/*++ Copyright (c) 1990 Microsoft Corporation Copyright (c) 1993 Digital Equipment Corporation Module Name: allproc.c Abstract: This module allocates and intializes kernel resources required to start a new processor, and passes a complete processor state structure to the HAL to obtain a new processor. Author: David N. Cutler 29-Apr-1993 Joe Notarangelo 30-Nov-1993 Environment: Kernel mode only. Revision History: --*/ #include "ki.h" #ifdef ALLOC_PRAGMA #pragma alloc_text(INIT, KeStartAllProcessors) #endif // // Define macro to round up to 64-byte boundary and define block sizes. // #define ROUND_UP(x) ((sizeof(x) + 64) & (~64)) #define BLOCK1_SIZE ((3 * KERNEL_STACK_SIZE) + PAGE_SIZE) #define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(ETHREAD) + 64) // // Define forward referenced prototypes. // VOID KiCalibratePerformanceCounter( VOID ); VOID KiCalibratePerformanceCounterTarget ( IN PULONG SignalDone, IN PVOID Count, IN PVOID Parameter2, IN PVOID Parameter3 ); VOID KiStartProcessor ( IN PLOADER_PARAMETER_BLOCK Loaderblock ); VOID KeStartAllProcessors( VOID ) /*++ Routine Description: This function is called during phase 1 initialize on the master boot processor to start all of the other registered processors. Arguments: None. Return Value: None. --*/ { ULONG MemoryBlock1; ULONG MemoryBlock2; ULONG Number; ULONG PcrAddress; ULONG PcrPage; PKPRCB Prcb; KPROCESSOR_STATE ProcessorState; PRESTART_BLOCK RestartBlock; BOOLEAN Started; #if !defined(NT_UP) // // If the registered number of processors is greater than the maximum // number of processors supported, then only allow the maximum number // of supported processors. // if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) { KeRegisteredProcessors = MAXIMUM_PROCESSORS; } // // Initialize the processor state that will be used to start each of // processors. Each processor starts in the system initialization code // with address of the loader parameter block as an argument. // RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE)); ProcessorState.ContextFrame.IntA0 = (ULONGLONG)(LONG)KeLoaderBlock; ProcessorState.ContextFrame.Fir = (ULONGLONG)(LONG)KiStartProcessor; Number = 1; while (Number < KeRegisteredProcessors) { // // Allocate a DPC stack, an idle thread kernel stack, a panic // stack, a PCR page, a processor block, and an executive thread // object. If the allocation fails or the allocation cannot be // made from unmapped nonpaged pool, then stop starting processors. // MemoryBlock1 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK1_SIZE); if (((PVOID)MemoryBlock1 == NULL) || ((MemoryBlock1 & 0xc0000000) != KSEG0_BASE)) { if ((PVOID)MemoryBlock1 != NULL) { ExFreePool((PVOID)MemoryBlock1); } break; } MemoryBlock2 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK2_SIZE); if (((PVOID)MemoryBlock2 == NULL) || ((MemoryBlock2 & 0xc0000000) != KSEG0_BASE)) { ExFreePool((PVOID)MemoryBlock1); if ((PVOID)MemoryBlock2 != NULL) { ExFreePool((PVOID)MemoryBlock2); } break; } // // Zero both blocks of allocated memory. // RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE); RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE); // // Set address of interrupt stack in loader parameter block. // KeLoaderBlock->u.Alpha.PanicStack = MemoryBlock1 + (1 * KERNEL_STACK_SIZE); // // Set address of idle thread kernel stack in loader parameter block. // KeLoaderBlock->KernelStack = MemoryBlock1 + (2 * KERNEL_STACK_SIZE); ProcessorState.ContextFrame.IntSp = (ULONGLONG)(LONG)KeLoaderBlock->KernelStack; // // Set address of panic stack in loader parameter block. // KeLoaderBlock->u.Alpha.DpcStack = MemoryBlock1 + (3 * KERNEL_STACK_SIZE); // // Set the page frame of the PCR page in the loader parameter block. // PcrAddress = MemoryBlock1 + (3 * KERNEL_STACK_SIZE); PcrPage = (PcrAddress ^ KSEG0_BASE) >> PAGE_SHIFT; KeLoaderBlock->u.Alpha.PcrPage = PcrPage; // // Set the address of the processor block and executive thread in the // loader parameter block. // KeLoaderBlock->Prcb = (MemoryBlock2 + 63) & ~63; KeLoaderBlock->Thread = KeLoaderBlock->Prcb + ROUND_UP(KPRCB); // // Attempt to start the next processor. If attempt is successful, // then wait for the processor to get initialized. Otherwise, // deallocate the processor resources and terminate the loop. // Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState); if (Started == FALSE) { ExFreePool((PVOID)MemoryBlock1); ExFreePool((PVOID)MemoryBlock2); break; } else { // // Wait until boot is finished on the target processor before // starting the next processor. Booting is considered to be // finished when a processor completes its initialization and // drops into the idle loop. // Prcb = (PKPRCB)(KeLoaderBlock->Prcb); RestartBlock = Prcb->RestartBlock; while (RestartBlock->BootStatus.BootFinished == 0) { KiMb(); } } Number += 1; } #endif // // Reset and synchronize the performance counters of all processors. // KiCalibratePerformanceCounter(); return; } VOID KiCalibratePerformanceCounter( VOID ) /*++ Routine Description: This function resets and synchronizes the performance counter on all processors in the configuration. Arguments: None. Return Value: None. --*/ { KIRQL OldIrql; LONG Count = 1; KAFFINITY TargetProcessors; ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); // // Raise IRQl to DISPATCH_LEVEL to avoid a possible context switch. // #if !defined(NT_UP) KeRaiseIrql(DISPATCH_LEVEL, &OldIrql); // // Initialize the reset performance counter packet, compute the target // set of processors, and send the packet to the target processors, if // any, for execution. // TargetProcessors = KeActiveProcessors & PCR->NotMember; if (TargetProcessors != 0) { Count = (LONG)KeNumberProcessors; KiIpiSendPacket(TargetProcessors, KiCalibratePerformanceCounterTarget, &Count, NULL, NULL); } #endif // // Reset the performance counter on current processor. // HalCalibratePerformanceCounter((volatile PLONG)&Count); // // Wait until all target processors have reset and synchronized their // performance counters. // #if !defined(NT_UP) if (TargetProcessors != 0) { KiIpiStallOnPacketTargets(); } // // Lower IRQL to previous level. // KeLowerIrql(OldIrql); #endif return; } VOID KiCalibratePerformanceCounterTarget ( IN PULONG SignalDone, IN PVOID Count, IN PVOID Parameter2, IN PVOID Parameter3 ) /*++ Routine Description: This is the target function for reseting the performance counter. Arguments: SignalDone - Supplies a pointer to a variable that is cleared when the requested operation has been performed. Count - Supplies a pointer to the number of processors in the host configuration. Parameter2 - Parameter3 - Not used. Return Value: None. --*/ { // // Reset and synchronize the perfromance counter on the current processor // and clear the reset performance counter address to signal the source to // continue. // #if !defined(NT_UP) HalCalibratePerformanceCounter((volatile PLONG)Count); KiIpiSignalPacketDone(SignalDone); #endif return; }