/*++ Copyright (c) 1990 Microsoft Corporation Module Name: ELFUTIL.C Abstract: This file contains all the utility routines for the Eventlog service. Author: Rajen Shah (rajens) 16-Jul-1991 Revision History: --*/ // // INCLUDES // #include #include #include #include PLOGMODULE FindModuleStrucFromAtom ( ATOM Atom ) /*++ Routine Description: This routine scans the list of module structures and finds the one that matches the module atom. Arguments: Atom contains the atom matching the module name. Return Value: A pointer to the log module structure is returned. NULL if no matching atom is found. Note: --*/ { PLOGMODULE ModuleStruc; // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); ModuleStruc = CONTAINING_RECORD ( LogModuleHead.Flink, LOGMODULE, ModuleList ); while ((ModuleStruc->ModuleList.Flink != &LogModuleHead) && (ModuleStruc->ModuleAtom != Atom)) { ModuleStruc = CONTAINING_RECORD ( ModuleStruc->ModuleList.Flink, LOGMODULE, ModuleList ); } // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); return (ModuleStruc->ModuleAtom == Atom ? ModuleStruc : NULL); } PLOGMODULE GetModuleStruc ( PUNICODE_STRING ModuleName ) /*++ Routine Description: This routine returns a pointer to the log module structure for the module specified in ModuleName. If none exists, the default structure for application is returned. Arguments: ModuleName contains the name of the module. Return Value: A pointer to the log module structure is returned. Note: --*/ { NTSTATUS Status; ATOM ModuleAtom; ANSI_STRING ModuleNameA; ElfDbgPrint(("[ELF] GetModuleStruc: ")); Status = RtlUnicodeStringToAnsiString ( &ModuleNameA, ModuleName, TRUE ); ASSERT (NT_SUCCESS(Status)); // This MUST NOT fail. // // Guarantee that it's NULL terminated // ModuleNameA.Buffer[ModuleNameA.Length] = '\0'; ElfDbgPrint((" Module: %Z ", &ModuleNameA)); ModuleAtom = FindAtomA( ModuleNameA.Buffer ); RtlFreeAnsiString (&ModuleNameA); if (ModuleAtom == (ATOM)0) { ElfDbgPrint((" No atom found. Defaulting to APPLICATION.\n")); return (ElfDefaultLogModule); } else { ElfDbgPrint((" Atom = %d \n", ModuleAtom)); return (FindModuleStrucFromAtom( ModuleAtom )); } } VOID UnlinkContextHandle (IELF_HANDLE LogHandle ) /*++ Routine Description: This routine unlinks the LogHandle specified from the linked list of context handles. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: LogHandle points to a context handle structure. Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); // Remove this entry RemoveEntryList (&LogHandle->Next); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); } VOID LinkContextHandle (IELF_HANDLE LogHandle ) /*++ Routine Description: This routine links the LogHandle specified into the linked list of context handles. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: LogHandle points to a context handle structure. Return Value: NONE Note: --*/ { ASSERT(LogHandle->Signature == ELF_CONTEXTHANDLE_SIGN); // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); // Place structure at the beginning of the list. InsertHeadList (&LogHandleListHead, &LogHandle->Next); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); } VOID UnlinkQueuedEvent (PELF_QUEUED_EVENT QueuedEvent ) /*++ Routine Description: This routine unlinks the QueuedEvent specified from the linked list of QueuedEvents. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: QueuedEvent - The request to remove from the linked list Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); // Remove this entry RemoveEntryList (&QueuedEvent->Next); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); } VOID LinkQueuedEvent (PELF_QUEUED_EVENT QueuedEvent ) /*++ Routine Description: This routine links the QueuedEvent specified into the linked list of QueuedEvents. