You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
915 lines
18 KiB
915 lines
18 KiB
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $Workfile: $
|
|
// $Date: $
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#include "cmdlib.h"
|
|
#include "mathlib/mathlib.h"
|
|
#include "polylib.h"
|
|
#include "worldsize.h"
|
|
#include "threads.h"
|
|
#include "tier0/dbg.h"
|
|
|
|
// doesn't seem to need to be here? -- in threads.h
|
|
//extern int numthreads;
|
|
|
|
// counters are only bumped when running single threaded,
|
|
// because they are an awefull coherence problem
|
|
int c_active_windings;
|
|
int c_peak_windings;
|
|
int c_winding_allocs;
|
|
int c_winding_points;
|
|
|
|
void pw(winding_t *w)
|
|
{
|
|
int i;
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
printf ("(%5.1f, %5.1f, %5.1f)\n",w->p[i][0], w->p[i][1],w->p[i][2]);
|
|
}
|
|
|
|
winding_t *winding_pool[MAX_POINTS_ON_WINDING+4];
|
|
|
|
/*
|
|
=============
|
|
AllocWinding
|
|
=============
|
|
*/
|
|
winding_t *AllocWinding (int points)
|
|
{
|
|
winding_t *w;
|
|
|
|
if (numthreads == 1)
|
|
{
|
|
c_winding_allocs++;
|
|
c_winding_points += points;
|
|
c_active_windings++;
|
|
if (c_active_windings > c_peak_windings)
|
|
c_peak_windings = c_active_windings;
|
|
}
|
|
ThreadLock();
|
|
if (winding_pool[points])
|
|
{
|
|
w = winding_pool[points];
|
|
winding_pool[points] = w->next;
|
|
}
|
|
else
|
|
{
|
|
w = (winding_t *)malloc(sizeof(*w));
|
|
w->p = (Vector *)calloc( points, sizeof(Vector) );
|
|
}
|
|
ThreadUnlock();
|
|
w->numpoints = 0; // None are occupied yet even though allocated.
|
|
w->maxpoints = points;
|
|
w->next = NULL;
|
|
return w;
|
|
}
|
|
|
|
void FreeWinding (winding_t *w)
|
|
{
|
|
if (w->numpoints == 0xdeaddead)
|
|
Error ("FreeWinding: freed a freed winding");
|
|
|
|
ThreadLock();
|
|
w->numpoints = 0xdeaddead; // flag as freed
|
|
w->next = winding_pool[w->maxpoints];
|
|
winding_pool[w->maxpoints] = w;
|
|
ThreadUnlock();
|
|
}
|
|
|
|
/*
|
|
============
|
|
RemoveColinearPoints
|
|
============
|
|
*/
|
|
int c_removed;
|
|
|
|
void RemoveColinearPoints (winding_t *w)
|
|
{
|
|
int i, j, k;
|
|
Vector v1, v2;
|
|
int nump;
|
|
Vector p[MAX_POINTS_ON_WINDING];
|
|
|
|
nump = 0;
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
j = (i+1)%w->numpoints;
|
|
k = (i+w->numpoints-1)%w->numpoints;
|
|
VectorSubtract (w->p[j], w->p[i], v1);
|
|
VectorSubtract (w->p[i], w->p[k], v2);
|
|
VectorNormalize(v1);
|
|
VectorNormalize(v2);
|
|
if (DotProduct(v1, v2) < 0.999)
|
|
{
|
|
VectorCopy (w->p[i], p[nump]);
|
|
nump++;
|
|
}
|
|
}
|
|
|
|
if (nump == w->numpoints)
|
|
return;
|
|
|
|
if (numthreads == 1)
|
|
c_removed += w->numpoints - nump;
|
|
w->numpoints = nump;
|
|
memcpy (w->p, p, nump*sizeof(p[0]));
|
|
}
|
|
|
|
/*
|
|
============
|
|
WindingPlane
|
|
============
|
|
*/
|
|
void WindingPlane (winding_t *w, Vector &normal, vec_t *dist)
|
|
{
|
|
Vector v1, v2;
|
|
|
|
VectorSubtract (w->p[1], w->p[0], v1);
|
|
|
|
// HACKHACK: Avoid potentially collinear verts
|
|
if ( w->numpoints > 3 )
|
|
{
|
|
VectorSubtract (w->p[3], w->p[0], v2);
|
|
}
|
|
else
|
|
{
|
|
VectorSubtract (w->p[2], w->p[0], v2);
|
|
}
|
|
CrossProduct (v2, v1, normal);
|
|
VectorNormalize (normal);
|
|
*dist = DotProduct (w->p[0], normal);
