Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

781 lines
23 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Places "detail" objects which are client-only renderable things
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#include "stdafx.h"
#include "collisionutils.h"
#include "const.h"
#include "interface.h"
#include "KeyValues.h"
#include "utlsymbol.h"
#include "utlvector.h"
#include "utilmatlib.h"
#include "mathlib/VMatrix.h"
#include "vstdlib/random.h"
#include "builddisp.h"
#include "tier1/utlbuffer.h"
#include "IEditorTexture.h"
#include "materialsystem/imaterialvar.h"
#include "materialsystem/imaterial.h"
#include "mapface.h"
#include "camera.h"
#include "options.h"
#include "hammer.h"
// Actually, this is the max per map, but for now this is better than no limit at all.
#define MAX_DETAIL_SPRITES_PER_FACE 65535
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//IMPLEMENT_MAPCLASS(DetailObjects)
bool DetailObjects::s_bBuildDetailObjects = true;
// Defaults to match the parsing defaults in ParseDetailGroup -- code path defaults may/may not execute
DetailObjects::~DetailObjects()
{
m_DetailModels.PurgeAndDeleteElements();
m_DetailSprites.PurgeAndDeleteElements();
}
DetailObjects::DetailModel_t::DetailModel_t() : m_ModelName()
{
m_Amount = 0.0;
m_MinCosAngle = -1.0;
m_MaxCosAngle = -1.0;
m_Flags = 0;
m_Orientation = 0;
m_Type = DETAIL_PROP_TYPE_SPRITE;
m_Pos[0] = Vector2D(-10, 20);
m_Pos[1] = Vector2D(10, 0);
m_Tex[0] = Vector2D(0.5/512, 0.5/512);
m_Tex[1] = Vector2D(63.5/512, 63.5/512);
m_flRandomScaleStdDev = 0.0;
m_ShapeSize = 0;
m_ShapeAngle = 0;
m_SwayAmount = 0;
}
CUtlVector<DetailObjects::DetailObject_t> DetailObjects::s_DetailObjectDict; // static members?
//-----------------------------------------------------------------------------
// Parses the key-value pairs in the detail.rad file
//-----------------------------------------------------------------------------
void DetailObjects::ParseDetailGroup( int detailId, KeyValues* pGroupKeyValues )
{
// Sort the group by alpha
float alpha = pGroupKeyValues->GetFloat( "alpha", 1.0f );
int iGroup = s_DetailObjectDict[detailId].m_Groups.Count();
while ( --iGroup >= 0 )
{
if (alpha > s_DetailObjectDict[detailId].m_Groups[iGroup].m_Alpha)
break;
}
// Insert after the first guy who's more transparent that we are!
iGroup = s_DetailObjectDict[detailId].m_Groups.InsertAfter( iGroup );
DetailObjectGroup_t& group = s_DetailObjectDict[detailId].m_Groups[iGroup];
group.m_Alpha = alpha;
// Add in all the model groups
KeyValues* pIter = pGroupKeyValues->GetFirstSubKey();
float totalAmount = 0.0f;
while( pIter )
{
if (pIter->GetFirstSubKey())
{
int i = group.m_Models.AddToTail();
DetailModel_t &model = group.m_Models[i];
model.m_ModelName = pIter->GetString( "model", 0 );
if (model.m_ModelName != UTL_INVAL_SYMBOL)
{
model.m_Type = DETAIL_PROP_TYPE_MODEL;
}
else
{
const char *pSpriteData = pIter->GetString( "sprite", 0 );
if (pSpriteData)
{
const char *pProcModelType = pIter->GetString( "sprite_shape", 0 );
if ( pProcModelType )
{
if ( !Q_stricmp( pProcModelType, "cross" ) )
{
model.m_Type = DETAIL_PROP_TYPE_SHAPE_CROSS;
}
else if ( !Q_stricmp( pProcModelType, "tri" ) )
{
model.m_Type = DETAIL_PROP_TYPE_SHAPE_TRI;
