Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

501 lines
14 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Workfile: $
// $Date: $
// $NoKeywords: $
//=============================================================================//
#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string.h>
typedef unsigned char byte;
#pragma warning(disable:4244)
#include "tier0/dbg.h"
#include "mathlib/vector.h"
#include "keyframe.h"
#include "mathlib/mathlib.h"
#include "rope_shared.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
//
// Implementation of keyframe.h interface
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Key Frames
//-----------------------------------------------------------------------------
#define HIGHEST_KEYFRAME 3
#define LOWEST_KEYFRAME -3
#define TOTAL_KEYFRAMES (HIGHEST_KEYFRAME - LOWEST_KEYFRAME + 1)
//
struct KeyFrame_t
{
Vector vPos;
Quaternion qRot;
};
KeyFrame_t g_KeyFrames[ TOTAL_KEYFRAMES ];
KeyFrame_t *g_KeyFramePtr = &g_KeyFrames[ -LOWEST_KEYFRAME ]; // points to the middle keyframe, keyframe 0
bool Motion_SetKeyAngles( int keyNum, Quaternion &quatAngles )
{
if ( keyNum > HIGHEST_KEYFRAME || keyNum < LOWEST_KEYFRAME )
return false;
g_KeyFramePtr[keyNum].qRot = quatAngles;
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Time Modifier function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
typedef float (*TimeModifierFunc_t)(float);
typedef struct
{
const char *szName;
TimeModifierFunc_t pFunc;
} TimeModifier_t;
float TimeModifierFunc_Linear( float time )
{
return time;
}
float TimeModifierFunc_Cosine( float time )
{
return ( cos((time+1) * M_PI) * 0.5 ) + 0.5;
}
float TimeModifierFunc_TimeSquared( float time )
{
return (time * time);
}
TimeModifier_t g_TimeModifiers[] =
{
{ "Linear", TimeModifierFunc_Linear },
{ "Accel/Deaccel (cosine)", TimeModifierFunc_Cosine },
{ "Accel (time*time)", TimeModifierFunc_TimeSquared },
};
int Motion_GetNumberOfTimeModifiers( void )
{
return ARRAYSIZE(g_TimeModifiers);
}
bool Motion_GetTimeModifierDetails( int timeInterpNum, const char **outName )
{
if ( timeInterpNum < 0 || timeInterpNum >= Motion_GetNumberOfTimeModifiers() )
{
return false;
}
if ( !g_TimeModifiers[0].szName || !g_TimeModifiers[0].pFunc )
{
return false;
}
if ( outName )
*outName = g_TimeModifiers[0].szName;
return true;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : time -
// timeModifierFuncNum -
// *outNewTime -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool Motion_CalculateModifiedTime( float time, int timeModifierFuncNum, float *outNewTime )
{
*outNewTime = g_TimeModifiers[timeModifierFuncNum].pFunc( time );
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Position interpolator function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// ------------------------------------------------------------------------------------ //
// Linear position interpolator.
// ------------------------------------------------------------------------------------ //
class CPositionInterpolator_Linear : public IPositionInterpolator
{
public:
virtual void Release();
virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq );
virtual void SetKeyPosition( int keyNum, Vector const &vPos );
virtual void InterpolatePosition( float time, Vector &vOut );
virtual bool ProcessKey( char const *pName, char const *pValue ) { return false; }
};
CPositionInterpolator_Linear g_LinearInterpolator;
IPositionInterpolator* GetLinearInterpolator()
{
return &g_LinearInterpolator;
}
void CPositionInterpolator_Linear::Release()
{
}
void CPositionInterpolator_Linear::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq )
{
*outName = "Linear";
*outMinKeyReq = 0;
*outMaxKeyReq = 1;
}
void CPositionInterpolator_Linear::SetKeyPosition( int keyNum, Vector const &vPos )
{
Assert ( keyNum <= HIGHEST_KEYFRAME && keyNum >= LOWEST_KEYFRAME );
VectorCopy( vPos, g_KeyFramePtr[keyNum].vPos );
}
void CPositionInterpolator_Linear::InterpolatePosition( float time, Vector &vOut )
{
VectorLerp( g_KeyFramePtr[0].vPos, g_KeyFramePtr[1].vPos, time, vOut );
}
// ------------------------------------------------------------------------------------ //
// Catmull-Rom position interpolator.
