Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

890 lines
28 KiB

/*
* T N B F . C
*
* Test NBF connection. Makes a connection on port 5001
* and transfers fabricated buffers or data copied from stdin.
*
* Usable on 4.2, 4.3, and 4.1a systems by defining one of
* BSD42 BSD43 (BSD41a)
* Machines using System V with BSD sockets should define SYSV.
*
* Modified for operation under 4.2BSD, 18 Dec 84
* T.C. Slattery, USNA
* Minor improvements, Mike Muuss and Terry Slattery, 16-Oct-85.
* Modified in 1989 at Silicon Graphics, Inc.
* catch SIGPIPE to be able to print stats when receiver has died
* for tcp, don't look for sentinel during reads to allow small transfers
* increased default buffer size to 8K, nbuf to 2K to transfer 16MB
* moved default port to 5001, beyond IPPORT_USERRESERVED
* make sinkmode default because it is more popular,
* -s now means don't sink/source
* count number of _read/_write system calls to see effects of
* blocking from full socket buffers
* for tcp, -D option turns off buffered writes (sets SO_NODELAY sockopt)
* buffer alignment options, -A and -O
* print stats in a format that's a bit easier to use with grep & awk
* for SYSV, mimic BSD routines to use most of the existing timing code
*
* Distribution Status -
* Public Domain. Distribution Unlimited.
*/
#ifndef lint
static char RCSid[] = "tnbf.c $Revision: 1.4 $";
#endif
#define BSD43
/* #define BSD42 */
/* #define BSD41a */
#if defined(sgi) || defined(CRAY)
#define SYSV
#endif
#include <stdio.h>
#include <stdlib.h>
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <io.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <winsock.h>
#include <wsnetbs.h>
#if defined(SYSV)
#include <sys/times.h>
#include <sys/param.h>
struct rusage {
struct timeval ru_utime, ru_stime;
};
#define RUSAGE_SELF 0
#else
#endif
#define SO_NODELAY 0x200
struct sockaddr_nb snbme;
struct sockaddr_nb snbhim;
struct sockaddr_nb fromnb;
int domain, fromlen;
SOCKET fd; /* fd of network socket */
int buflen = 8 * 1024; /* length of buffer */
char *buf; /* ptr to dynamic buffer */
int nbuf = 2 * 1024; /* number of buffers to send in sinkmode */
int bufoffset = 0; /* align buffer to this */
int bufalign = 16*1024; /* modulo this */
int dg = 0; /* 0 = virtual circuit, !0 = datagram */
int options = 0; /* socket options */
int one = 1; /* for 4.3 BSD style setsockopt() */
short port = 99; /* endpoint number */
char *host; /* ptr to name of host */
int trans; /* 0=receive, !0=transmit mode */
int sinkmode = 1; /* 0=normal I/O, !0=sink/source mode */
int verbose = 0; /* 0=print basic info, 1=print cpu rate, proc
* resource usage. */
int nodelay = 0; /* set SO_NODELAY socket option */
int b_flag = 0; /* use mread() */
int dg_connect = 0; /* connect DG sockets */
BYTE LocalName[NETBIOS_NAME_LENGTH];
WSADATA WsaData;
struct hostent *addr;
char Usage[] = "\
Usage: tnbf -t [-options] host [ < in ]\n\
tnbf -r [-options > out]\n\
Common options:\n\
-l## length of bufs read from or written to network (default 8192)\n\
-u use datagrams instead of virtual circuits\n\
-p## port number to send to or listen at (default 5001)\n\
-s -t: don't source a pattern to network, get data from stdin\n\
-r: don't sink (discard), print data on stdout\n\