}
else
model.m_Type = DETAIL_PROP_TYPE_SPRITE;
}
else
{
// card sprite
model.m_Type = DETAIL_PROP_TYPE_SPRITE;
}
model.m_Tex[0].Init();
model.m_Tex[1].Init();
float x = 0, y = 0, flWidth = 64, flHeight = 64, flTextureSize = 512;
int nValid = sscanf( pSpriteData, "%f %f %f %f %f", &x, &y, &flWidth, &flHeight, &flTextureSize );
if ( (nValid != 5) || (flTextureSize == 0) )
{
Error( "Invalid arguments to \"sprite\" in detail.vbsp (model %s)!\n", model.m_ModelName.String() );
}
model.m_Tex[0].x = ( x + 0.5f ) / flTextureSize;
model.m_Tex[0].y = ( y + 0.5f ) / flTextureSize;
model.m_Tex[1].x = ( x + flWidth - 0.5f ) / flTextureSize;
model.m_Tex[1].y = ( y + flHeight - 0.5f ) / flTextureSize;
model.m_Pos[0].Init( -10, 20 );
model.m_Pos[1].Init( 10, 0 );
pSpriteData = pIter->GetString( "spritesize", 0 );
if (pSpriteData)
{
sscanf( pSpriteData, "%f %f %f %f", &x, &y, &flWidth, &flHeight );
float ox = flWidth * x;
float oy = flHeight * y;
model.m_Pos[0].x = -ox;
model.m_Pos[0].y = flHeight - oy;
model.m_Pos[1].x = flWidth - ox;
model.m_Pos[1].y = -oy;
}
model.m_flRandomScaleStdDev = pIter->GetFloat( "spriterandomscale", 0.0f );
// sway is a percent of max sway, cl_detail_max_sway
float flSway = clamp( pIter->GetFloat( "sway", 0.0f ), 0.0, 1.0 );
model.m_SwayAmount = (unsigned char)( 255.0 * flSway );
// shape angle
// for the tri shape, this is the angle each side is fanned out
model.m_ShapeAngle = pIter->GetInt( "shape_angle", 0 );
// shape size
// for the tri shape, this is the distance from the origin to the center of a side
float flShapeSize = clamp( pIter->GetFloat( "shape_size", 0.0f ), 0.0, 1.0 );
model.m_ShapeSize = (unsigned char)( 255.0 * flShapeSize );
}
}
model.m_Amount = pIter->GetFloat( "amount", 1.0 ) + totalAmount;
totalAmount = model.m_Amount;
model.m_Flags = 0;
if (pIter->GetInt( "upright", 0 ))
{
model.m_Flags |= MODELFLAG_UPRIGHT;
}
// These are used to prevent emission on steep surfaces
float minAngle = pIter->GetFloat( "minAngle", 180 );
float maxAngle = pIter->GetFloat( "maxAngle", 180 );
model.m_MinCosAngle = cos(minAngle * M_PI / 180.f);
model.m_MaxCosAngle = cos(maxAngle * M_PI / 180.f);
model.m_Orientation = pIter->GetInt( "detailOrientation", 0 );
// Make sure minAngle < maxAngle
if ( model.m_MinCosAngle < model.m_MaxCosAngle)
{
model.m_MinCosAngle = model.m_MaxCosAngle;
}
}
pIter = pIter->GetNextKey();
}
// renormalize the amount if the total > 1
if (totalAmount > 1.0f)
{
for (int i = 0; i < group.m_Models.Count(); ++i)
{
group.m_Models[i].m_Amount /= totalAmount;
}
}
}
//-----------------------------------------------------------------------------
// Parses the key-value pairs in the detail.vbsp file
//-----------------------------------------------------------------------------
void DetailObjects::ParseDetailObjectFile( KeyValues& keyValues )
{
// Iterate over all detail object groups...
KeyValues* pIter;
for( pIter = keyValues.GetFirstSubKey(); pIter; pIter = pIter->GetNextKey() )
{
if (!pIter->GetFirstSubKey())
continue;
int i = s_DetailObjectDict.AddToTail( );
s_DetailObjectDict[i].m_Name = pIter->GetName() ;
s_DetailObjectDict[i].m_Density = pIter->GetFloat( "density", 0.0f );
// Iterate over all detail object groups...
