * matrix[1][j] + delta2.z * matrix[2][j];
uextent[j] = fabsf(extent[j]);
float coord = segmentCenter.x * matrix[0][j] + segmentCenter.y * matrix[1][j] + segmentCenter.z * matrix[2][j];
coord = fabsf(coord);
if ( coord > (boxextents[j] + uextent[j]) )
return -1;
}
// now check cross axes for separation
float tmp, tmpfix, cextent;
Vector cross;
CrossProduct( delta2, segmentCenter, cross );
cextent = cross.x * matrix[0][0] + cross.y * matrix[1][0] + cross.z * matrix[2][0];
cextent = fabsf(cextent);
tmp = boxextents[1]*uextent[2] + boxextents[2]*uextent[1];
tmpfix = MAX(tmp, flProjEpsilon);
if ( cextent > tmpfix )
return -1;
// if ( cextent > tmp && cextent <= tmpfix )
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
cextent = cross.x * matrix[0][1] + cross.y * matrix[1][1] + cross.z * matrix[2][1];
cextent = fabsf(cextent);
tmp = boxextents[0]*uextent[2] + boxextents[2]*uextent[0];
tmpfix = MAX(tmp, flProjEpsilon);
if ( cextent > tmpfix )
return -1;
// if ( cextent > tmp && cextent <= tmpfix )
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
cextent = cross.x * matrix[0][2] + cross.y * matrix[1][2] + cross.z * matrix[2][2];
cextent = fabsf(cextent);
tmp = boxextents[0]*uextent[1] + boxextents[1]*uextent[0];
tmpfix = MAX(tmp, flProjEpsilon);
if ( cextent > tmpfix )
return -1;
// if ( cextent > tmp && cextent <= tmpfix )
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
// !!! We hit this box !!! compute intersection point and return
Vector start;
// Compute ray start in bone space
VectorITransform( ray.m_Start, matrix, start );
// extent is delta2 in bone space, recompute delta in bone space
VectorScale( extent, 2, extent );
// delta was prescaled by the current t, so no need to see if this intersection
// is closer
trace_t boxTrace;
if ( !IntersectRayWithBox( start, extent, pbox->bbmin, pbox->bbmax, 0.0f, &boxTrace ) )
return -1;
Assert( IsFinite(boxTrace.fraction) );
tr.fraction *= boxTrace.fraction;
tr.startsolid = boxTrace.startsolid;
int hitside = boxTrace.plane.type;
if ( boxTrace.plane.normal[hitside] >= 0 )
{
hitside += 3;
}
return hitside;
}
#pragma warning (default : 4701)
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool SweepBoxToStudio( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set,
matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr )
{
tr.fraction = 1.0;
tr.startsolid = false;
// OPTIMIZE: Partition these?
Ray_t clippedRay = ray;
int hitbox = -1;
for ( int i = 0; i < set->numhitboxes; i++ )
{
mstudiobbox_t *pbox = set->pHitbox(i);
// Filter based on contents mask
int fBoneContents = pStudioHdr->pBone( pbox->bone )->contents;
if ( ( fBoneContents & fContentsMask ) == 0 )
continue;
//FIXME: Won't work with scaling!
trace_t obbTrace;
if ( IntersectRayWithOBB( clippedRay, *hitboxbones[pbox->bone], pbox->bbmin, pbox->bbmax, 0.0f, &obbTrace ) )
{
tr.startpos = obbTrace.startpos;
tr.endpos = obbTrace.endpos;
tr.plane = obbTrace.plane;
tr.startsolid = obbTrace.startsolid;
tr.allsolid = obbTrace.allsolid;
// This logic here is to shorten the ray each time to get more early outs
tr.fraction *= obbTrace.fraction;
clippedRay.m_Delta *= obbTrace.fraction;
hitbox = i;
if (tr.startsolid)
break;
}
}
if ( hitbox >= 0 )
{
tr.hitgroup = set->pHitbox(hitbox)->group;
tr.hitbox = hitbox;
const mstudiobone_t *pBone = pStudioHdr->pBone( set->pHitbox(hitbox)->bone );
tr.contents = pBone->contents | CONTENTS_HITBOX;
tr.physicsbone = pBone->physicsbone;
tr.surface.name = "**studio**";
tr.surface.flags = SURF_HITBOX;
tr.surface.surfaceProps = pProps->GetSurfaceIndex( pBone->pszSurfaceProp() );
Assert( tr.physicsbone >= 0 );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool TraceToStudio( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set,
matrix3x4_t **hitboxbones, int fContentsMask, const Vector &vecOrigin, float flScale, trace_t &tr )
{
if ( !ray.m_IsRay )
{
return SweepBoxToStudio( pProps, ray, pStudioHdr, set, hitboxbones, fContentsMask, tr );
}
tr.fraction = 1.0;
tr.startsolid = false;
// no hit yet
int hitbox = -1;
int hitside = -1;
// OPTIMIZE: Partition these?