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
WindingArea
|
|
=============
|
|
*/
|
|
vec_t WindingArea(winding_t *w)
|
|
{
|
|
int i;
|
|
Vector d1, d2, cross;
|
|
vec_t total;
|
|
|
|
total = 0;
|
|
for (i=2 ; i<w->numpoints ; i++)
|
|
{
|
|
VectorSubtract (w->p[i-1], w->p[0], d1);
|
|
VectorSubtract (w->p[i], w->p[0], d2);
|
|
CrossProduct (d1, d2, cross);
|
|
total += VectorLength ( cross );
|
|
}
|
|
return total * 0.5;
|
|
}
|
|
|
|
void WindingBounds (winding_t *w, Vector &mins, Vector &maxs)
|
|
{
|
|
vec_t v;
|
|
int i,j;
|
|
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
v = w->p[i][j];
|
|
if (v < mins[j])
|
|
mins[j] = v;
|
|
if (v > maxs[j])
|
|
maxs[j] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
WindingCenter
|
|
=============
|
|
*/
|
|
void WindingCenter (winding_t *w, Vector ¢er)
|
|
{
|
|
int i;
|
|
float scale;
|
|
|
|
VectorCopy (vec3_origin, center);
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
VectorAdd (w->p[i], center, center);
|
|
|
|
scale = 1.0/w->numpoints;
|
|
VectorScale (center, scale, center);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=============
|
|
WindingCenter
|
|
=============
|
|
*/
|
|
vec_t WindingAreaAndBalancePoint( winding_t *w, Vector ¢er )
|
|
{
|
|
int i;
|
|
Vector d1, d2, cross;
|
|
vec_t total;
|
|
|
|
VectorCopy (vec3_origin, center);
|
|
if ( !w )
|
|
return 0.0f;
|
|
|
|
total = 0;
|
|
for (i=2 ; i<w->numpoints ; i++)
|
|
{
|
|
VectorSubtract (w->p[i-1], w->p[0], d1);
|
|
VectorSubtract (w->p[i], w->p[0], d2);
|
|
CrossProduct (d1, d2, cross);
|
|
float area = VectorLength ( cross );
|
|
total += area;
|
|
|
|
// center of triangle, weighed by area
|
|
VectorMA( center, area / 3.0, w->p[i-1], center );
|
|
VectorMA( center, area / 3.0, w->p[i], center );
|
|
VectorMA( center, area / 3.0, w->p[0], center );
|
|
}
|
|
if (total)
|
|
{
|
|
VectorScale( center, 1.0 / total, center );
|
|
}
|
|
return total * 0.5;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
BaseWindingForPlane
|
|
=================
|
|
*/
|
|
winding_t *BaseWindingForPlane (const Vector &normal, vec_t dist)
|
|
{
|
|
int i, x;
|
|
vec_t max, v;
|
|
Vector org, vright, vup;
|
|
winding_t *w;
|
|
|
|
// find the major axis
|
|
|
|
max = -1;
|
|
x = -1;
|
|
for (i=0 ; i<3; i++)
|
|
{
|
|
v = fabs(normal[i]);
|
|
if (v > max)
|
|
{
|
|
x = i;
|
|
max = v;
|
|
}
|
|
}
|
|
if (x==-1)
|
|
Error ("BaseWindingForPlane: no axis found");
|
|
|
|
VectorCopy (vec3_origin, vup);
|
|
switch (x)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
vup[2] = 1;
|
|
break;
|
|
case 2:
|
|
vup[0] = 1;
|
|
break;
|
|
}
|
|
|
|
v = DotProduct (vup, normal);
|
|
VectorMA (vup, -v, normal, vup);
|
|
VectorNormalize (vup);
|
|
|
|
VectorScale (normal, dist, org);
|
|
|
|
CrossProduct (vup, normal, vright);
|
|
|
|
VectorScale (vup, (MAX_COORD_INTEGER*4), vup);
|
|
VectorScale (vright, (MAX_COORD_INTEGER*4), vright);
|
|
|
|
// project a really big axis aligned box onto the plane
|
|
w = AllocWinding (4);
|
|
|
|
VectorSubtract (org, vright, w->p[0]);
|
|
VectorAdd (w->p[0], vup, w->p[0]);
|
|
|
|
VectorAdd (org, vright, w->p[1]);
|
|
VectorAdd (w->p[1], vup, w->p[1]);
|
|
|
|
VectorAdd (org, vright, w->p[2]);
|
|
VectorSubtract (w->p[2], vup, w->p[2]);
|
|
|
|
VectorSubtract (org, vright, w->p[3]);
|
|
VectorSubtract (w->p[3], vup, w->p[3]);
