/******************************Module*Header*******************************\ * Module Name: Brush.c * * Handles all brush/pattern initialization and realization. * * Copyright (c) 1992-1996 Microsoft Corporation * \**************************************************************************/ #include "precomp.h" /******************************Public*Routine******************************\ * VOID vRealizeDitherPattern * * Generates an 8x8 dither pattern, in our internal realization format, for * the colour ulRGBToDither. Note that the high byte of ulRGBToDither does * not need to be set to zero, because vComputeSubspaces ignores it. \**************************************************************************/ VOID vRealizeDitherPattern( RBRUSH* prb, ULONG ulRGBToDither) { ULONG ulNumVertices; VERTEX_DATA vVertexData[4]; VERTEX_DATA* pvVertexData; LONG i; // Calculate what colour subspaces are involved in the dither: pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData); // Now that we have found the bounding vertices and the number of // pixels to dither for each vertex, we can create the dither pattern ulNumVertices = pvVertexData - vVertexData; // # of vertices with more than zero pixels in the dither // Do the actual dithering: vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices); // Initialize the fields we need: prb->ptlBrushOrg.x = LONG_MIN; prb->fl = 0; for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = NULL; } } /******************************Public*Routine******************************\ * BOOL DrvRealizeBrush * * This function allows us to convert GDI brushes into an internal form * we can use. It may be called directly by GDI at SelectObject time, or * it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush * to create a realized brush in a function like DrvBitBlt. * * Note that we have no way of determining what the current Rop or brush * alignment are at this point. * \**************************************************************************/ BOOL DrvRealizeBrush( BRUSHOBJ* pbo, SURFOBJ* psoDst, SURFOBJ* psoPattern, SURFOBJ* psoMask, XLATEOBJ* pxlo, ULONG iHatch) { PDEV* ppdev; ULONG iPatternFormat; BYTE* pjSrc; BYTE* pjDst; LONG lSrcDelta; LONG cj; LONG i; LONG j; RBRUSH* prb; ULONG* pulXlate; SURFOBJ* psoPunt; RECTL rclDst; BOOL b; ppdev = (PDEV*) psoDst->dhpdev; // We only handle brushes if we have an off-screen brush cache // available. If there isn't one, we can simply fail the realization, // and eventually GDI will do the drawing for us (although a lot // slower than we could have done it): if (!(ppdev->flStatus & STAT_BRUSH_CACHE)) goto ReturnFalse; // We have a fast path for dithers when we set GCAPS_DITHERONREALIZE: if (iHatch & RB_DITHERCOLOR) { // Implementing DITHERONREALIZE increased our score on a certain // unmentionable benchmark by 0.4 million 'megapixels'. Too bad // this didn't work in the first version of NT. prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev)); if (prb == NULL) goto ReturnFalse; vRealizeDitherPattern(prb, iHatch); goto ReturnTrue; } // We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't // support patterns of any other size, it's a safe bet that 99.9% // of the patterns we'll ever get will be 8x8: if ((psoPattern->sizlBitmap.cx != 8) || (psoPattern->sizlBitmap.cy != 8)) goto ReturnFalse; iPatternFormat = psoPattern->iBitmapFormat; prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev)); if (prb == NULL) goto ReturnFalse; // Initialize the fields we need: prb->ptlBrushOrg.x = LONG_MIN; prb->fl = 0; for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = NULL; } lSrcDelta = psoPattern->lDelta; pjSrc = (BYTE*) psoPattern->pvScan0; pjDst = (BYTE*) &prb->aulPattern[0]; if ((ppdev->iBitmapFormat == iPatternFormat) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { DISPDBG((1, "Realizing un-translated brush")); // The pattern is the same colour depth as the screen, and // there's no translation to be done: cj = CONVERT_TO_BYTES(8, ppdev); // Every pattern is 8 pels wide for (i = 8; i != 0; i--) { RtlCopyMemory(pjDst, pjSrc, cj); pjSrc += lSrcDelta; pjDst += cj; } } // Don't do monochrome expansion on 24 bpp due to s3 968 feature. else if ((iPatternFormat == BMF_1BPP) && (ppdev->iBitmapFormat != BMF_24BPP)) { DISPDBG((1, "Realizing 1bpp brush")); // We word align the monochrome bitmap so that every row starts // on a new word (so that we can do word writes later to transfer // the bitmap): for (i = 8; i != 0; i--) { *pjDst = *pjSrc; pjDst += sizeof(WORD); pjSrc += lSrcDelta; } pulXlate = pxlo->pulXlate; prb->fl |= RBRUSH_2COLOR; prb->ulForeColor = pulXlate[1]; prb->ulBackColor = pulXlate[0]; } else if ((iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP)) { DISPDBG((1, "Realizing 4bpp brush")); // The screen is 8bpp and the pattern is 4bpp: ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) && (iPatternFormat == BMF_4BPP), "Messed up brush logic"); pulXlate = pxlo->pulXlate; for (i = 8; i != 0; i--) { // Inner loop is repeated only 4 times because each loop // handles 2 pixels: for (j = 4; j != 0; j--) { *pjDst++ = (BYTE) pulXlate[*pjSrc >> 4]; *pjDst++ = (BYTE) pulXlate[*pjSrc & 15]; pjSrc++; } pjSrc += lSrcDelta - 4; } } else { // We've got a brush whose format we haven't special cased. No // problem, we can have GDI convert it to our device's format. // We simply use a temporary surface object that was created with // the same format as the display, and point it to our brush // realization: DISPDBG((5, "Realizing funky brush")); psoPunt = ppdev->psoBank; psoPunt->pvScan0 = pjDst; psoPunt->lDelta = CONVERT_TO_BYTES(8, ppdev); rclDst.left = 0; rclDst.top = 0; rclDst.right = 8; rclDst.bottom = 8; b = EngCopyBits(psoPunt, psoPattern, NULL, pxlo, &rclDst, (POINTL*) &rclDst); if (!b) { goto ReturnFalse; } } ReturnTrue: if (!