-A align the start of buffers to this modulus (default 16384)\n\
-O start buffers at this offset from the modulus (default 0)\n\
-v verbose: print more statistics\n\
-d set SO_DEBUG socket option\n\
Options specific to -t:\n\
-n## number of source bufs written to network (default 2048)\n\
Options specific to -r:\n\
-B for -s, only output full blocks as specified by -l (for TAR)\n\
";
char stats[128];
unsigned long nbytes; /* bytes on net */
unsigned long numCalls; /* # of I/O system calls */
int Nread( SOCKET fd, PBYTE buf, INT count );
int mread( SOCKET fd, PBYTE bufp, INT n);
int Nwrite( SOCKET fd, PBYTE buf, INT count );
void err(char *s);
void mes(char *s);
void pattern(char *cp, int cnt );
void prep_timer();
double read_timer(char *s, int l);
//double cput, realt; /* user, real time (seconds) */
DWORD realt;
DWORD processUserTime;
DWORD processKernelTime;
DWORD systemUserTime;
DWORD systemKernelTime;
#define bcopy(s, d, c) memcpy((u_char *)(d), (u_char *)(s), (c))
#define bzero(d, l) memset((d), '\0', (l))
#define bcmp(s1, s2, l) memcmp((s1), (s2), (l))
void
sigpipe()
{
}
void _CRTAPI1
main(argc,argv)
int argc;
char **argv;
{
unsigned long addr_tmp;
DWORD nameLength = sizeof(LocalName);
int error;
error = WSAStartup( 0x0101, &WsaData );
if ( error == SOCKET_ERROR ) {
printf("tnbf: WSAStartup failed %ld:", GetLastError());
}
error = GetComputerNameA( LocalName, &nameLength );
if ( !error ) {
printf( "GetComputerNameA failed: %ld\n", GetLastError( ) );
}
if (argc < 2) goto usage;
argv++; argc--;
while( argc>0 && argv[0][0] == '-' ) {
switch (argv[0][1]) {
case 'B':
b_flag = 1;
break;
case 't':
trans = 1;
break;
case 'r':
trans = 0;
break;
case 'd':
options |= SO_DEBUG;
break;
case 'D':
nodelay = 1;
break;
case 'n':
nbuf = atoi(&argv[0][2]);
break;
case 'l':
buflen = atoi(&argv[0][2]);
break;
case 's':
sinkmode = 0; /* sink/source data */
break;
case 'p':
port = atoi(&argv[0][2]);
break;
case 'u':
dg = 1;
break;
case 'v':
verbose = 1;
break;
case 'A':
bufalign = atoi(&argv[0][2]);
break;
case 'O':
bufoffset = atoi(&argv[0][2]);
break;
case 'c':
dg_connect = 1;
break;
default:
goto usage;
}
argv++; argc--;
}
if(trans) {
char *s;
/* xmitr */
if (argc != 1) goto usage;
/* upcase remote name */
for ( s = argv[0]; *s != '\0'; s++ ) {
if ( islower( *s ) ) {
*s = toupper( *s );
}
}
SET_NETBIOS_SOCKADDR( &snbhim, 0, argv[0], port );
SET_NETBIOS_SOCKADDR( &snbme, 0, LocalName, 254 );
} else {
/* rcvr */
SET_NETBIOS_SOCKADDR( &snbme, 0, LocalName, port );
}
if (dg && buflen < 5) {
buflen = 5; /* send more than the sentinel size */
}
if ( (buf = (char *)malloc(buflen+bufalign)) == (char *)NULL)
err("malloc");
if (bufalign != 0)
buf +=(bufalign - ((int)buf % bufalign) + bufoffset) % bufalign;
if (trans) {
fprintf(stdout,
"tnbf-t: buflen=%d, nbuf=%d, align=%d/+%d, port=%d %s -> %s\n",
buflen, nbuf, bufalign, bufoffset, port,
dg?"dg":"vc",
argv[0]);
} else {
fprintf(stdout,
"tnbf-r: buflen=%d, nbuf=%d, align=%d/+%d, port=%d %s\n",
buflen, nbuf, bufalign, bufoffset, port,
dg?"dg":"vc");
}
if ((fd = socket(AF_NETBIOS, dg?SOCK_DGRAM:SOCK_SEQPACKET, 0)) < 0)
err("socket");
mes("socket");
if (bind(fd, (PSOCKADDR)&snbme, sizeof(snbme)) < 0)
err("bind");
if (!dg) {
//signal(SIGPIPE, sigpipe);