for ( int i = 0; i < set->numhitboxes; i++ )
{
mstudiobbox_t *pbox = set->pHitbox(i);
// Filter based on contents mask
int fBoneContents = pStudioHdr->pBone( pbox->bone )->contents;
if ( ( fBoneContents & fContentsMask ) == 0 )
continue;
// columns are axes of the bones in world space, translation is in world space
matrix3x4_t& matrix = *hitboxbones[pbox->bone];
// Because we're sending in a matrix with scale data, and because the matrix inversion in the hitbox
// code does not handle that case, we pre-scale the bones and ray down here and do our collision checks
// in unscaled space. We can then rescale the results afterwards.
int side = -1;
if ( flScale < 1.0f-FLT_EPSILON || flScale > 1.0f+FLT_EPSILON )
{
matrix3x4_t matScaled;
MatrixCopy( matrix, matScaled );
float invScale = 1.0f / flScale;
Vector vecBoneOrigin;
MatrixGetColumn( matScaled, 3, vecBoneOrigin );
// Pre-scale the origin down
Vector vecNewOrigin = vecBoneOrigin - vecOrigin;
vecNewOrigin *= invScale;
vecNewOrigin += vecOrigin;
MatrixSetColumn( vecNewOrigin, 3, matScaled );
// Scale it uniformly
VectorScale( matScaled[0], invScale, matScaled[0] );
VectorScale( matScaled[1], invScale, matScaled[1] );
VectorScale( matScaled[2], invScale, matScaled[2] );
// Pre-scale our ray as well
Vector vecRayStart = ray.m_Start - vecOrigin;
vecRayStart *= invScale;
vecRayStart += vecOrigin;
Vector vecRayDelta = ray.m_Delta * invScale;
Ray_t newRay;
newRay.Init( vecRayStart, vecRayStart + vecRayDelta );
side = ClipRayToHitbox( newRay, pbox, matScaled, tr );
}
else
{
side = ClipRayToHitbox( ray, pbox, matrix, tr );
}
if ( side >= 0 )
{
hitbox = i;
hitside = side;
}
}
if ( hitbox >= 0 )
{
mstudiobbox_t *pbox = set->pHitbox(hitbox);
VectorMA( ray.m_Start, tr.fraction, ray.m_Delta, tr.endpos );
tr.hitgroup = set->pHitbox(hitbox)->group;
tr.hitbox = hitbox;
const mstudiobone_t *pBone = pStudioHdr->pBone( pbox->bone );
tr.contents = pBone->contents | CONTENTS_HITBOX;
tr.physicsbone = pBone->physicsbone;
tr.surface.name = "**studio**";
tr.surface.flags = SURF_HITBOX;
tr.surface.surfaceProps = pProps->GetSurfaceIndex( pBone->pszSurfaceProp() );
Assert( tr.physicsbone >= 0 );
matrix3x4_t& matrix = *hitboxbones[pbox->bone];
if ( hitside >= 3 )
{
hitside -= 3;
tr.plane.normal[0] = matrix[0][hitside];
tr.plane.normal[1] = matrix[1][hitside];
tr.plane.normal[2] = matrix[2][hitside];
//tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) + pbox->bbmax[hitside];
}
else
{
tr.plane.normal[0] = -matrix[0][hitside];
tr.plane.normal[1] = -matrix[1][hitside];
tr.plane.normal[2] = -matrix[2][hitside];
//tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) - pbox->bbmin[hitside];
}
// simpler plane constant equation
tr.plane.dist = DotProduct( tr.endpos, tr.plane.normal );
tr.plane.type = 3;
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: returns array of animations and weightings for a sequence based on current pose parameters
//-----------------------------------------------------------------------------
void Studio_SeqAnims( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight )
{
#if _DEBUG
VPROF_INCREMENT_COUNTER("SEQ_ANIMS",1);
#endif
if (!pStudioHdr || iSequence >= pStudioHdr->GetNumSeq())
{
weight[0] = weight[1] = weight[2] = weight[3] = 0.0;
return;
}
int i0 = 0, i1 = 0;
float s0 = 0, s1 = 0;
Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, iSequence, 0, s0, i0 );
Studio_LocalPoseParameter( pStudioHdr, poseParameter, seqdesc, iSequence, 1, s1, i1 );
panim[0] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0 , i1 ) ) );
weight[0] = (1 - s0) * (1 - s1);
panim[1] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0+1, i1 ) ) );
weight[1] = (s0) * (1 - s1);
panim[2] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0 , i1+1 ) ) );
weight[2] = (1 - s0) * (s1);
panim[3] = &((CStudioHdr *)pStudioHdr)->pAnimdesc( pStudioHdr->iRelativeAnim( iSequence, seqdesc.anim( i0+1, i1+1 ) ) );
weight[3] = (s0) * (s1);
Assert( weight[0] >= 0.0f && weight[1] >= 0.0f && weight[2] >= 0.0f && weight[3] >= 0.0f );
}
//-----------------------------------------------------------------------------