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: QueuedEvent - The request to add from the linked list Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); // Place structure at the beginning of the list. InsertHeadList (&QueuedEventListHead, &QueuedEvent->Next); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); } DWORD WINAPI ElfpSendMessage (LPVOID UnUsed ) /*++ Routine Description: This routines just uses MessageBox to pop up a message. This is it's own routine so we can spin a thread to do this, in case the user doesn't hit the OK button for a while. Arguments: NONE Return Value: NONE Note: --*/ { PVOID MessageBuffer; HANDLE hLibrary; LPWSTR * StringPointers; DWORD i; PELF_QUEUED_EVENT QueuedEvent; PELF_QUEUED_EVENT FlushEvent; RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); // // First get a handle to the message file used for the message text // hLibrary = LoadLibraryW(L"NETMSG.DLL"); // // Walk the linked list and process each element // QueuedEvent = CONTAINING_RECORD ( QueuedMessageListHead.Flink, struct _ELF_QUEUED_EVENT, Next ); while (QueuedEvent->Next.Flink != QueuedMessageListHead.Flink) { ASSERT(QueuedEvent->Type == Message); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); // // Build the array of pointers to the insertion strings // StringPointers = (LPWSTR *) ElfpAllocateBuffer( QueuedEvent->Event.Message.NumberOfStrings * sizeof(LPWSTR)); if (StringPointers && hLibrary) { // // Build the array of pointers to the insertion string(s) // if (QueuedEvent->Event.Message.NumberOfStrings) { StringPointers[0] = (LPWSTR) ((PBYTE) &QueuedEvent->Event.Message + sizeof(ELF_MESSAGE_RECORD)); for (i = 1; i < QueuedEvent->Event.Message.NumberOfStrings; i++) { StringPointers[i] = StringPointers[i-1] + wcslen(StringPointers[i-1]) + 1; } } // // Call FormatMessage to build the message // if (FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_ARGUMENT_ARRAY | FORMAT_MESSAGE_FROM_HMODULE, (LPVOID) hLibrary, QueuedEvent->Event.Message.MessageId, 0, // Language ID defaulted (LPWSTR) & MessageBuffer, 0, // Is this ignored if allocate_buffer? (va_list *) StringPointers)) { // // Now actually display it // MessageBoxW(NULL, (LPWSTR) MessageBuffer, GlobalMessageBoxTitle, MB_OK | MB_SETFOREGROUND | MB_ICONEXCLAMATION | MB_SERVICE_NOTIFICATION); } ElfpFreeBuffer(StringPointers); } RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); // // Move to the next one, saving this one to delete it // FlushEvent = QueuedEvent; QueuedEvent = CONTAINING_RECORD ( QueuedEvent->Next.Flink, struct _ELF_QUEUED_EVENT, Next ); // // Now remove this from the queue and free it if we successfully // processed it // RemoveEntryList (&FlushEvent->Next); } FreeLibrary(hLibrary); MBThreadHandle = NULL; // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); return(0); } VOID LinkQueuedMessage (PELF_QUEUED_EVENT QueuedEvent ) /*++ Routine Description: This routine links the QueuedEvent specified into the linked list of QueuedMessages. If there's not already a messagebox thread running, it starts one. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: QueuedEvent - The request to add from the linked list Return Value: NONE Note: --*/ { DWORD ThreadId; // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); // Place structure at the end of the list. InsertTailList (&QueuedMessageListHead, &QueuedEvent->Next); if (!MBThreadHandle) { // // Since the user can just let this sit on their screen, // spin a thread for this // MBThreadHandle = CreateThread(NULL, // lpThreadAttributes 4096, // dwStackSize ElfpSendMessage, // lpStartAddress NULL, // lpParameter 0L, // dwCreationFlags &ThreadId // lpThreadId ); } // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedMessageCritSec); } VOID NotifyChange (PLOGFILE pLogFile ) /*++ Routine Description: This routine runs the list of events that are registered with ElfChangeNotify to be notified when a log has changed, and pulses the event. In order to protect against multiple thread/process access to the list at the same time, we use an exclusive resource. Arguments: LogHandle points to a context handle structure. Return Value: NONE Note: --*/ { // // How frequently will I try to pulse the events? How about every // 5 seconds // #define MINIMUM_PULSE_TIME 5 PNOTIFIEE Notifiee; static ULONG LastPulseTime = 0; LARGE_INTEGER Time; ULONG CurrentTime; NTSTATUS Status; // // Get exclusive access to the log file. This will ensure no one // else is accessing the file. // RtlAcquireResourceExclusive ( &pLogFile->Resource, TRUE // Wait until available ); // // See if we've done this in the last MINIMUM_PULSE_TIME seconds // Status = NtQuerySystemTime(&Time); RtlTimeToSecondsSince1970(&Time, &CurrentTime); if (NT_SUCCESS(Status)) { CurrentTime = CurrentTime - MINIMUM_PULSE_TIME; if (CurrentTime > LastPulseTime) { // // Remember that we pulsed // LastPulseTime = CurrentTime; // // Walk the linked list and and pulse any events // Notifiee = CONTAINING_RECORD ( pLogFile->Notifiees.Flink, struct _NOTIFIEE, Next ); while (Notifiee->Next.Flink != pLogFile->Notifiees.Flink) { // // Pulse each event as we get to it. // NtPulseEvent(Notifiee->Event,NULL); Notifiee = CONTAINING_RECORD ( Notifiee->Next.Flink, struct _NOTIFIEE, Next ); } } } // // Free the resource // RtlReleaseResource ( &pLogFile->Resource ); } VOID WriteQueuedEvents ( ) /*++ Routine Description: This routine runs the list of queued events and writes them. In order to protect against multiple thread/process access to the list at the same time, we use an exclusive resource. Arguments: NONE Return Value: NONE Note: --*/ { PELF_QUEUED_EVENT QueuedEvent; PELF_QUEUED_EVENT FlushEvent; BOOLEAN bFlushEvent; LARGE_INTEGER Time; ULONG CurrentTime; static ULONG LastAlertTried = 0; static BOOLEAN LastAlertFailed = FALSE; // Lock the linked list, you must get the System Log File Resource // first, it is the higher level lock RtlAcquireResourceExclusive ( &ElfModule->LogFile->Resource, TRUE // Wait until available ); RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); // // Walk the linked list and process each element // QueuedEvent = CONTAINING_RECORD ( QueuedEventListHead.Flink, struct _ELF_QUEUED_EVENT, Next ); while (QueuedEvent->Next.Flink != QueuedEventListHead.Flink) { // // Default is to flush the event after processing // bFlushEvent = TRUE; // // Do the appropriate thing // if (QueuedEvent->Type == Event) { PerformWriteRequest (&QueuedEvent->Event.Request); } else if (QueuedEvent->Type == Alert) { // // Don't even try to send failed alerts quicker than once a minute // NtQuerySystemTime(&Time); RtlTimeToSecondsSince1970(&Time, &CurrentTime); if (!LastAlertFailed || CurrentTime > LastAlertTried + 60) { if (!SendAdminAlert(QueuedEvent->Event.Alert.MessageId, QueuedEvent->Event.Alert.NumberOfStrings, (PUNICODE_STRING)((PBYTE) QueuedEvent + FIELD_OFFSET(ELF_QUEUED_EVENT, Event) + sizeof(ELF_ALERT_RECORD)))) { LastAlertFailed = TRUE; LastAlertTried = CurrentTime; } else { LastAlertFailed = FALSE; LastAlertTried = CurrentTime; } } // // Only try to write it for 5 