/*++ Copyright (c) 1991-1994 Microsoft Corporation Module Name: xxinithl.c Abstract: This module implements the initialization of the system dependent functions that define the Hardware Architecture Layer (HAL) for a MIPS R4000 system. Author: David N. Cutler (davec) 25-Apr-1991 Environment: Kernel mode only. Revision History: --*/ #include "halp.h" // // Define forward referenced prototypes. // VOID HalpBugCheckCallback ( IN PVOID Buffer, IN ULONG Length ); BOOLEAN HalpBusError ( IN PEXCEPTION_RECORD ExceptionRecord, IN PKEXCEPTION_FRAME ExceptionFrame, IN PKTRAP_FRAME TrapFrame, IN PVOID VirtualAddress, IN PHYSICAL_ADDRESS PhysicalAddress ); // // Put all code for HAL initialization in the INIT section. It will be // deallocated by memory management when phase 1 initialization is // completed. // #if defined(ALLOC_PRAGMA) #pragma alloc_text(INIT, HalInitSystem) #pragma alloc_text(INIT, HalInitializeProcessor) #pragma alloc_text(INIT, HalStartNextProcessor) #endif // // Define global spin locks used to synchronize various HAL operations. // KSPIN_LOCK HalpBeepLock; KSPIN_LOCK HalpDisplayAdapterLock; KSPIN_LOCK HalpSystemInterruptLock; // // Define bug check information buffer and callback record. // typedef struct _HALP_BUGCHECK_BUFFER { ULONG FailedAddress; ULONG DiagnosticLow; ULONG DiagnosticHigh; } HALP_BUGCHECK_BUFFER, *PHALP_BUGCHECK_BUFFER; HALP_BUGCHECK_BUFFER HalpBugCheckBuffer; KBUGCHECK_CALLBACK_RECORD HalpCallbackRecord; UCHAR HalpComponentId[] = "hal.dll"; BOOLEAN HalInitSystem ( IN ULONG Phase, IN PLOADER_PARAMETER_BLOCK LoaderBlock ) /*++ Routine Description: This function initializes the Hardware Architecture Layer (HAL) for a MIPS R3000 or R4000 system. Arguments: Phase - Supplies the initialization phase (zero or one). LoaderBlock - Supplies a pointer to a loader parameter block. Return Value: A value of TRUE is returned is the initialization was successfully complete. Otherwise a value of FALSE is returend. --*/ { ULONG FailedAddress; PKPRCB Prcb; PHYSICAL_ADDRESS PhysicalAddress; PHYSICAL_ADDRESS ZeroAddress; ULONG AddressSpace; // // Initialize the HAL components based on the phase of initialization // and the processor number. // Prcb = PCR->Prcb; PCR->DataBusError = HalpBusError; PCR->InstructionBusError = HalpBusError; if ((Phase == 0) || (Prcb->Number != 0)) { // // Phase 0 initialization. // // N.B. Phase 0 initialization is executed on all processors. // // Verify that the processor block major version number conform // to the system that is being loaded. // if (Prcb->MajorVersion != PRCB_MAJOR_VERSION) { KeBugCheck(MISMATCHED_HAL); } // // Map the fixed TB entries. // HalpMapFixedTbEntries(); // // If processor 0 is being initialized, then initialize various // variables, spin locks, and the display adapter. // if (Prcb->Number == 0) { // // Set the number of process id's and TB entries. // **((PULONG *)(&KeNumberProcessIds)) = 256; **((PULONG *)(&KeNumberTbEntries)) = 48; // // Set the interval clock increment value. // HalpCurrentTimeIncrement = MAXIMUM_INCREMENT; HalpNextTimeIncrement = MAXIMUM_INCREMENT; HalpNextIntervalCount = 0; KeSetTimeIncrement(MAXIMUM_INCREMENT, MINIMUM_INCREMENT); // // Initialize all spin locks. // #if defined(_DUO_) KeInitializeSpinLock(&HalpBeepLock); KeInitializeSpinLock(&HalpDisplayAdapterLock); KeInitializeSpinLock(&HalpSystemInterruptLock); #endif // // Set address of cache error routine. // KeSetCacheErrorRoutine(HalpCacheErrorRoutine); // // Initialize the display adapter. // HalpInitializeDisplay0(LoaderBlock); // // Allocate map register memory. // HalpAllocateMapRegisters(LoaderBlock); // // Initialize and register a bug check callback record. // KeInitializeCallbackRecord(&HalpCallbackRecord); KeRegisterBugCheckCallback(&HalpCallbackRecord, HalpBugCheckCallback, &HalpBugCheckBuffer, sizeof(HALP_BUGCHECK_BUFFER), &HalpComponentId[0]); } // // Clear memory address error registers. // #if defined(_DUO_) FailedAddress = ((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InvalidAddress.Long; #endif FailedAddress = ((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->MemoryFailedAddress.Long; // // Initialize interrupts // HalpInitializeInterrupts(); return TRUE; } else { // // Phase 1 initialization. // // N.B. Phase 1 initialization is only executed on processor 0. // // Complete initialization of the display adapter. // if (HalpInitializeDisplay1(LoaderBlock) == FALSE) { return FALSE; } else { // // Map I/O space, calibrate the stall execution scale factor, // and create DMA data structures. // HalpMapIoSpace(); HalpCalibrateStall(); HalpCreateDmaStructures(); // // Map EISA memory space so the x86 bios emulator emulator can // initialze a video adapter in an EISA slot. // ZeroAddress.QuadPart = 0; AddressSpace = 0; HalTranslateBusAddress(Isa, 0, ZeroAddress, &AddressSpace, &PhysicalAddress); HalpEisaMemoryBase = MmMapIoSpace(PhysicalAddress, PAGE_SIZE * 256, FALSE); HalpInitializeX86DisplayAdapter(); return TRUE; } } } VOID HalpBugCheckCallback ( IN PVOID Buffer, IN ULONG Length ) /*++ Routine Description: This function is called when a bug check occurs. Its function is to dump the state of the