// Purpose: returns max frame number for a sequence
//-----------------------------------------------------------------------------
int Studio_MaxFrame( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] )
{
mstudioanimdesc_t *panim[4];
float weight[4];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
float maxFrame = 0;
for (int i = 0; i < 4; i++)
{
if (weight[i] > 0)
{
maxFrame += panim[i]->numframes * weight[i];
}
}
if ( maxFrame > 1 )
maxFrame -= 1;
// FIXME: why does the weights sometimes not exactly add it 1.0 and this sometimes rounds down?
return (maxFrame + 0.01);
}
//-----------------------------------------------------------------------------
// Purpose: returns frames per second of a sequence
//-----------------------------------------------------------------------------
float Studio_FPS( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] )
{
mstudioanimdesc_t *panim[4];
float weight[4];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
float t = 0;
for (int i = 0; i < 4; i++)
{
if (weight[i] > 0)
{
t += panim[i]->fps * weight[i];
}
}
return t;
}
//-----------------------------------------------------------------------------
// Purpose: returns cycles per second of a sequence (cycles/second)
//-----------------------------------------------------------------------------
float Studio_CPS( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[] )
{
mstudioanimdesc_t *panim[4];
float weight[4];
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
float t = 0;
for (int i = 0; i < 4; i++)
{
if (weight[i] > 0 && panim[i]->numframes > 1)
{
t += (panim[i]->fps / (panim[i]->numframes - 1)) * weight[i];
}
}
return t;
}
//-----------------------------------------------------------------------------
// Purpose: returns length (in seconds) of a sequence (seconds/cycle)
//-----------------------------------------------------------------------------
float Studio_Duration( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] )
{
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
float cps = Studio_CPS( pStudioHdr, seqdesc, iSequence, poseParameter );
if( cps == 0 )
return 0.0f;
return 1.0f/cps;
}
//-----------------------------------------------------------------------------
// Purpose: calculate changes in position and angle relative to the start of an animations cycle
// Output: updated position and angle, relative to the origin
// returns false if animation is not a movement animation
//-----------------------------------------------------------------------------
bool Studio_AnimPosition( mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, QAngle &vecAngle )
{
float prevframe = 0;
vecPos.Init( );
vecAngle.Init( );
if (panim->nummovements == 0)
return false;
int iLoops = 0;
if (flCycle > 1.0)
{
iLoops = (int)flCycle;
}
else if (flCycle < 0.0)
{
iLoops = (int)flCycle - 1;
}
flCycle = flCycle - iLoops;
float flFrame = flCycle * (panim->numframes - 1);
for (int i = 0; i < panim->nummovements; i++)
{
mstudiomovement_t *pmove = panim->pMovement( i );
if (pmove->endframe >= flFrame)
{
float f = (flFrame - prevframe) / (pmove->endframe - prevframe);
float d = pmove->v0 * f + 0.5 * (pmove->v1 - pmove->v0) * f * f;
vecPos = vecPos + d * pmove->vector;
vecAngle.y = vecAngle.y * (1 - f) + pmove->angle * f;
if (iLoops != 0)
{
mstudiomovement_t *pmoveAnim = panim->pMovement( panim->nummovements - 1 );
vecPos = vecPos + iLoops * pmoveAnim->position;
vecAngle.y = vecAngle.y + iLoops * pmoveAnim->angle;
}
return true;
}
else
{
prevframe = pmove->endframe;
vecPos = pmove->position;
vecAngle.y = pmove->angle;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: calculate instantaneous velocity in ips at a given point
// in the animations cycle
// Output: velocity vector, relative to identity orientation
// returns false if animation is not a movement animation
//-----------------------------------------------------------------------------
bool Studio_AnimVelocity( mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity )
{
float prevframe = 0;
float flFrame = flCycle * (panim->numframes - 1);