|
|
|
|
w->numpoints = 4;
|
|
|
|
return w;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
CopyWinding
|
|
==================
|
|
*/
|
|
winding_t *CopyWinding (winding_t *w)
|
|
{
|
|
int size;
|
|
winding_t *c;
|
|
|
|
c = AllocWinding (w->numpoints);
|
|
c->numpoints = w->numpoints;
|
|
size = w->numpoints*sizeof(w->p[0]);
|
|
memcpy (c->p, w->p, size);
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
ReverseWinding
|
|
==================
|
|
*/
|
|
winding_t *ReverseWinding (winding_t *w)
|
|
{
|
|
int i;
|
|
winding_t *c;
|
|
|
|
c = AllocWinding (w->numpoints);
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
VectorCopy (w->p[w->numpoints-1-i], c->p[i]);
|
|
}
|
|
c->numpoints = w->numpoints;
|
|
return c;
|
|
}
|
|
|
|
|
|
// BUGBUG: Hunt this down - it's causing CSG errors
|
|
#pragma optimize("g", off)
|
|
/*
|
|
=============
|
|
ClipWindingEpsilon
|
|
=============
|
|
*/
|
|
|
|
void ClipWindingEpsilon (winding_t *in, const Vector &normal, vec_t dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back)
|
|
{
|
|
vec_t dists[MAX_POINTS_ON_WINDING+4];
|
|
int sides[MAX_POINTS_ON_WINDING+4];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
Vector mid = vec3_origin;
|
|
winding_t *f, *b;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
dot = DotProduct (in->p[i], normal);
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if (dot > epsilon)
|
|
sides[i] = SIDE_FRONT;
|
|
else if (dot < -epsilon)
|
|
sides[i] = SIDE_BACK;
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
*front = *back = NULL;
|
|
|
|
if (!counts[0])
|
|
{
|
|
*back = CopyWinding (in);
|
|
return;
|
|
}
|
|
if (!counts[1])
|
|
{
|
|
*front = CopyWinding (in);
|
|
return;
|
|
}
|
|
|
|
maxpts = in->numpoints+4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
*front = f = AllocWinding (maxpts);
|
|
*back = b = AllocWinding (maxpts);
|
|
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
Vector& p1 = in->p[i];
|
|
|
|
if (sides[i] == SIDE_ON)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (p1, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if (sides[i] == SIDE_FRONT)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
}
|
|
if (sides[i] == SIDE_BACK)
|
|
{
|
|
VectorCopy (p1, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
// generate a split point
|
|
Vector& p2 = in->p[(i+1)%in->numpoints];
|
|
|
|
dot = dists[i] / (dists[i]-dists[i+1]);
|
|
for (j=0 ; j<3 ; j++)
|
|
{ // avoid round off error when possible
|
|
if (normal[j] == 1)
|
|
mid[j] = dist;
|
|
else if (normal[j] == -1)
|
|
mid[j] = -dist;
|
|
else
|
|
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
|
}
|
|
|
|
VectorCopy (mid, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (mid, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (f->numpoints > maxpts || b->numpoints > maxpts)
|
|
Error ("ClipWinding: points exceeded estimate");
|
|
if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
|
|
Error ("ClipWinding: MAX_POINTS_ON_WINDING");
|
|
}
|
|
#pragma optimize("", on)
|
|
|
|
|
|
// NOTE: This is identical to ClipWindingEpsilon, but it does a pre/post translation to improve precision
|
|
void ClipWindingEpsilon_Offset( winding_t *in, const Vector &normal, vec_t dist, vec_t epsilon, winding_t **front, winding_t **back, const Vector &offset )