if (trans) {
/* We are the client if transmitting */
if(options) {
#if defined(BSD42)
if( setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0)
#else // BSD43
if( setsockopt(fd, SOL_SOCKET, options, (char *)&one, sizeof(one)) < 0)
#endif
err("setsockopt");
}
if (nodelay) {
struct protoent *p;
if( p && setsockopt(fd, SOL_SOCKET, SO_NODELAY,
(char *)&one, sizeof(one)) < 0)
err("setsockopt: nodelay");
mes("nodelay not implemented");
}
if(connect(fd, (PSOCKADDR)&snbhim, sizeof(snbhim) ) < 0)
err("connect");
mes("connect");
} else {
/* otherwise, we are the server and
* should listen for the connections
*/
listen(fd,0); /* allow a queue of 0 */
if(options) {
#if defined(BSD42)
if( setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0)
#else // BSD43
if( setsockopt(fd, SOL_SOCKET, options, (char *)&one, sizeof(one)) < 0)
#endif
err("setsockopt");
}
fromlen = sizeof(fromnb);
domain = AF_NETBIOS;
if((fd=accept(fd, (PSOCKADDR)&fromnb, &fromlen) ) < 0)
err("accept");
{ struct sockaddr_nb peer;
int peerlen = sizeof(peer);
if (getpeername(fd, (PSOCKADDR) &peer, &peerlen) < 0) {
err("getpeername");
}
fprintf(stderr,"tnbf-r: accept from %s\n",peer.snb_name);
}
}
} else if (dg_connect && trans) {
if(connect(fd, (PSOCKADDR)&snbhim, sizeof(snbhim) ) < 0)
err("connect");
mes("connect");
} else if (!trans) {
int arg = 65536;
if ( setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *)&arg, sizeof(arg)) < 0 ) {
err("setsockopt(SO_RCVBUF)");
}
}
prep_timer();
if (sinkmode) {
register int cnt;
if (trans) {
pattern( buf, buflen );
if(dg) (void)Nwrite( fd, buf, 4 ); /* rcvr start */
while (nbuf-- && Nwrite(fd,buf,buflen) == buflen)
nbytes += buflen;
if(dg) {
Sleep( 10 );
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
}
} else {
if (dg) {
while ((cnt=Nread(fd,buf,buflen)) > 0) {
static int going = 0;
if( cnt <= 4 ) {
if( going ) {
break; /* "EOF" */
}
going = 1;
prep_timer();
} else {
nbytes += cnt;
}
}
} else {
while ((cnt=Nread(fd,buf,buflen)) > 0) {
nbytes += cnt;
}
}
}
} else {
register int cnt;
if (trans) {
while((cnt=_read(0,buf,buflen)) > 0 &&
Nwrite(fd,buf,cnt) == cnt)
nbytes += cnt;
} else {
while((cnt=Nread(fd,buf,buflen)) > 0 &&
_write(1,buf,cnt) == cnt)
nbytes += cnt;
}
}
//if(errno) err("IO");
(void)read_timer(stats,sizeof(stats));
if(dg&&trans) {
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
}
closesocket(fd);
//if( cput <= 0.0 ) cput = 0.001;
if( realt <= 1000 ) realt = 1000;
fprintf(stdout,
"tnbf%s: %ld bytes in %ld real milliseconds = %ld KB/sec +++\n",
trans?"-t":"-r",
nbytes, realt, nbytes/(realt/1000)/1024 );
//if (verbose) {
// fprintf(stdout,
// "tnbf%s: %ld bytes in %.2f CPU seconds = %.2f KB/cpu sec\n",
// trans?"-t":"-r",
// nbytes, cput, ((double)nbytes)/cput/1024 );
//}
fprintf(stdout,
"tnbf%s: %d I/O calls, msec/call = %ld, calls/sec = %ld\n",
trans?"-t":"-r",
numCalls,
realt/numCalls,
numCalls/(realt/1000));
//fprintf(stdout,"tnbf%s: %s\n", trans?"-t":"-r", stats);
fprintf(stdout,"tnbf%s: system CPU %ld%%, User %ld%%, Kernel %ld%%, User/Kernel ratio %ld%%\n",
trans?"-t":"-r",
((systemUserTime+systemKernelTime)*100+50)/realt,
(systemUserTime*100+50)/realt,
(systemKernelTime*100+50)/realt,
(systemUserTime*100+50)/(systemUserTime+systemKernelTime));