flFrame = flFrame - (int)(flFrame / (panim->numframes - 1));
for (int i = 0; i < panim->nummovements; i++)
{
mstudiomovement_t *pmove = panim->pMovement( i );
if (pmove->endframe >= flFrame)
{
float f = (flFrame - prevframe) / (pmove->endframe - prevframe);
float vel = pmove->v0 * (1 - f) + pmove->v1 * f;
// scale from per block to per sec velocity
vel = vel * panim->fps / (pmove->endframe - prevframe);
vecVelocity = pmove->vector * vel;
return true;
}
else
{
prevframe = pmove->endframe;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose: calculate changes in position and angle between two points in an animation cycle
// Output: updated position and angle, relative to CycleFrom being at the origin
// returns false if animation is not a movement animation
//-----------------------------------------------------------------------------
bool Studio_AnimMovement( mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle )
{
if (panim->nummovements == 0)
return false;
Vector startPos;
QAngle startA;
Studio_AnimPosition( panim, flCycleFrom, startPos, startA );
Vector endPos;
QAngle endA;
Studio_AnimPosition( panim, flCycleTo, endPos, endA );
Vector tmp = endPos - startPos;
deltaAngle.y = endA.y - startA.y;
VectorYawRotate( tmp, -startA.y, deltaPos );
return true;
}
//-----------------------------------------------------------------------------
// Purpose: finds how much of an animation to play to move given linear distance
//-----------------------------------------------------------------------------
float Studio_FindAnimDistance( mstudioanimdesc_t *panim, float flDist )
{
float prevframe = 0;
if (flDist <= 0)
return 0.0;
for (int i = 0; i < panim->nummovements; i++)
{
mstudiomovement_t *pmove = panim->pMovement( i );
float flMove = (pmove->v0 + pmove->v1) * 0.5;
if (flMove >= flDist)
{
float root1, root2;
// d = V0 * t + 1/2 (V1-V0) * t^2
if (SolveQuadratic( 0.5 * (pmove->v1 - pmove->v0), pmove->v0, -flDist, root1, root2 ))
{
float cpf = 1.0 / (panim->numframes - 1); // cycles per frame
return (prevframe + root1 * (pmove->endframe - prevframe)) * cpf;
}
return 0.0;
}
else
{
flDist -= flMove;
prevframe = pmove->endframe;
}
}
return 1.0;
}
//-----------------------------------------------------------------------------
// Purpose: calculate changes in position and angle between two points in a sequences cycle
// Output: updated position and angle, relative to CycleFrom being at the origin
// returns false if sequence is not a movement sequence
//-----------------------------------------------------------------------------
bool Studio_SeqMovement( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos, QAngle &deltaAngles )
{
mstudioanimdesc_t *panim[4];
float weight[4];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
deltaPos.Init( );
deltaAngles.Init( );
bool found = false;
for (int i = 0; i < 4; i++)
{
if (weight[i])
{
Vector localPos;
QAngle localAngles;
localPos.Init();
localAngles.Init();
if (Studio_AnimMovement( panim[i], flCycleFrom, flCycleTo, localPos, localAngles ))
{
found = true;
deltaPos = deltaPos + localPos * weight[i];
// FIXME: this makes no sense
deltaAngles = deltaAngles + localAngles * weight[i];
}
else if (!(panim[i]->flags & STUDIO_DELTA) && panim[i]->nummovements == 0 && seqdesc.weight(0) > 0.0)
{
found = true;
}
}
}
return found;
}
//-----------------------------------------------------------------------------
// Purpose: calculate instantaneous velocity in ips at a given point in the sequence's cycle
// Output: velocity vector, relative to identity orientation
// returns false if sequence is not a movement sequence
//-----------------------------------------------------------------------------
bool Studio_SeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity )
{
mstudioanimdesc_t *panim[4];
float weight[4];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
vecVelocity.Init( );
bool found = false;
for (int i = 0; i < 4; i++)
{
if (weight[i])
{
Vector vecLocalVelocity;
if (Studio_AnimVelocity( panim[i], flCycle, vecLocalVelocity ))
{
vecVelocity = vecVelocity + vecLocalVelocity * weight[i];