KeyValues* pIterGroups = pIter->GetFirstSubKey();
while( pIterGroups )
{
if (pIterGroups->GetFirstSubKey())
{
ParseDetailGroup( i, pIterGroups );
}
pIterGroups = pIterGroups->GetNextKey();
}
}
}
//-----------------------------------------------------------------------------
// Finds the name of the detail.vbsp file to use
//-----------------------------------------------------------------------------
const char *DetailObjects::FindDetailVBSPName( void )
{
#if 0
for( int i = 0; i < num_entities; i++ )
{
char* pEntity = ValueForKey( &entities[i], "classname" );
if ( !strcmp( pEntity, "worldspawn" ) )
{
const char *pDetailVBSP = ValueForKey( &entities[i], "detailvbsp" );
if ( !pDetailVBSP || !pDetailVBSP[0] )
{
pDetailVBSP = "detail.vbsp";
}
return pDetailVBSP;
}
}
#endif
return "detail.vbsp";
}
#include "tier0\memdbgoff.h"
//-----------------------------------------------------------------------------
// Loads up the detail object dictionary
//-----------------------------------------------------------------------------
void DetailObjects::LoadEmitDetailObjectDictionary( const char* pGameDir )
{
// Set the required global lights filename and try looking in qproject
const char *pDetailVBSP = FindDetailVBSPName();
KeyValues * values = new KeyValues( pDetailVBSP );
if ( values->LoadFromFile( g_pFileSystem, pDetailVBSP ) )
{
ParseDetailObjectFile( *values );
}
values->deleteThis();
}
//-----------------------------------------------------------------------------
// Selects a detail group
//-----------------------------------------------------------------------------
int DetailObjects::SelectGroup( const DetailObject_t& detail, float alpha )
{
// Find the two groups whose alpha we're between...
int start, end;
for ( start = 0; start < detail.m_Groups.Count() - 1; ++start )
{
if (alpha < detail.m_Groups[start+1].m_Alpha)
break;
}
end = start + 1;
if (end >= detail.m_Groups.Count())
--end;
if (start == end)
return start;
// Figure out how far we are between start and end...
float dist = 0.0f;
float dAlpha = (detail.m_Groups[end].m_Alpha - detail.m_Groups[start].m_Alpha);
if (dAlpha != 0.0f)
{
dist = (alpha - detail.m_Groups[start].m_Alpha) / dAlpha;
}
// Pick a number, any number...
float flR = rand() / (float)VALVE_RAND_MAX;
// When dist == 0, we *always* want start.
// When dist == 1, we *always* want end
// That's why this logic looks a little reversed
return (flR > dist) ? start : end;
}
//-----------------------------------------------------------------------------
// Selects a detail object
//-----------------------------------------------------------------------------
int DetailObjects::SelectDetail( DetailObjectGroup_t const& group )
{
// Pick a number, any number...
float flR = rand() / (float)VALVE_RAND_MAX;
// Look through the list of models + pick the one associated with this number
for ( int i = 0; i < group.m_Models.Count(); ++i )
{
if ( flR <= group.m_Models[i].m_Amount)
return i;
}
return -1;
}
//-----------------------------------------------------------------------------
// Add a detail to the lump.
//-----------------------------------------------------------------------------
void DetailObjects::AddDetailModelToFace( const char* pModelName, const Vector& pt, const QAngle& angles, int nOrientation )
{
StudioModel *pStudioModel = new StudioModel();
m_DetailModels.AddToTail( pStudioModel );
pStudioModel->LoadModel( pModelName );
pStudioModel->SetOrigin( pt.x, pt.y, pt.z );
QAngle modelangle = angles;
pStudioModel->SetAngles( modelangle );
}
//-----------------------------------------------------------------------------
// Add a detail sprite to the lump.
//-----------------------------------------------------------------------------
void DetailObjects::AddDetailSpriteToFace( const Vector &vecOrigin, const QAngle &vecAngles, DetailModel_t const& model, float flScale )
{
CSpriteModel *pSpriteModel = new CSpriteModel;
m_DetailSprites.AddToTail(pSpriteModel);
const char szSpriteName[_MAX_PATH] = "detail/detailsprites";
pSpriteModel->LoadSprite( szSpriteName );
pSpriteModel->SetRenderMode( kRenderNormal );
pSpriteModel->SetMaterialPrimitiveType( MATERIAL_POLYGON );
pSpriteModel->SetOrigin( vecOrigin );
pSpriteModel->SetAngles( vecAngles );
pSpriteModel->SetScale( flScale );
pSpriteModel->SetInvert( true );
pSpriteModel->SetExtent( model.m_Pos[0], model.m_Pos[1] );
pSpriteModel->SetTextureExtent( model.m_Tex[0], model.m_Tex[1] );
}
//-----------------------------------------------------------------------------
// Got a detail! Place it on the surface...