|
|
{
|
|
TranslateWinding( in, offset );
|
|
ClipWindingEpsilon( in, normal, dist+DotProduct(offset,normal), epsilon, front, back );
|
|
TranslateWinding( in, -offset );
|
|
if ( front && *front )
|
|
{
|
|
TranslateWinding( *front, -offset );
|
|
}
|
|
if ( back && *back )
|
|
{
|
|
TranslateWinding( *back, -offset );
|
|
}
|
|
}
|
|
|
|
void ClassifyWindingEpsilon_Offset( winding_t *in, const Vector &normal, vec_t dist, vec_t epsilon, winding_t **front, winding_t **back, winding_t **on, const Vector &offset)
|
|
{
|
|
TranslateWinding( in, offset );
|
|
ClassifyWindingEpsilon( in, normal, dist+DotProduct(offset,normal), epsilon, front, back, on );
|
|
TranslateWinding( in, -offset );
|
|
if ( front && *front )
|
|
{
|
|
TranslateWinding( *front, -offset );
|
|
}
|
|
if ( back && *back )
|
|
{
|
|
TranslateWinding( *back, -offset );
|
|
}
|
|
if ( on && *on )
|
|
{
|
|
TranslateWinding( *on, -offset );
|
|
}
|
|
}
|
|
|
|
/*
|
|
=============
|
|
ClassifyWindingEpsilon
|
|
=============
|
|
*/
|
|
// This version returns the winding as "on" if all verts lie in the plane
|
|
void ClassifyWindingEpsilon( winding_t *in, const Vector &normal, vec_t dist,
|
|
vec_t epsilon, winding_t **front, winding_t **back, winding_t **on)
|
|
{
|
|
vec_t dists[MAX_POINTS_ON_WINDING+4];
|
|
int sides[MAX_POINTS_ON_WINDING+4];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
Vector mid = vec3_origin;
|
|
winding_t *f, *b;
|
|
int maxpts;
|
|
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
|
|
// determine sides for each point
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
dot = DotProduct (in->p[i], normal);
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if (dot > epsilon)
|
|
sides[i] = SIDE_FRONT;
|
|
else if (dot < -epsilon)
|
|
sides[i] = SIDE_BACK;
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
*front = *back = *on = NULL;
|
|
|
|
if ( !counts[0] && !counts[1] )
|
|
{
|
|
*on = CopyWinding(in);
|
|
return;
|
|
}
|
|
|
|
if (!counts[0])
|
|
{
|
|
*back = CopyWinding(in);
|
|
return;
|
|
}
|
|
if (!counts[1])
|
|
{
|
|
*front = CopyWinding(in);
|
|
return;
|
|
}
|
|
|
|
maxpts = in->numpoints+4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
*front = f = AllocWinding (maxpts);
|
|
*back = b = AllocWinding (maxpts);
|
|
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
Vector& p1 = in->p[i];
|
|
|
|
if (sides[i] == SIDE_ON)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (p1, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if (sides[i] == SIDE_FRONT)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
}
|
|
if (sides[i] == SIDE_BACK)
|
|
{
|
|
VectorCopy (p1, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
// generate a split point
|
|
Vector& p2 = in->p[(i+1)%in->numpoints];
|
|
|
|
dot = dists[i] / (dists[i]-dists[i+1]);
|
|
for (j=0 ; j<3 ; j++)
|
|
{ // avoid round off error when possible
|
|
if (normal[j] == 1)
|
|
mid[j] = dist;
|
|
else if (normal[j] == -1)
|
|
mid[j] = -dist;
|
|
else
|
|
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
|
}
|
|
|
|
VectorCopy (mid, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
VectorCopy (mid, b->p[b->numpoints]);
|
|
b->numpoints++;
|
|
}
|
|
|
|
if (f->numpoints > maxpts || b->numpoints > maxpts)
|
|
Error ("ClipWinding: points exceeded estimate");
|
|