found = true;
}
}
}
return found;
}
//-----------------------------------------------------------------------------
// Purpose: finds how much of an sequence to play to move given linear distance
//-----------------------------------------------------------------------------
float Studio_FindSeqDistance( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist )
{
mstudioanimdesc_t *panim[4];
float weight[4];
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
Studio_SeqAnims( pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight );
float flCycle = 0;
for (int i = 0; i < 4; i++)
{
if (weight[i])
{
float flLocalCycle = Studio_FindAnimDistance( panim[i], flDist );
flCycle = flCycle + flLocalCycle * weight[i];
}
}
return flCycle;
}
//-----------------------------------------------------------------------------
// Purpose: lookup attachment by name
//-----------------------------------------------------------------------------
int Studio_FindAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName )
{
if ( pStudioHdr && pStudioHdr->SequencesAvailable() )
{
// Extract the bone index from the name
for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++)
{
if (!V_stricmp(pAttachmentName,((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName( )))
{
return i;
}
}
}
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: lookup attachments by substring. Randomly return one of the matching attachments.
//-----------------------------------------------------------------------------
int Studio_FindRandomAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName )
{
if ( pStudioHdr )
{
// First move them all matching attachments into a list
CUtlVector<int> matchingAttachments;
// Extract the bone index from the name
for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++)
{
if ( strstr( ((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName(), pAttachmentName ) )
{
matchingAttachments.AddToTail(i);
}
}
// Then randomly return one of the attachments
if ( matchingAttachments.Size() > 0 )
return matchingAttachments[ RandomInt( 0, matchingAttachments.Size()-1 ) ];
}
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: lookup bone by name
//-----------------------------------------------------------------------------
int Studio_BoneIndexByName( const CStudioHdr *pStudioHdr, const char *pName )
{
if ( pStudioHdr )
{
// binary search for the bone matching pName
int start = 0, end = pStudioHdr->numbones()-1;
const byte *pBoneTable = pStudioHdr->GetBoneTableSortedByName();
mstudiobone_t *pbones = pStudioHdr->pBone( 0 );
while (start <= end)
{
int mid = (start + end) >> 1;
int cmp = Q_stricmp( pbones[pBoneTable[mid]].pszName(), pName );
if ( cmp < 0 )
{
start = mid + 1;
}
else if ( cmp > 0 )
{
end = mid - 1;
}
else
{
return pBoneTable[mid];
}
}
}
return -1;
}
const char *Studio_GetDefaultSurfaceProps( CStudioHdr *pstudiohdr )
{
return pstudiohdr->pszSurfaceProp();
}
float Studio_GetMass( CStudioHdr *pstudiohdr )
{
return pstudiohdr->mass();
}
//-----------------------------------------------------------------------------
// Purpose: return pointer to sequence key value buffer
//-----------------------------------------------------------------------------
const char *Studio_GetKeyValueText( const CStudioHdr *pStudioHdr, int iSequence )
{
if (pStudioHdr && pStudioHdr->SequencesAvailable())
{
if (iSequence >= 0 && iSequence < pStudioHdr->GetNumSeq())
{
return ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence ).KeyValueText();
}
}
return NULL;
}
bool Studio_PrefetchSequence( const CStudioHdr *pStudioHdr, int iSequence )
{
bool pendingload = false;
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc( iSequence );
int size0 = seqdesc.groupsize[ 0 ];
int size1 = seqdesc.groupsize[ 1 ];
for ( int i = 0; i < size0; ++i )
{
for ( int j = 0; j < size1; ++j )
{
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc( seqdesc.anim( i, j ) );
int iFrame = 0;
mstudioanim_t *panim = animdesc.pAnim( &iFrame );
if ( !panim )
{
pendingload = true;
}
}
}
// Everything for this sequence is resident?