fprintf(stdout,"tnbf%s: process CPU %ld%%, User %ld%%, Kernel %ld%%, User/Kernel ratio %ld%%\n",
trans?"-t":"-r",
((processUserTime+processKernelTime)*100+50)/realt,
(processUserTime*100+50)/realt,
(processKernelTime*100+50)/realt,
(processUserTime*100+50)/(processUserTime+processKernelTime));
if (verbose) {
fprintf(stdout,
"tnbf%s: buffer address %#x\n",
trans?"-t":"-r",
buf);
}
exit(0);
usage:
fprintf(stderr,Usage);
exit(1);
}
void err(s)
char *s;
{
fprintf(stderr,"tnbf%s: ", trans?"-t":"-r");
perror(s);
fprintf(stderr,"errno=%d\n",WSAGetLastError( ));
exit(1);
}
void mes(s)
char *s;
{
fprintf(stderr,"tnbf%s: %s\n", trans?"-t":"-r", s);
}
void pattern( cp, cnt )
register char *cp;
register int cnt;
{
register char c;
c = 0;
while( cnt-- > 0 ) {
while( !isprint((c&0x7F)) ) c++;
*cp++ = (c++&0x7F);
}
}
static void prusage();
static void tvadd();
static void tvsub();
static void psecs();
#if defined(SYSV)
/*ARGSUSED*/
static
getrusage(ignored, ru)
int ignored;
register struct rusage *ru;
{
struct tms buf;
times(&buf);
/* Assumption: HZ <= 2147 (LONG_MAX/1000000) */
ru->ru_stime.tv_sec = buf.tms_stime / HZ;
ru->ru_stime.tv_usec = ((buf.tms_stime % HZ) * 1000000) / HZ;
ru->ru_utime.tv_sec = buf.tms_utime / HZ;
ru->ru_utime.tv_usec = ((buf.tms_utime % HZ) * 1000000) / HZ;
}
#if !defined(sgi)
/*ARGSUSED*/
static
gettimeofday(tp, zp)
struct timeval *tp;
struct timezone *zp;
{
tp->tv_sec = time(0);
tp->tv_usec = 0;
}
#endif
#endif // SYSV
LARGE_INTEGER time0;
SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION systemPerfInfo0;
KERNEL_USER_TIMES processPerfInfo0;
LARGE_INTEGER time1;
SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION systemPerfInfo1;
KERNEL_USER_TIMES processPerfInfo1;
/*
* P R E P _ T I M E R
*/
void
prep_timer()
{
NTSTATUS status;
//gettimeofday(&time0, (struct timezone *)0);
//getrusage(RUSAGE_SELF, &ru0);
status = NtQuerySystemTime( &time0 );
if ( !NT_SUCCESS(status) ) {
printf( "NtQuerySystemTime failed: %X\n", status );
exit(1);
}
status = NtQuerySystemInformation (
SystemProcessorPerformanceInformation,
&systemPerfInfo0,
sizeof(systemPerfInfo0),
NULL
);
if ( !NT_SUCCESS(status) ) {
printf( "NtQuerySystemInformation failed: %X\n", status );
exit(1);
}
status = NtQueryInformationProcess(
NtCurrentProcess( ),
ProcessTimes,
&processPerfInfo0,
sizeof(processPerfInfo0),
NULL
);
if ( !NT_SUCCESS(status) ) {
printf( "NtQueryInformationProcess failed: %X\n", status );
exit(1);
}
}
/*
* R E A D _ T I M E R
*
*/
double
read_timer(str,len)
char *str;
int len;
{
#if 0
char line[132];
getrusage(RUSAGE_SELF, &ru1);
gettimeofday(&timedol, (struct timezone *)0);
prusage(&ru0, &ru1, &timedol, &time0, line);
(void)strncpy( str, line, len );
/* Get real time */
tvsub( &td, &timedol, &time0 );
realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
/* Get CPU time (user+sys) */
tvadd( &tend, &ru1.ru_utime, &ru1.ru_stime );
tvadd( &tstart, &ru0.ru_utime, &ru0.ru_stime );
tvsub( &td, &tend, &tstart );
cput = td.tv_sec + ((double)td.tv_usec) / 1000000;
if( cput < 0.00001 ) cput = 0.00001;
return( cput );
#endif
NTSTATUS status;
LARGE_INTEGER result, result2;
ULONG dummy;
status = NtQuerySystemTime( &time1 );
if ( !NT_SUCCESS(status) ) {