minutes, then give up (the // alerter service may not be configured to run) // if (LastAlertFailed && QueuedEvent->Event.Alert.TimeOut > CurrentTime) { bFlushEvent = FALSE; } } // // Move to the next one, saving this one to delete it // FlushEvent = QueuedEvent; QueuedEvent = CONTAINING_RECORD ( QueuedEvent->Next.Flink, struct _ELF_QUEUED_EVENT, Next ); // // Now remove this from the queue and free it if we successfully // processed it // if (bFlushEvent) { UnlinkQueuedEvent(FlushEvent); ElfpFreeBuffer(FlushEvent); } } // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); RtlReleaseResource (&ElfModule->LogFile->Resource); } VOID FlushQueuedEvents ( ) /*++ Routine Description: This routine runs the list of queued events and frees them. In order to protect against multiple thread/process access to the list at the same time, we use an exclusive resource. Arguments: NONE Return Value: NONE Note: --*/ { PELF_QUEUED_EVENT QueuedEvent; PELF_QUEUED_EVENT FlushEvent; // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); // // Walk the linked list and and free the memory for any events // QueuedEvent = CONTAINING_RECORD ( QueuedEventListHead.Flink, struct _ELF_QUEUED_EVENT, Next ); while (QueuedEvent->Next.Flink != QueuedEventListHead.Flink) { // // Free each event as we get to it. // FlushEvent = QueuedEvent; QueuedEvent = CONTAINING_RECORD ( QueuedEvent->Next.Flink, struct _ELF_QUEUED_EVENT, Next ); ElfpFreeBuffer(FlushEvent); } // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&QueuedEventCritSec); } VOID UnlinkLogModule (PLOGMODULE LogModule ) /*++ Routine Description: This routine unlinks the LogModule specified from the linked list. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: LogModule points to a context handle structure. Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); // Remove this entry RemoveEntryList (&LogModule->ModuleList); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); } VOID LinkLogModule (PLOGMODULE LogModule, ANSI_STRING * pModuleNameA ) /*++ Routine Description: This routine links the LogModule specified into the linked list. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: LogModule points to a context handle structure. ANSI LogModule name. Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); // Add the atom for this module. LogModule->ModuleAtom = AddAtomA(pModuleNameA->Buffer); // Place structure at the beginning of the list. InsertHeadList (&LogModuleHead, &LogModule->ModuleList); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogModuleCritSec); } VOID UnlinkLogFile (PLOGFILE pLogFile ) /*++ Routine Description: This routine unlinks the LogFile structure specified from the linked list of log files; In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: pLogFile points to a log file structure. Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); // Remove this entry RemoveEntryList (&pLogFile->FileList); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); } VOID LinkLogFile (PLOGFILE pLogFile ) /*++ Routine Description: This routine links the LogFile specified into the linked list of log files. In order to protect against multiple thread/process access to the list at the same time, we use a critical section. Arguments: pLogFile points to a context handle structure. Return Value: NONE Note: --*/ { // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); // Place structure at the beginning of the list. InsertHeadList (&LogFilesHead, &pLogFile->FileList); // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); } VOID GetGlobalResource (DWORD Type ) /*++ Routine Description: This