//-----------------------------------------------------------------------------
// BUGBUG: When the global optimizer is on, "normal" gets trashed in this function
// (only when not in the debugger?)
// Printing the values of normal at the bottom of the function fixes it as does
// disabling global optimizations.
void DetailObjects::PlaceDetail( DetailModel_t const& model, const Vector& pt, const Vector& normal )
{
// But only place it on the surface if it meets the angle constraints...
float cosAngle = normal.z;
// Never emit if the angle's too steep
if (cosAngle < model.m_MaxCosAngle)
return;
// If it's between min + max, flip a coin...
if (cosAngle < model.m_MinCosAngle)
{
float probability = (cosAngle - model.m_MaxCosAngle) /
(model.m_MinCosAngle - model.m_MaxCosAngle);
float t = rand() / (float)VALVE_RAND_MAX;
if (t > probability)
return;
}
// Compute the orientation of the detail
QAngle angles;
if (model.m_Flags & MODELFLAG_UPRIGHT)
{
// If it's upright, we just select a random yaw
angles.Init( 0, 360.0f * rand() / (float)VALVE_RAND_MAX, 0.0f );
}
else
{
// It's not upright, so it must conform to the ground. Choose
// a random orientation based on the surface normal
Vector zaxis;
VectorCopy( normal, zaxis );
VectorNormalize( zaxis );
// Choose any two arbitrary axes which are perpendicular to the normal
Vector xaxis( 1, 0, 0 );
if (fabs(xaxis.Dot(zaxis)) - 1.0 > -1e-3)
xaxis.Init( 0, 1, 0 );
Vector yaxis;
CrossProduct( zaxis, xaxis, yaxis );
VectorNormalize( yaxis );
CrossProduct( yaxis, zaxis, xaxis );
VectorNormalize( xaxis );
VMatrix matrix;
matrix.SetBasisVectors( xaxis, yaxis, zaxis );
matrix.SetTranslation( vec3_origin );
float rotAngle = 360.0f * rand() / (float)VALVE_RAND_MAX;
VMatrix rot = SetupMatrixAxisRot( Vector( 0, 0, 1 ), rotAngle );
matrix = matrix * rot;
MatrixToAngles( matrix, angles );
}
// FIXME: We may also want a purely random rotation too
// Insert an element into the object dictionary if it aint there...
switch ( model.m_Type )
{
case DETAIL_PROP_TYPE_MODEL:
AddDetailModelToFace( model.m_ModelName.String(), pt, angles, model.m_Orientation );
break;
// Sprites and procedural models made from sprites
case DETAIL_PROP_TYPE_SPRITE:
default:
{
float flScale = 1.0f;
if ( model.m_flRandomScaleStdDev != 0.0f )
{
flScale = fabs( RandomGaussianFloat( 1.0f, model.m_flRandomScaleStdDev ) );
}
AddDetailSpriteToFace( pt, angles, model, flScale );
}
break;
}
}
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
void DetailObjects::EmitDetailObjectsOnFace( CMapFace *pMapFace, DetailObject_t& detail )
{
// See how many points define this particular face
int nPoints = pMapFace->GetPointCount();
// Faces with detail props need at least 3 point to form a plane
if (nPoints < 3)
return;
// Get the first point of the face
Vector p0;
pMapFace->GetPoint(p0,0);
// Get next points on the face in pairs -- ie get points necessary to tesselate the face into triangles
for (int i = 1; i < nPoints-1; i++ )
{
// Get the next two points of the face
Vector p1, p2;
pMapFace->GetPoint(p1,i);
pMapFace->GetPoint(p2,i+1);
// For the edges of the current triangle tesselating a portion of the face
Vector e1, e2;
VectorSubtract( p1, p0, e1 );
VectorSubtract( p2, p0, e2 );
// Calculate the area of the tesselated triange using half the crossproduct of the edges
Vector areaVec;
CrossProduct( e1, e2, areaVec );
float normalLength = areaVec.Length();
float area = 0.5 * normalLength;
// Calculate the detail prop density based on the expected density and the tesselated triangle area
int numSamples = clamp( area * detail.m_Density * 0.000001, 0, MAX_DETAIL_SPRITES_PER_FACE );
// For each possible sample, attempt to randomly place a detail object there
for (int j = 0; j < numSamples; ++j )
{
// Create a random sample location...