printf( "NtQuerySystemTime failed: %X\n", status );
exit(1);
}
status = NtQuerySystemInformation (
SystemProcessorPerformanceInformation,
&systemPerfInfo1,
sizeof(systemPerfInfo1),
NULL
);
if ( !NT_SUCCESS(status) ) {
printf( "NtQuerySystemInformation failed: %X\n", status );
exit(1);
}
status = NtQueryInformationProcess(
NtCurrentProcess( ),
ProcessTimes,
&processPerfInfo1,
sizeof(processPerfInfo1),
NULL
);
if ( !NT_SUCCESS(status) ) {
printf( "NtQueryInformationProcess failed: %X\n", status );
exit(1);
}
result = RtlLargeIntegerSubtract( time1, time0 );
result = RtlExtendedLargeIntegerDivide( result, 10*1000, &dummy );
if ( result.HighPart != 0 ) {
printf( "result 1 high part == %ld\n", result.HighPart );
}
realt = result.LowPart;
result = RtlLargeIntegerSubtract( systemPerfInfo1.UserTime, systemPerfInfo0.UserTime );
result = RtlExtendedLargeIntegerDivide( result, 10*1000, &dummy );
if ( result.HighPart != 0 ) {
printf( "result 2 high part == %ld\n", result.HighPart );
}
systemUserTime = result.LowPart;
result = RtlLargeIntegerSubtract( systemPerfInfo1.KernelTime, systemPerfInfo0.KernelTime );
result2 = RtlLargeIntegerSubtract( systemPerfInfo1.IdleTime, systemPerfInfo0.IdleTime );
result = RtlLargeIntegerSubtract( result, result2 );
result = RtlExtendedLargeIntegerDivide( result, 10*1000, &dummy );
if ( result.HighPart != 0 ) {
printf( "result 3 high part == %ld\n", result.HighPart );
}
systemKernelTime = result.LowPart;
result = RtlLargeIntegerSubtract( processPerfInfo1.UserTime, processPerfInfo0.UserTime );
result = RtlExtendedLargeIntegerDivide( result, 10*1000, &dummy );
if ( result.HighPart != 0 ) {
printf( "result 4 high part == %ld\n", result.HighPart );
}
processUserTime = result.LowPart;
result = RtlLargeIntegerSubtract( processPerfInfo1.KernelTime, processPerfInfo0.KernelTime );
result = RtlExtendedLargeIntegerDivide( result, 10*1000, &dummy );
if ( result.HighPart != 0 ) {
printf( "result 5 high part == %ld\n", result.HighPart );
}
processKernelTime = result.LowPart;
return 0;
}
#if 0
static void
prusage(r0, r1, e, b, outp)
register struct rusage *r0, *r1;
struct timeval *e, *b;
char *outp;
{
struct timeval tdiff;
register time_t t;
register char *cp;
register int i;
int ms;
t = (r1->ru_utime.tv_sec-r0->ru_utime.tv_sec)*100+
(r1->ru_utime.tv_usec-r0->ru_utime.tv_usec)/10000+
(r1->ru_stime.tv_sec-r0->ru_stime.tv_sec)*100+
(r1->ru_stime.tv_usec-r0->ru_stime.tv_usec)/10000;
ms = (e->tv_sec-b->tv_sec)*100 + (e->tv_usec-b->tv_usec)/10000;
#define END(x) {while(*x) x++;}
#if defined(SYSV)
cp = "%Uuser %Zsys %Ereal %P";
#else
cp = "%Uuser %Zsys %Ereal %P %Xi+%Dd %Mmaxrss %F+%Rpf %Xcsw";
#endif
for (; *cp; cp++) {
if (*cp != '%')
*outp++ = *cp;
else if (cp[1]) switch(*++cp) {
case 'U':
tvsub(&tdiff, &r1->ru_utime, &r0->ru_utime);
sprintf(outp,"%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
END(outp);
break;
case 'S':
tvsub(&tdiff, &r1->ru_stime, &r0->ru_stime);
sprintf(outp,"%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
END(outp);
break;
case 'E':
psecs(ms / 100, outp);
END(outp);
break;
case 'P':
sprintf(outp,"%d%%", (int) (t*100 / ((ms ? ms : 1))));
END(outp);
break;
#if !defined(SYSV)
case 'W':
i = r1->ru_nswap - r0->ru_nswap;
sprintf(outp,"%d", i);
END(outp);
break;