// ------------------------------------------------------------------------------------ //
class CPositionInterpolator_CatmullRom : public IPositionInterpolator
{
public:
virtual void Release();
virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq );
virtual void SetKeyPosition( int keyNum, Vector const &vPos );
virtual void InterpolatePosition( float time, Vector &vOut );
virtual bool ProcessKey( char const *pName, char const *pValue ) { return false; }
};
CPositionInterpolator_CatmullRom g_CatmullRomInterpolator;
IPositionInterpolator* GetCatmullRomInterpolator()
{
return &g_CatmullRomInterpolator;
}
void CPositionInterpolator_CatmullRom::Release()
{
}
void CPositionInterpolator_CatmullRom::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq )
{
*outName = "Catmull-Rom Spline";
*outMinKeyReq = -1;
*outMaxKeyReq = 2;
}
void CPositionInterpolator_CatmullRom::SetKeyPosition( int keyNum, Vector const &vPos )
{
Assert ( keyNum <= HIGHEST_KEYFRAME && keyNum >= LOWEST_KEYFRAME );
VectorCopy( vPos, g_KeyFramePtr[keyNum].vPos );
}
void CPositionInterpolator_CatmullRom::InterpolatePosition( float time, Vector &vOut )
{
Catmull_Rom_Spline(
g_KeyFramePtr[-1].vPos,
g_KeyFramePtr[0].vPos,
g_KeyFramePtr[1].vPos,
g_KeyFramePtr[2].vPos,
time,
vOut );
}
// ------------------------------------------------------------------------------------ //
// Rope interpolator.
// ------------------------------------------------------------------------------------ //
#include "rope_physics.h"
class CRopeDelegate : public CSimplePhysics::IHelper
{
public:
virtual void GetNodeForces( CSimplePhysics::CNode *pNodes, int iNode, Vector *pAccel );
virtual void ApplyConstraints( CSimplePhysics::CNode *pNodes, int nNodes );
public:
Vector m_CurEndPoints[2];
};
void CRopeDelegate::GetNodeForces( CSimplePhysics::CNode *pNodes, int iNode, Vector *pAccel )
{
// Gravity.
pAccel->Init( 0, 0, -1500 );
}
void CRopeDelegate::ApplyConstraints( CSimplePhysics::CNode *pNodes, int nNodes )
{
if( nNodes >= 2 )
{
pNodes[0].m_vPos = m_CurEndPoints[0];
pNodes[nNodes-1].m_vPos = m_CurEndPoints[1];
}
}
class CPositionInterpolator_Rope : public IPositionInterpolator
{
public:
CPositionInterpolator_Rope();
virtual void Release();
virtual void GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq );
virtual void SetKeyPosition( int keyNum, Vector const &vPos );
virtual void InterpolatePosition( float time, Vector &vOut );
virtual bool ProcessKey( char const *pName, char const *pValue );
private:
CRopePhysics<10> m_RopePhysics;
CRopeDelegate m_Delegate;
float m_flSlack; // Extra length of rope.
bool m_bChange;
int m_nSegments;
};
IPositionInterpolator* GetRopeInterpolator()
{
return new CPositionInterpolator_Rope;
}
CPositionInterpolator_Rope::CPositionInterpolator_Rope()
{
m_flSlack = 0;
m_bChange = false;
m_nSegments = 5;
for( int i=0; i < 2; i++ )
m_Delegate.m_CurEndPoints[i] = Vector( 1e24, 1e24, 1e24 );
}
void CPositionInterpolator_Rope::Release()
{
delete this;
}
void CPositionInterpolator_Rope::GetDetails( char **outName, int *outMinKeyReq, int *outMaxKeyReq )
{
*outName = "Rope";
*outMinKeyReq = 0;
*outMinKeyReq = 1;
}
void CPositionInterpolator_Rope::SetKeyPosition( int keyNum, Vector const &vPos )
{
if( keyNum == 0 || keyNum == 1 )
{
if( vPos != m_Delegate.m_CurEndPoints[keyNum] )
m_bChange = true;
m_Delegate.m_CurEndPoints[keyNum] = vPos;
}
}
void CPositionInterpolator_Rope::InterpolatePosition( float time, Vector &vOut )
{
// Check if we need to resimulate..
if( m_bChange )
{
m_RopePhysics.SetNumNodes( m_nSegments );
// Init all the nodes.
for( int i=0; i < m_RopePhysics.NumNodes(); i++ )
m_RopePhysics.GetNode(i)->m_vPos = m_RopePhysics.GetNode(i)->m_vPrevPos = m_Delegate.m_CurEndPoints[0];
float flDist = (m_Delegate.m_CurEndPoints[0] - m_Delegate.m_CurEndPoints[1]).Length();
flDist += m_flSlack;
m_RopePhysics.Restart();
m_RopePhysics.SetupSimulation( flDist / (m_RopePhysics.NumNodes() - 1), &m_Delegate );
// Run the simulation for a while to let the rope settle down..