(ppdev->flCaps & CAPS_HW_PATTERNS)) { // The last time I checked, GDI took some 500 odd instructions to // get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'. // We can at least use this time to get some overlap between the // CPU and the display hardware: we'll initialize the 72x72 off- // screen cache entry now, which will keep the accelerator busy for // a while. // // We don't do this if we have hardware patterns because: // // a) S3 hardware patterns require that the off-screen cached // brush be correctly aligned, and at this point we don't have // access to the 'pptlBrush' brush origin (although we could // have copied it into the PDEV before calling // BRUSHOBJ_pvGetRbrush). // // b) S3 hardware patterns require only an 8x8 copy of the // pattern; it is not expanded to 72x72, so there isn't even // any opportunity for CPU/accelerator processing overlap. vIoSlowPatRealize(ppdev, prb, FALSE); } return(TRUE); ReturnFalse: if (psoPattern != NULL) { DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li", psoPattern->iType, psoPattern->iBitmapFormat, psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy)); } return(FALSE); } /******************************Public*Routine******************************\ * BOOL bEnableBrushCache * * Allocates off-screen memory for storing the brush cache. \**************************************************************************/ BOOL bEnableBrushCache( PDEV* ppdev) { OH* poh; // Points to off-screen chunk of memory BRUSHENTRY* pbe; // Pointer to the brush-cache entry LONG i; pbe = &ppdev->abe[0]; // Points to where we'll put the first brush // cache entry if (ppdev->flCaps & CAPS_HW_PATTERNS) { LONG x; LONG y; // Allocate the width of the screen so that we bias the off-screen // heap manager to horizontal allocations: ASSERTDD(ppdev->cxMemory >= (FAST_BRUSH_COUNT + 1) * FAST_BRUSH_ALLOCATION + 1, "cxMemory allocation won't be big enough"); poh = pohAllocate(ppdev, NULL, ppdev->cxMemory, FAST_BRUSH_ALLOCATION, FLOH_MAKE_PERMANENT); if (poh == NULL) goto ReturnTrue; // See note about why we can return TRUE... ppdev->cBrushCache = FAST_BRUSH_COUNT; // Hardware brushes require that the x-coordinate start on an 8 // pixel boundary. The heap manager doesn't guarantee us any such // alignment, so we allocate a bit of extra room so that we can // do the alignment ourselves: x = (poh->x + 7) & ~7L; y = poh->y; for (i = FAST_BRUSH_COUNT; i != 0; i--) { // If we hadn't allocated 'ppdev' so that it was zero initialized, // we would have to initialize pbe->prbVerify too... pbe->x = x; pbe->y = y; x += FAST_BRUSH_ALLOCATION; pbe++; } // Remember the location of our 1x8 work area, which will be at // the right end of our brush array: ppdev->ptlReRealize.x = x; ppdev->ptlReRealize.y = y; } else { LONG j; ppdev->pfnFillPat = vIoFillPatSlow; // Override FillPatFast // Typically, we'll be running at 1024x768x256 on a 1meg board, // giving us off-screen memory of the dimension 1024x253 (accounting // for the space taken by the hardware pointer). If we allocate // the brush cache as one long one-high row of brushes, the heap // manager would shave that amount off the largest chunk of memory // we could allocate (meaning the largest bitmap potentially stored // in off-screen memory couldn't be larger than 253 - 64 = 189 pels // high, but it could be 1024 wide). // // To make this more square, I want to shave off a left-side chunk // for the brush cache, and I want at least 8 brushes cached. // Since floor(253/64) = 3, we'll allocate a 3 x 3 cache: poh = pohAllocate(ppdev, NULL, SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION, SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION, FLOH_MAKE_PERMANENT); if (poh == NULL) goto ReturnTrue; // See note about why we can return TRUE... ppdev->cBrushCache = SLOW_BRUSH_COUNT; for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++) { for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++) { pbe->x = poh->x + (i * SLOW_BRUSH_ALLOCATION); pbe->y = poh->y + (j * SLOW_BRUSH_ALLOCATION); pbe++; } } } // Note that we don't have to remember 'poh' for when we have // to disable brushes -- the off-screen heap frees any // off-screen heap allocations automatically. // We successfully allocated the brush cache, so let's turn // on the switch showing that we can use it: ppdev->flStatus |= STAT_BRUSH_CACHE; ReturnTrue: // If we couldn't allocate a brush cache, it's not a catastrophic // failure; patterns will still work, although they'll be a bit // slower since they'll go through GDI. As a result we don't // actually have to fail this call: DISPDBG((5, "Passed bEnableBrushCache")); return(TRUE); } /******************************Public*Routine******************************\ * VOID vDisableBrushCache * * Cleans up anything done in bEnableBrushCache. \**************************************************************************/ VOID vDisableBrushCache(PDEV* ppdev) { // We ain't gotta do nothin' } /******************************Public*Routine******************************\ * VOID vAssertModeBrushCache * * Resets the brush cache when we exit out of full-screen. \**************************************************************************/ VOID vAssertModeBrushCache( PDEV* ppdev, BOOL bEnable) { BRUSHENTRY* pbe; LONG i; if (bEnable) { // Invalidate the brush cache: pbe = &ppdev->abe[0]; for (i = ppdev->cBrushCache; i != 0; i--) { pbe->prbVerify = NULL; pbe++; } } }