if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
|
|
Error ("ClipWinding: MAX_POINTS_ON_WINDING");
|
|
}
|
|
|
|
/*
|
|
=============
|
|
ChopWindingInPlace
|
|
=============
|
|
*/
|
|
void ChopWindingInPlace (winding_t **inout, const Vector &normal, vec_t dist, vec_t epsilon)
|
|
{
|
|
winding_t *in;
|
|
vec_t dists[MAX_POINTS_ON_WINDING+4];
|
|
int sides[MAX_POINTS_ON_WINDING+4];
|
|
int counts[3];
|
|
vec_t dot;
|
|
int i, j;
|
|
Vector mid = vec3_origin;
|
|
winding_t *f;
|
|
int maxpts;
|
|
|
|
in = *inout;
|
|
counts[0] = counts[1] = counts[2] = 0;
|
|
// determine sides for each point
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
dot = DotProduct (in->p[i], normal);
|
|
dot -= dist;
|
|
dists[i] = dot;
|
|
if (dot > epsilon)
|
|
{
|
|
sides[i] = SIDE_FRONT;
|
|
}
|
|
else if (dot < -epsilon)
|
|
{
|
|
sides[i] = SIDE_BACK;
|
|
}
|
|
else
|
|
{
|
|
sides[i] = SIDE_ON;
|
|
}
|
|
counts[sides[i]]++;
|
|
}
|
|
sides[i] = sides[0];
|
|
dists[i] = dists[0];
|
|
|
|
if (!counts[0])
|
|
{
|
|
FreeWinding (in);
|
|
*inout = NULL;
|
|
return;
|
|
}
|
|
if (!counts[1])
|
|
return; // inout stays the same
|
|
|
|
maxpts = in->numpoints+4; // cant use counts[0]+2 because
|
|
// of fp grouping errors
|
|
|
|
f = AllocWinding (maxpts);
|
|
|
|
for (i=0 ; i<in->numpoints ; i++)
|
|
{
|
|
Vector& p1 = in->p[i];
|
|
|
|
if (sides[i] == SIDE_ON)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
continue;
|
|
}
|
|
|
|
if (sides[i] == SIDE_FRONT)
|
|
{
|
|
VectorCopy (p1, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
}
|
|
|
|
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
|
continue;
|
|
|
|
// generate a split point
|
|
Vector& p2 = in->p[(i+1)%in->numpoints];
|
|
|
|
dot = dists[i] / (dists[i]-dists[i+1]);
|
|
for (j=0 ; j<3 ; j++)
|
|
{ // avoid round off error when possible
|
|
if (normal[j] == 1)
|
|
mid[j] = dist;
|
|
else if (normal[j] == -1)
|
|
mid[j] = -dist;
|
|
else
|
|
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
|
}
|
|
|
|
VectorCopy (mid, f->p[f->numpoints]);
|
|
f->numpoints++;
|
|
}
|
|
|
|
if (f->numpoints > maxpts)
|
|
Error ("ClipWinding: points exceeded estimate");
|
|
if (f->numpoints > MAX_POINTS_ON_WINDING)
|
|
Error ("ClipWinding: MAX_POINTS_ON_WINDING");
|
|
|
|
FreeWinding (in);
|
|
*inout = f;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
ChopWinding
|
|
|
|
Returns the fragment of in that is on the front side
|
|
of the cliping plane. The original is freed.
|
|
=================
|
|
*/
|
|
winding_t *ChopWinding (winding_t *in, const Vector &normal, vec_t dist)
|
|
{
|
|
winding_t *f, *b;
|
|
|
|
ClipWindingEpsilon (in, normal, dist, ON_EPSILON, &f, &b);
|
|
FreeWinding (in);
|
|
if (b)
|
|
FreeWinding (b);
|
|
return f;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
CheckWinding
|
|
|
|
=================
|
|
*/
|
|
void CheckWinding (winding_t *w)
|
|
{
|
|
int i, j;
|
|
vec_t d, edgedist;
|
|
Vector dir, edgenormal, facenormal;
|
|
vec_t area;
|
|
vec_t facedist;
|
|
|
|
if (w->numpoints < 3)
|
|
Error ("CheckWinding: %i points",w->numpoints);
|
|
|
|
area = WindingArea(w);
|
|
if (area < 1)
|
|
Error ("CheckWinding: %f area", area);
|
|
|
|
WindingPlane (w, facenormal, &facedist);
|
|
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
Vector& p1 = w->p[i];
|
|