case 'X':
sprintf(outp,"%d", t == 0 ? 0 : (r1->ru_ixrss-r0->ru_ixrss)/t);
END(outp);
break;
case 'D':
sprintf(outp,"%d", t == 0 ? 0 :
(r1->ru_idrss+r1->ru_isrss-(r0->ru_idrss+r0->ru_isrss))/t);
END(outp);
break;
case 'K':
sprintf(outp,"%d", t == 0 ? 0 :
((r1->ru_ixrss+r1->ru_isrss+r1->ru_idrss) -
(r0->ru_ixrss+r0->ru_idrss+r0->ru_isrss))/t);
END(outp);
break;
case 'M':
sprintf(outp,"%d", r1->ru_maxrss/2);
END(outp);
break;
case 'F':
sprintf(outp,"%d", r1->ru_majflt-r0->ru_majflt);
END(outp);
break;
case 'R':
sprintf(outp,"%d", r1->ru_minflt-r0->ru_minflt);
END(outp);
break;
case 'I':
sprintf(outp,"%d", r1->ru_inblock-r0->ru_inblock);
END(outp);
break;
case 'O':
sprintf(outp,"%d", r1->ru_oublock-r0->ru_oublock);
END(outp);
break;
case 'C':
sprintf(outp,"%d+%d", r1->ru_nvcsw-r0->ru_nvcsw,
r1->ru_nivcsw-r0->ru_nivcsw );
END(outp);
break;
#endif !SYSV
}
}
*outp = '\0';
}
#endif
static void
tvadd(tsum, t0, t1)
struct timeval *tsum, *t0, *t1;
{
tsum->tv_sec = t0->tv_sec + t1->tv_sec;
tsum->tv_usec = t0->tv_usec + t1->tv_usec;
if (tsum->tv_usec > 1000000)
tsum->tv_sec++, tsum->tv_usec -= 1000000;
}
static void
tvsub(tdiff, t1, t0)
struct timeval *tdiff, *t1, *t0;
{
tdiff->tv_sec = t1->tv_sec - t0->tv_sec;
tdiff->tv_usec = t1->tv_usec - t0->tv_usec;
if (tdiff->tv_usec < 0)
tdiff->tv_sec--, tdiff->tv_usec += 1000000;
}
#if 0
static void
psecs(l,cp)
long l;
register char *cp;
{
register int i;
i = l / 3600;
if (i) {
sprintf(cp,"%d:", i);
END(cp);
i = l % 3600;
sprintf(cp,"%d%d", (i/60) / 10, (i/60) % 10);
END(cp);
} else {
i = l;
sprintf(cp,"%d", i / 60);
END(cp);
}
i %= 60;
*cp++ = ':';
sprintf(cp,"%d%d", i / 10, i % 10);
}
#endif
/*
* N R E A D
*/
int
Nread( SOCKET fd, PBYTE buf, INT count )
{
int len = sizeof(snbhim);
register int cnt;
if( dg ) {
if (dg_connect) {
cnt = recv( fd, buf, count, 0 );
numCalls++;
} else {
cnt = recvfrom( fd, buf, count, 0, (PSOCKADDR)&snbhim, &len );
numCalls++;
}
} else {
if( b_flag )
cnt = mread( fd, buf, count ); /* fill buf */
else {
cnt = recv( fd, buf, count, 0 );
numCalls++;
}
}
if (cnt<0) {
printf( "recv(from) failed: %ld\n", WSAGetLastError( ) );
}
return(cnt);
}
/*
* N W R I T E
*/
int
Nwrite( SOCKET fd, PBYTE buf, INT count )
{
register int cnt;
if( dg && !dg_connect) {
again:
cnt = sendto( fd, buf, count, 0, (PSOCKADDR)&snbhim, sizeof(snbhim) );
numCalls++;
if( cnt<0 && WSAGetLastError( ) == WSAENOBUFS ) {
Sleep(18000);
goto again;
}
} else {
cnt = send( fd, buf, count, 0 );
numCalls++;
}
if (cnt<0) {
printf( "send(to) failed: %ld\n", WSAGetLastError( ) );
}
return(cnt);
}
/*
* M R E A D
*
* This function performs the function of a read(II) but will
* call read(II) multiple times in order to get the requested
* number of characters. This can be necessary because
* network connections don't deliver data with the same
* grouping as it is written with. Written by Robert S. Miles, BRL.
*/
int
mread( SOCKET fd, PBYTE bufp, INT n)
{
register unsigned count = 0;
register int nread;
do {
nread = recv(fd, bufp, n-count, 0);
numCalls++;
if(nread < 0) {
if (count<0) {
printf( "recv failed: %ld\n", WSAGetLastError( ) );
}
return(-1);
}
if(nread == 0)
return((int)count);
count += (unsigned)nread;
bufp += nread;
} while(count < n);
return((int)count);
}