m_RopePhysics.Simulate( 5 );
m_bChange = false;
}
// Ok, now we have all the nodes setup..
float flNode = time * (m_RopePhysics.NumNodes()-1);
int iNode = (int)( flNode );
VectorLerp(
m_RopePhysics.GetNode(iNode)->m_vPredicted,
m_RopePhysics.GetNode(iNode+1)->m_vPredicted,
flNode - iNode,
vOut );
}
bool CPositionInterpolator_Rope::ProcessKey( char const *pName, char const *pValue )
{
if( stricmp( pName, "Slack" ) == 0 )
{
m_flSlack = atof( pValue ) + ROPESLACK_FUDGEFACTOR;
m_bChange = true;
return true;
}
else if( stricmp( pName, "Type" ) == 0 )
{
int iType = atoi( pValue );
if( iType == 0 )
m_nSegments = ROPE_MAX_SEGMENTS;
else if( iType == 1 )
m_nSegments = ROPE_TYPE1_NUMSEGMENTS;
else
m_nSegments = ROPE_TYPE2_NUMSEGMENTS;
m_bChange = true;
return true;
}
return false;
}
// ------------------------------------------------------------------------------------ //
// The global table of all the position interpolators.
// ------------------------------------------------------------------------------------ //
typedef IPositionInterpolator* (*PositionInterpolatorCreateFn)();
PositionInterpolatorCreateFn g_PositionInterpolatorCreateFns[] =
{
GetLinearInterpolator,
GetCatmullRomInterpolator,
GetRopeInterpolator
};
int Motion_GetNumberOfPositionInterpolators( void )
{
return ARRAYSIZE(g_PositionInterpolatorCreateFns);
}
IPositionInterpolator* Motion_GetPositionInterpolator( int interpNum )
{
Assert( interpNum >= 0 && interpNum < Motion_GetNumberOfPositionInterpolators() );
return g_PositionInterpolatorCreateFns[clamp( interpNum, 0, Motion_GetNumberOfPositionInterpolators() - 1 )]();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Rotation interpolator function enumeration & implementation
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
typedef void (*RotationInterpolatorFunc_t)(float time, Quaternion &outRot);
typedef struct
{
char *szName;
RotationInterpolatorFunc_t pFunc;
// defines the range of keys this interpolator needs to function
int iMinReqKeyFrame;
int iMaxReqKeyFrame;
} RotationInterpolator_t;
void RotationInterpolatorFunc_Linear( float time, Quaternion &outRot )
{
// basic 4D spherical linear interpolation
QuaternionSlerp( g_KeyFramePtr[0].qRot, g_KeyFramePtr[1].qRot, time, outRot );
}
RotationInterpolator_t g_RotationInterpolators[] =
{
{ "Linear", RotationInterpolatorFunc_Linear, 0, 1 },
};
int Motion_GetNumberOfRotationInterpolators( void )
{
return ARRAYSIZE(g_RotationInterpolators);
}
bool Motion_GetRotationInterpolatorDetails( int rotInterpNum, char **outName, int *outMinKeyReq, int *outMaxKeyReq )
{
if ( rotInterpNum < 0 || rotInterpNum >= Motion_GetNumberOfRotationInterpolators() )
{
return false;
}
if ( !g_RotationInterpolators[rotInterpNum].szName || !g_RotationInterpolators[rotInterpNum].pFunc )
{
return false;
}
if ( outName )
*outName = g_RotationInterpolators[rotInterpNum].szName;
if ( outMinKeyReq )
*outMinKeyReq = g_RotationInterpolators[rotInterpNum].iMinReqKeyFrame;
if ( outMaxKeyReq )
*outMaxKeyReq = g_RotationInterpolators[rotInterpNum].iMaxReqKeyFrame;
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Interpolates a rotation
// Time is assumed to have already been modified by the TimeModifyFunc (above)
// Requires the keyframes be already set
// Input : time - value from 0..1
// interpFuncNum -
// *outQuatRotation - result in quaternion form
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool Motion_InterpolateRotation( float time, int interpFuncNum, Quaternion &outQuatRotation )
{
if ( time < 0.0f || time > 1.0f )
return false;
g_RotationInterpolators[interpFuncNum].pFunc( time, outQuatRotation );
return true;
}