float u = rand() / (float)VALVE_RAND_MAX;
float v = rand() / (float)VALVE_RAND_MAX;
// Make sure the u,v coordinate stay within the triangle boundaries (ie they NOT in the far half of the parallelogram)
if (v > 1.0f - u)
{
// Triangle is out of bounds, flip the coordinates so they are in the near half of the parallelogram
u = 1.0f - u;
v = 1.0f - v;
assert( u + v <= 1.0f );
}
// Compute alpha - assumed to be 1.0 across entire face for non-displacement map faces, since there is no alpha channel
float alpha = 1.0f;
// Select a group based on the alpha value
int group = SelectGroup( detail, alpha );
// Now that we've got a group, choose a detail
int model = SelectDetail( detail.m_Groups[group] );
if (model < 0)
continue;
// Got a detail! Place it on the surface...
Vector pt, normal;
VectorMA( p0, u, e1, pt );
VectorMA( pt, v, e2, pt );
VectorDivide( areaVec, -normalLength, normal );
PlaceDetail( detail.m_Groups[group].m_Models[model], pt, normal );
}
}
}
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
float DetailObjects::ComputeDisplacementFaceArea( CMapFace *pMapFace )
{
float area = 0.0f;
// Compute the area of the base face
// Displacement base faces must be quads.
Vector edge[4];
for( int i=0; i<4; i++ )
{
Vector p0, p1;
pMapFace->GetPoint( p0, i );
pMapFace->GetPoint( p1, (i+1)%4 );
VectorSubtract( p1, p0, edge[i] );
}
Vector area_01, area_23;
CrossProduct( edge[0], edge[1], area_01 );
CrossProduct( edge[2], edge[3], area_23 );
area = ( area_01.Length() + area_23.Length() ) * 0.5f;
return area;
}
//-----------------------------------------------------------------------------
// Places Detail Objects on a face
//-----------------------------------------------------------------------------
void DetailObjects::EmitDetailObjectsOnDisplacementFace( CMapFace *pMapFace,
DetailObject_t& detail )
{
assert(pMapFace->GetPointCount() == 4);
// We're going to pick a bunch of random points, and then probabilistically
// decide whether or not to plant a detail object there.
// Compute the area of the base face
float area = ComputeDisplacementFaceArea( pMapFace );
// Compute the number of samples to take
int numSamples = area * detail.m_Density * 0.000001;
EditDispHandle_t editdisphandle = pMapFace->GetDisp();
CMapDisp *pMapDisp = EditDispMgr()->GetDisp(editdisphandle);
CCoreDispInfo *pCoreDispInfo = pMapDisp->GetCoreDispInfo();
// Now take a sample, and randomly place an object there
for (int i = 0; i < numSamples; ++i )
{
// Create a random sample...
float u = rand() / (float)VALVE_RAND_MAX;
float v = rand() / (float)VALVE_RAND_MAX;
// Compute alpha
float alpha;
Vector pt, normal;
pCoreDispInfo->GetPositionOnSurface( u, v, pt, &normal, &alpha );
alpha /= 255.0f;
// Select a group based on the alpha value
int group = SelectGroup( detail, alpha );
// Now that we've got a group, choose a detail
int model = SelectDetail( detail.m_Groups[group] );
if (model < 0)
continue;
// Got a detail! Place it on the surface...