routine takes the global resource either for shared access or exclusive access depending on the value of Type. It waits forever for the resource to become available. Arguments: Type is one of ELF_GLOBAL_SHARED or ELF_GLOBAL_EXCLUSIVE. Return Value: NONE Note: --*/ { BOOL Acquired; if (Type & ELF_GLOBAL_SHARED) { Acquired = RtlAcquireResourceShared( &GlobalElfResource, TRUE // Wait forever ); } else { // Assume EXCLUSIVE Acquired = RtlAcquireResourceExclusive( &GlobalElfResource, TRUE // Wait forever ); } ASSERT (Acquired); // This must always be TRUE. } VOID ReleaseGlobalResource() /*++ Routine Description: This routine releases the global resource. Arguments: NONE Return Value: NONE Note: --*/ { RtlReleaseResource ( &GlobalElfResource ); } NTSTATUS ElfImpersonateClient( VOID ) /*++ Routine Description: This function calls RpcImpersonateClient to impersonate the current caller of an API. Arguments: None. Return Value: NTSTATUS (which is the same as RPC_STATUS) --*/ { RPC_STATUS RpcStatus; if ((RpcStatus = RpcImpersonateClient(NULL)) != RPC_S_OK) { ElfDbgPrintNC(("[ELF] Fail to impersonate client %lx\n", RpcStatus)); } return (I_RpcMapWin32Status(RpcStatus)); } NTSTATUS ElfRevertToSelf( VOID ) /*++ Routine Description: This function calls RpcRevertToSelf to undo an impersonation. Arguments: None. Return Value: NTSTATUS (which is the same as RPC_STATUS) --*/ { RPC_STATUS RpcStatus; if ((RpcStatus = RpcRevertToSelf()) != RPC_S_OK) { ElfDbgPrintNC(("[ELF] Fail to revert to self %lx\n", RpcStatus)); ASSERT(FALSE); } return (RpcStatus); } VOID InvalidateContextHandlesForLogFile ( PLOGFILE pLogFile ) /*++ Routine Description: This routine walks through the context handles and marks the ones that point to the LogFile passed in as "invalid for read". Arguments: Pointer to log file structure. Return Value: NONE. Note: --*/ { IELF_HANDLE LogHandle; PLOGMODULE pLogModule; // // Lock the context handle list // RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); // // Walk the linked list and mark any matching context handles as // invalid. // LogHandle = CONTAINING_RECORD ( LogHandleListHead.Flink, struct _IELF_HANDLE, Next ); while (LogHandle->Next.Flink != LogHandleListHead.Flink) { pLogModule = FindModuleStrucFromAtom (LogHandle->Atom); ASSERT(pLogModule); if (pLogFile == pLogModule->LogFile) { LogHandle->Flags |= ELF_LOG_HANDLE_INVALID_FOR_READ; } LogHandle = CONTAINING_RECORD ( LogHandle->Next.Flink, struct _IELF_HANDLE, Next ); } // // Unlock the context handle list // RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); } VOID FixContextHandlesForRecord ( DWORD RecordOffset, DWORD NewRecordOffset ) /*++ Routine Description: This routine makes sure that the record starting at RecordOffset isn't the current record for any open handle. If it is, the handle is adjusted to point to the next record. Arguments: RecordOffset - The byte offset in the log of the record that is about to be overwritten. NewStartingRecord - The new location to point the handle to (this is the new first record) Return Value: NONE. Note: --*/ { IELF_HANDLE LogHandle; // // Lock the context handle list // RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); // // Walk the linked list and fix any matching context handles // LogHandle = CONTAINING_RECORD ( LogHandleListHead.Flink, struct _IELF_HANDLE, Next ); while (LogHandle->Next.Flink != LogHandleListHead.Flink) { if (LogHandle->SeekBytePos == RecordOffset) { LogHandle->SeekBytePos = NewRecordOffset; } LogHandle = CONTAINING_RECORD ( LogHandle->Next.Flink, struct _IELF_HANDLE, Next ); } // // Unlock the context handle list // RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogHandleCritSec); } PLOGFILE FindLogFileFromName ( PUNICODE_STRING pFileName ) /*++ Routine Description: This routine looks at all the log files to find one that matches the name passed in. Arguments: Pointer to name of file. Return Value: Matching LOGFILE structure if file in use. Note: --*/ { PLOGFILE pLogFile; // Lock the linked list RtlEnterCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); pLogFile = CONTAINING_RECORD( LogFilesHead.Flink, LOGFILE, FileList ); while (pLogFile->FileList.Flink != LogFilesHead.Flink) { if (wcscmp (pLogFile->LogFileName->Buffer, pFileName->Buffer) == 0) break; pLogFile = CONTAINING_RECORD( pLogFile->FileList.Flink, LOGFILE, FileList ); } // Unlock the linked list RtlLeaveCriticalSection ((PRTL_CRITICAL_SECTION)&LogFileCritSec); if (pLogFile->FileList.Flink == LogFilesHead.Flink) { return(NULL); } else { return (pLogFile); } } VOID ElfpCreateElfEvent( IN ULONG EventId, IN USHORT EventType, IN USHORT EventCategory, IN USHORT NumStrings, IN LPWSTR * Strings, IN LPVOID Data, IN ULONG DataSize, IN USHORT Flags ) /*++ Routine Description: This creates an request packet to write an event on behalf of the event log service itself. It then queues this packet to a linked list for writing later. Arguments: The fields to use to create the event record Return Value: None Note: --*/ { PELF_QUEUED_EVENT QueuedEvent; PWRITE_PKT WritePkt; PEVENTLOGRECORD EventLogRecord; PBYTE BinaryData; ULONG RecordLength; ULONG StringOffset, DataOffset; USHORT StringsSize; USHORT i; ULONG PadSize; ULONG ModuleNameLen; // Length in bytes ULONG zero = 0; // For pad bytes LARGE_INTEGER Time; ULONG LogTimeWritten; PWSTR ReplaceStrings; #define ELF_MODULE_NAME L"EventLog" // LogTimeWritten // We need to generate a time when the log is written. This // gets written in the log so that we can use it to test the // retention period when wrapping the file. // NtQuerySystemTime(&Time); RtlTimeToSecondsSince1970( &Time, &LogTimeWritten ); // // Figure out how big a buffer to allocate // ModuleNameLen = (wcslen(ELF_MODULE_NAME) + 1) * sizeof (WCHAR); StringOffset = sizeof(EVENTLOGRECORD) + ModuleNameLen + ComputerNameLength; // // Calculate the length of strings so that we can see how // much space is needed for that. // StringsSize = 0; for (i=0; iLength = RecordLength; EventLogRecord->TimeGenerated = LogTimeWritten; EventLogRecord->Reserved = ELF_LOG_FILE_SIGNATURE; EventLogRecord->TimeWritten = LogTimeWritten; EventLogRecord->EventID = EventId; EventLogRecord->EventType = EventType; EventLogRecord->EventCategory = EventCategory; EventLogRecord->ReservedFlags = 0; EventLogRecord->ClosingRecordNumber = 0; EventLogRecord->NumStrings = NumStrings; EventLogRecord->StringOffset = StringOffset; EventLogRecord->DataLength = DataSize; EventLogRecord->DataOffset = DataOffset; EventLogRecord->UserSidLength = 0; EventLogRecord->UserSidOffset = StringOffset; // // Fill in the variable-length fields // // // STRINGS // ReplaceStrings = (PWSTR) ((PBYTE) EventLogRecord + StringOffset ); for (i=0; i < NumStrings; i++) { wcscpy (ReplaceStrings, Strings[i]); ReplaceStrings += wcslen(Strings[i]) + 1; } // // MODULENAME // BinaryData = (PBYTE) EventLogRecord + sizeof(EVENTLOGRECORD); RtlMoveMemory (BinaryData, ELF_MODULE_NAME, ModuleNameLen); // // COMPUTERNAME // BinaryData += ModuleNameLen; // Now point to computername RtlMoveMemory (BinaryData, LocalComputerName, ComputerNameLength); // // BINARY DATA // BinaryData = (PBYTE) ((PBYTE) EventLogRecord + DataOffset); RtlMoveMemory (BinaryData, Data, DataSize); // // PAD - Fill with zeros // BinaryData += DataSize; RtlMoveMemory (BinaryData, &zero, PadSize); // // LENGTH at end of record // BinaryData += PadSize; // Point after pad bytes ((PULONG)BinaryData)[0] = RecordLength; // // Build the QueuedEvent Packet // QueuedEvent->Type = Event; QueuedEvent->Event.Request.Pkt.WritePkt = WritePkt; QueuedEvent->Event.Request.Module = ElfModule; QueuedEvent->Event.Request.Flags = Flags; QueuedEvent->Event.Request.LogFile = ElfModule->LogFile; QueuedEvent->Event.Request.Command = ELF_COMMAND_WRITE; QueuedEvent->Event.Request.Pkt.WritePkt->Buffer = (PVOID) EventLogRecord; QueuedEvent->Event.Request.Pkt.WritePkt->Datasize = RecordLength; // // Now Queue it on the linked list // LinkQueuedEvent(QueuedEvent); } } VOID ElfpCreateQueuedAlert( DWORD MessageId, DWORD NumberOfStrings, LPWSTR Strings[] ) { DWORD i; DWORD RecordLength; PELF_QUEUED_EVENT QueuedEvent; PUNICODE_STRING UnicodeStrings; LPWSTR pString; PBYTE ptr; LARGE_INTEGER Time; ULONG CurrentTime; // // Turn the input strings into UNICODE_STRINGS and figure out how // big to make the buffer to allocate // RecordLength = sizeof(UNICODE_STRING) * NumberOfStrings; UnicodeStrings = ElfpAllocateBuffer(RecordLength); if (!UnicodeStrings) { return; } RecordLength += FIELD_OFFSET(ELF_QUEUED_EVENT, Event) + sizeof(ELF_ALERT_RECORD); for (i = 0; i < NumberOfStrings; i++) { RtlInitUnicodeString(&UnicodeStrings[i], Strings[i]); RecordLength += UnicodeStrings[i].MaximumLength; } // // Now allocate what will be the real queued event // QueuedEvent = ElfpAllocateBuffer(RecordLength); if (!QueuedEvent) { return; } QueuedEvent->Type = Alert; QueuedEvent->Event.Alert.MessageId = MessageId; QueuedEvent->Event.Alert.NumberOfStrings = NumberOfStrings; // // If we can't send the alert in 5 minutes, give up // NtQuerySystemTime(&Time); RtlTimeToSecondsSince1970(&Time, &CurrentTime); QueuedEvent->Event.Alert.TimeOut = CurrentTime + 300; // // Move the array of UNICODE_STRINGS into the queued event and // point UnicodeStrings at it. Then fix up the Buffer pointers. // ptr = (PBYTE) QueuedEvent + FIELD_OFFSET(ELF_QUEUED_EVENT, Event) + sizeof(ELF_ALERT_RECORD); RtlMoveMemory(ptr, UnicodeStrings, sizeof(UNICODE_STRING) * NumberOfStrings); ElfpFreeBuffer(UnicodeStrings); UnicodeStrings = (PUNICODE_STRING) ptr; pString = (LPWSTR) (ptr + sizeof(UNICODE_STRING) * NumberOfStrings); for (i = 0; i < NumberOfStrings; i++) { RtlMoveMemory(pString, UnicodeStrings[i].Buffer, UnicodeStrings[i].MaximumLength); UnicodeStrings[i].Buffer = pString; pString = (LPWSTR) ((PBYTE) pString + UnicodeStrings[i].MaximumLength); } LinkQueuedEvent(QueuedEvent); } VOID ElfpCreateQueuedMessage( DWORD MessageId, DWORD NumberOfStrings, LPWSTR Strings[] ) { DWORD i; DWORD RecordLength = 0; PELF_QUEUED_EVENT QueuedEvent; LPWSTR pString; // // Figure out how big to make the buffer to allocate // RecordLength = sizeof(ELF_QUEUED_EVENT); for (i = 0; i < NumberOfStrings; i++) { RecordLength += (wcslen(Strings[i]) + 1) * sizeof(WCHAR); } // // Now allocate what will be the real queued event // QueuedEvent = ElfpAllocateBuffer(RecordLength); if (!QueuedEvent) { return; } QueuedEvent->Type = Message; QueuedEvent->Event.Message.MessageId = MessageId; QueuedEvent->Event.Message.NumberOfStrings = NumberOfStrings; // // Move the array of UNICODE strings into the queued event // pString = (LPWSTR) ((PBYTE) QueuedEvent + FIELD_OFFSET(ELF_QUEUED_EVENT, Event) + sizeof(ELF_MESSAGE_RECORD)); for (i = 0; i < NumberOfStrings; i++) { wcscpy(pString, Strings[i]); pString += wcslen(Strings[i]) + 1; } LinkQueuedMessage(QueuedEvent); }