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
if (p1[j] > MAX_COORD_INTEGER || p1[j] < MIN_COORD_INTEGER)
|
|
Error ("CheckFace: out of range: %f",p1[j]);
|
|
}
|
|
|
|
j = i+1 == w->numpoints ? 0 : i+1;
|
|
|
|
// check the point is on the face plane
|
|
d = DotProduct (p1, facenormal) - facedist;
|
|
if (d < -ON_EPSILON || d > ON_EPSILON)
|
|
Error ("CheckWinding: point off plane");
|
|
|
|
// check the edge isnt degenerate
|
|
Vector& p2 = w->p[j];
|
|
VectorSubtract (p2, p1, dir);
|
|
|
|
if (VectorLength (dir) < ON_EPSILON)
|
|
Error ("CheckWinding: degenerate edge");
|
|
|
|
CrossProduct (facenormal, dir, edgenormal);
|
|
VectorNormalize (edgenormal);
|
|
edgedist = DotProduct (p1, edgenormal);
|
|
edgedist += ON_EPSILON;
|
|
|
|
// all other points must be on front side
|
|
for (j=0 ; j<w->numpoints ; j++)
|
|
{
|
|
if (j == i)
|
|
continue;
|
|
d = DotProduct (w->p[j], edgenormal);
|
|
if (d > edgedist)
|
|
Error ("CheckWinding: non-convex");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
============
|
|
WindingOnPlaneSide
|
|
============
|
|
*/
|
|
int WindingOnPlaneSide (winding_t *w, const Vector &normal, vec_t dist)
|
|
{
|
|
qboolean front, back;
|
|
int i;
|
|
vec_t d;
|
|
|
|
front = false;
|
|
back = false;
|
|
for (i=0 ; i<w->numpoints ; i++)
|
|
{
|
|
d = DotProduct (w->p[i], normal) - dist;
|
|
if (d < -ON_EPSILON)
|
|
{
|
|
if (front)
|
|
return SIDE_CROSS;
|
|
back = true;
|
|
continue;
|
|
}
|
|
if (d > ON_EPSILON)
|
|
{
|
|
if (back)
|
|
return SIDE_CROSS;
|
|
front = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (back)
|
|
return SIDE_BACK;
|
|
if (front)
|
|
return SIDE_FRONT;
|
|
return SIDE_ON;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: 2d point inside of winding test (assumes the point resides in the
|
|
// winding plane)
|
|
//-----------------------------------------------------------------------------
|
|
bool PointInWinding( const Vector &pt, winding_t *pWinding )
|
|
{
|
|
if( !pWinding )
|
|
return false;
|
|
|
|
#if 0
|
|
//
|
|
// NOTE: this will be a quicker way to calculate this, however I don't
|
|
// know the trick off hand (post dot product tests??)
|
|
// TODO: look in graphics gems!!!! (cab)
|
|
//
|
|
|
|
Vector edge1, edge2;
|
|
for( int ndxPt = 0; ndxPt < pWinding->numpoints; ndxPt++ )
|
|
{
|
|
edge1 = pWinding->p[ndxPt] - pt;
|
|
edge2 = pWinding->p[(ndxPt+1)%pWinding->numpoints] - pt;
|
|
|
|
VectorNormalize( edge1 );
|
|
VectorNormalize( edge2 );
|
|
|
|
if( edge2.Dot( edge1 ) < 0.0f )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
|
|
#else
|
|
Vector edge, toPt, cross, testCross;
|
|
|
|
//
|
|
// get the first normal to test
|
|
//
|
|
toPt = pt - pWinding->p[0];
|
|
edge = pWinding->p[1] - pWinding->p[0];
|
|
testCross = edge.Cross( toPt );
|
|
VectorNormalize( testCross );
|
|
|
|
for( int ndxPt = 1; ndxPt < pWinding->numpoints; ndxPt++ )
|
|
{
|
|
toPt = pt - pWinding->p[ndxPt];
|
|
edge = pWinding->p[(ndxPt+1)%pWinding->numpoints] - pWinding->p[ndxPt];
|
|
cross = edge.Cross( toPt );
|
|
VectorNormalize( cross );
|
|
|
|
if( cross.Dot( testCross ) < 0.0f )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
void TranslateWinding( winding_t *pWinding, const Vector &offset )
|
|
{
|
|
for ( int i = 0; i < pWinding->numpoints; i++ )
|
|
{
|
|
pWinding->p[i] += offset;
|
|
}
|
|
}
|