memory error registers into a bug check buffer. Arguments: Buffer - Supplies a pointer to the bug check buffer. Length - Supplies the length of the bug check buffer in bytes. Return Value: None. --*/ { PHALP_BUGCHECK_BUFFER DumpBuffer; // // Capture the failed memory address and diagnostic registers. // DumpBuffer = (PHALP_BUGCHECK_BUFFER)Buffer; #if defined(_DUO_) DumpBuffer->DiagnosticLow = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InvalidAddress.Long; DumpBuffer->DiagnosticHigh = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->EccDiagnostic.u.LargeInteger.HighPart; #else DumpBuffer->DiagnosticLow = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->ParityDiagnosticLow.Long; DumpBuffer->DiagnosticHigh = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->ParityDiagnosticHigh.Long; #endif DumpBuffer->FailedAddress = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->MemoryFailedAddress.Long; return; } BOOLEAN HalpBusError ( IN PEXCEPTION_RECORD ExceptionRecord, IN PKEXCEPTION_FRAME ExceptionFrame, IN PKTRAP_FRAME TrapFrame, IN PVOID VirtualAddress, IN PHYSICAL_ADDRESS PhysicalAddress ) /*++ Routine Description: This function provides the default bus error handling routine for NT. N.B. There is no return from this routine. Arguments: ExceptionRecord - Supplies a pointer to an exception record. ExceptionFrame - Supplies a pointer to an exception frame. TrapFrame - Supplies a pointer to a trap frame. VirtualAddress - Supplies the virtual address of the bus error. PhysicalAddress - Supplies the physical address of the bus error. Return Value: None. --*/ { ULONG DiagnosticHigh; ULONG DiagnosticLow; ULONG FailedAddress; // // Bug check specifying the exception code, the virtual address, the // failed memory address, and either the ECC diagnostic registers or // the parity diagnostic registers depending on the platform. // #if defined(_DUO_) DiagnosticLow = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InvalidAddress.Long; DiagnosticHigh = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->EccDiagnostic.u.LargeInteger.HighPart; #else DiagnosticLow = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->ParityDiagnosticLow.Long; DiagnosticHigh = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->ParityDiagnosticHigh.Long; #endif FailedAddress = (ULONG)((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->MemoryFailedAddress.Long; KeBugCheckEx(ExceptionRecord->ExceptionCode & 0xffff, (ULONG)VirtualAddress, FailedAddress, DiagnosticLow, DiagnosticHigh); return FALSE; } VOID HalInitializeProcessor ( IN ULONG Number ) /*++ Routine Description: This function is called early in the initialization of the kernel to perform platform dependent initialization for each processor before the HAL Is fully functional. N.B. When this routine is called, the PCR is present but is not fully initialized. Arguments: Number - Supplies the number of the processor to initialize. Return Value: None. --*/ { return; } BOOLEAN HalStartNextProcessor ( IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PKPROCESSOR_STATE ProcessorState ) /*++ Routine Description: This function is called to start the next processor. Arguments: LoaderBlock - Supplies a pointer to the loader parameter block. ProcessorState - Supplies a pointer to the processor state to be used to start the processor. Return Value: If a processor is successfully started, then a value of TRUE is returned. Otherwise a value of FALSE is returned. If a value of TRUE is returned, then the logical processor number is stored in the processor control block specified by the loader block. --*/ { #if defined(_DUO_) PRESTART_BLOCK NextRestartBlock; ULONG Number; PKPRCB Prcb; // // If the address of the first restart parameter block is NULL, then // the host system is a uniprocessor system running with old firmware. // Otherwise, the host system may be a multiprocessor system if more // than one restart block is present. // // N.B. The first restart parameter block must be for the boot master // and must represent logical processor 0. // NextRestartBlock = SYSTEM_BLOCK->RestartBlock; if (NextRestartBlock == NULL) { return FALSE; } // // Scan the restart parameter blocks for a processor that is ready, // but not running. If a processor is found, then fill in the restart // processor state, set the logical processor number, and set start // in the boot status. // Number = 0; do { if ((NextRestartBlock->BootStatus.ProcessorReady != FALSE) && (NextRestartBlock->BootStatus.ProcessorStart == FALSE)) { RtlZeroMemory(&NextRestartBlock->u.Mips, sizeof(MIPS_RESTART_STATE)); NextRestartBlock->u.Mips.IntA0 = ProcessorState->ContextFrame.IntA0; NextRestartBlock->u.Mips.Fir = ProcessorState->ContextFrame.Fir; Prcb = (PKPRCB)(LoaderBlock->Prcb); Prcb->Number = (CCHAR)Number; Prcb->RestartBlock = NextRestartBlock; NextRestartBlock->BootStatus.ProcessorStart = 1; return TRUE; } Number += 1; NextRestartBlock = NextRestartBlock->NextRestartBlock; } while (NextRestartBlock != NULL); #endif return FALSE; } VOID HalpVerifyPrcbVersion( VOID ) /*++ Routine Description: This function ? Arguments: None. Return Value: None. --*/ { return; }