return !pendingload;
}
//-----------------------------------------------------------------------------
// Purpose: Drive a flex controller from a component of a bone
//-----------------------------------------------------------------------------
void Studio_RunBoneFlexDrivers( float *pflFlexControllerWeights, const CStudioHdr *pStudioHdr, const Vector *pvPositions, const matrix3x4_t *pBoneToWorld, const matrix3x4_t &mRootToWorld )
{
bool bRootToWorldInvComputed = false;
matrix3x4_t mRootToWorldInv;
matrix3x4_t mParentInv;
matrix3x4_t mBoneLocal;
const int nBoneFlexDriverCount = pStudioHdr->BoneFlexDriverCount();
for ( int i = 0; i < nBoneFlexDriverCount; ++i )
{
const mstudioboneflexdriver_t *pBoneFlexDriver = pStudioHdr->BoneFlexDriver( i );
const mstudiobone_t *pStudioBone = pStudioHdr->pBone( pBoneFlexDriver->m_nBoneIndex );
const int nControllerCount = pBoneFlexDriver->m_nControlCount;
if ( pStudioBone->flags & BONE_USED_BY_BONE_MERGE )
{
// The local space version of the bone is not available if this is a bonemerged bone
// so do the slow computation of the local version of the bone from boneToWorld
if ( pStudioBone->parent < 0 )
{
if ( !bRootToWorldInvComputed )
{
MatrixInvert( mRootToWorld, mRootToWorldInv );
bRootToWorldInvComputed = true;
}
MatrixMultiply( mRootToWorldInv, pBoneToWorld[ pBoneFlexDriver->m_nBoneIndex ], mBoneLocal );
}
else
{
MatrixInvert( pBoneToWorld[ pStudioBone->parent ], mParentInv );
MatrixMultiply( mParentInv, pBoneToWorld[ pBoneFlexDriver->m_nBoneIndex ], mBoneLocal );
}
for ( int j = 0; j < nControllerCount; ++j )
{
const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl( j );
const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller( static_cast< LocalFlexController_t >( pController->m_nFlexControllerIndex ) );
if ( pFlexController->localToGlobal < 0 )
continue;
Assert( pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers() );
Assert( pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2 );
pflFlexControllerWeights[pFlexController->localToGlobal] =
RemapValClamped( mBoneLocal[pController->m_nBoneComponent][3], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f );
}
}
else
{
// Use the local space version of the bone directly for non-bonemerged bones
const Vector &position = pvPositions[ pBoneFlexDriver->m_nBoneIndex ];
for ( int j = 0; j < nControllerCount; ++j )
{
const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl( j );
const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller( static_cast< LocalFlexController_t >( pController->m_nFlexControllerIndex ) );
if ( pFlexController->localToGlobal < 0 )
continue;
Assert( pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers() );
Assert( pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2 );
pflFlexControllerWeights[pFlexController->localToGlobal] =
RemapValClamped( position[pController->m_nBoneComponent], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f );
}
}
}
}