PlaceDetail( detail.m_Groups[group].m_Models[model], pt, normal );
}
}
//-----------------------------------------------------------------------------
// Builds Detail Objects for a particular face
//-----------------------------------------------------------------------------
bool DetailObjects::ShouldRenderLast(void)
{
return true;
}
//-----------------------------------------------------------------------------
// Builds Detail Objects for a particular face
//-----------------------------------------------------------------------------
void DetailObjects::BuildAnyDetailObjects(CMapFace *pMapFace)
{
// Ignore this call while loading the VMF or else we'll generate a lot of redundant ones.
if ( !s_bBuildDetailObjects )
return;
if ( pMapFace->IsCordonFace() )
return;
// Try to get at the material
bool found;
IEditorTexture *pEditorTexture = pMapFace->GetTexture();
if ( !pEditorTexture )
return;
IMaterial *pMaterial = pEditorTexture->GetMaterial();
if ( !pMaterial )
return;
IMaterialVar *pMaterialVar = pMaterial->FindVar("%detailtype", &found, false );
if ( !found || !pMaterialVar )
return;
const char* pDetailType = pMaterialVar->GetStringValue();
if ( !pDetailType )
return;
// Get the detail type...
DetailObject_t search;
search.m_Name = pDetailType;
DetailObjects *pDetails = pMapFace->m_pDetailObjects;
if ( pMapFace->m_pDetailObjects )
{
pDetails->m_DetailModels.PurgeAndDeleteElements();
pDetails->m_DetailSprites.PurgeAndDeleteElements();
}
else
{
pMapFace->m_pDetailObjects = pDetails = new DetailObjects;
}
if ( pDetails )
{
// Set the center the "detailobjects" to be the average of the face points
int nPoints = pMapFace->GetPointCount();
Vector faceCenter, faceCorner;
faceCenter.Init();
for ( int point=0; point < nPoints; point++ )
{
pMapFace->GetPoint(faceCorner,point);
faceCenter += faceCorner;
}
faceCenter /= nPoints;
pDetails->SetOrigin( faceCenter );
int objectType = s_DetailObjectDict.Find(search);
if (objectType < 0)
{
char szTextureName[MAX_PATH];
pMapFace->GetTextureName(szTextureName);
Warning("Material %s uses unknown detail object type %s!\n", szTextureName, pDetailType);
return;
}
// Emit objects on a particular face
DetailObject_t& detail = s_DetailObjectDict[objectType];
// Initialize the Random Number generators for detail prop placement based on the origFace num.
int detailpropseed = pMapFace->GetFaceID();
#ifdef WARNSEEDNUMBER
Warning("[%d]\n",detailpropseed);
#endif
srand( detailpropseed );
RandomSeed( detailpropseed );
if ( pMapFace->HasDisp() )
{
pDetails->EmitDetailObjectsOnDisplacementFace( pMapFace, detail );
}
else
{
pDetails->EmitDetailObjectsOnFace( pMapFace, detail );
}
}
else
{
Warning("Could not allocate DetailObject for CMapFace!\n");
}
}
void DetailObjects::EnableBuildDetailObjects( bool bEnable )
{
s_bBuildDetailObjects = bEnable;
}
void DetailObjects::Render3D(CRender3D *pRender)
{
Vector Mins, Maxs;
float fDetailDistance = Options.view3d.nDetailDistance;
Vector viewPoint; pRender->GetCamera()->GetViewPoint( viewPoint );
int models = m_DetailModels.Count();
if ( models )
{
pRender->PushRenderMode( RENDER_MODE_DEFAULT );
for ( int i = 0; i < models; i++ )
{
StudioModel *pModel = m_DetailModels[i];
pModel->GetOrigin(Mins);
pModel->GetOrigin(Maxs);
for( int j=0; j<3; j++ )
{
Mins[j] -= fDetailDistance;
Maxs[j] += fDetailDistance;
}
if ( IsPointInBox( viewPoint, Mins, Maxs ) )
pModel->DrawModel3D( pRender, 1, false );
}
pRender->PopRenderMode();
}
int sprites = m_DetailSprites.Count();
if ( sprites )
{
unsigned char color[3] = { 255, 255, 255 };
pRender->PushRenderMode( RENDER_MODE_DEFAULT );
for ( int i = 0; i < sprites; i++ )
{
CSpriteModel *pSprite = m_DetailSprites[i];
pSprite->GetOrigin(Mins);
pSprite->GetOrigin(Maxs);
for( int j=0; j<3; j++ )
{
Mins[j] -= fDetailDistance;
Maxs[j] += fDetailDistance;
}
if ( IsPointInBox( viewPoint, Mins, Maxs ) )
pSprite->DrawSprite3D( pRender, color );
}
pRender->PopRenderMode();
}
}
// EOF