Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2559 lines
52 KiB

/*++ BUILD Version: 0028 // Increment this if a change has global effects
Copyright (c) 1989 Microsoft Corporation
Module Name:
ke.h
Abstract:
This module contains the public (external) header file for the
kernel.
Author:
David N. Cutler (davec) 27-Feb-1989
Revision History:
--*/
#ifndef _KE_
#define _KE_
//
// Define the default quantum decrement values.
//
#define CLOCK_QUANTUM_DECREMENT 3
#define WAIT_QUANTUM_DECREMENT 1
//
// Define the default ready skip and thread quantum values.
//
#define READY_SKIP_QUANTUM 2
#define THREAD_QUANTUM (READY_SKIP_QUANTUM * CLOCK_QUANTUM_DECREMENT)
//
// Define the round trip decrement count.
//
#define ROUND_TRIP_DECREMENT_COUNT 16
//
// Performance data collection enable definitions.
//
// A definition turns on the respective data collection.
//
//#define _COLLECT_FLUSH_SINGLE_CALLDATA_ 1
//#define _COLLECT_SET_EVENT_CALLDATA_ 1
//#define _COLLECT_WAIT_SINGLE_CALLDATA_ 1
//
// Define thread switch performance data strcuture.
//
typedef struct _KTHREAD_SWITCH_COUNTERS {
ULONG FindAny;
ULONG FindIdeal;
ULONG FindLast;
ULONG IdleAny;
ULONG IdleCurrent;
ULONG IdleIdeal;
ULONG IdleLast;
ULONG PreemptAny;
ULONG PreemptCurrent;
ULONG PreemptLast;
ULONG SwitchToIdle;
} KTHREAD_SWITCH_COUNTERS, *PKTHREAD_SWITCH_COUNTERS;
//
// Public (external) constant definitions.
//
#define BASE_PRIORITY_THRESHOLD NORMAL_BASE_PRIORITY // fast path base threshold
// begin_ntddk
#define THREAD_WAIT_OBJECTS 3 // Builtin usable wait blocks
// end_ntddk
#define EVENT_WAIT_BLOCK 2 // Builtin event pair wait block
#define SEMAPHORE_WAIT_BLOCK 2 // Builtin semaphore wait block
#define TIMER_WAIT_BLOCK 3 // Builtin timer wait block
#if (EVENT_WAIT_BLOCK != SEMAPHORE_WAIT_BLOCK)
#error "wait event and wait semaphore must use same wait block"
#endif
//
// Define timer table size.
//
#define TIMER_TABLE_SIZE 128
//
// Get APC environment of current thread.
//
#define KeGetCurrentApcEnvironment() \
KeGetCurrentThread()->ApcStateIndex
//
// Enumerated kernel types
//
// Kernel object types.
//
// N.B. There are really two types of event objects; NotificationEvent and
// SynchronizationEvent. The type value for a notification event is 0,
// and that for a synchonization event 1.
//
// N.B. There are two types of new timer objects; NotificationEvent and
// SynchronizationEvent. The type value for a notification timer is
// 8, and that for a synchonization timer is 9. These values are
// very carefully chosen so that the dispatcher object type AND'ed
// with 0x7 yields 0 or 1 for event objects and the timer objects.
//
#define DISPATCHER_OBJECT_TYPE_MASK 0x7
typedef enum _KOBJECTS {
EventNotificationObject = 0,
EventSynchronizationObject = 1,
MutantObject = 2,
ProcessObject = 3,
QueueObject = 4,
SemaphoreObject = 5,
ThreadObject = 6,
Spare1Object = 7,
TimerNotificationObject = 8,
TimerSynchronizationObject = 9,
Spare2Object = 10,
Spare3Object = 11,
Spare4Object = 12,
Spare5Object = 13,
Spare6Object = 14,
Spare7Object = 15,
Spare8Object = 16,
Spare9Object = 17,
ApcObject,
DpcObject,
DeviceQueueObject,
EventPairObject,
InterruptObject,
ProfileObject
} KOBJECTS;
//
// APC environments.
//
typedef enum _KAPC_ENVIRONMENT {
OriginalApcEnvironment,
AttachedApcEnvironment,
CurrentApcEnvironment
} KAPC_ENVIRONMENT;
// begin_ntddk begin_nthal begin_ntminiport begin_ntifs begin_ntndis
//
// Interrupt modes.
//
typedef enum _KINTERRUPT_MODE {
LevelSensitive,
Latched
} KINTERRUPT_MODE;
// end_ntddk end_nthal end_ntminiport end_ntifs end_ntndis
//
// Process states.
//
typedef enum _KPROCESS_STATE {
ProcessInMemory,
ProcessOutOfMemory,
ProcessInTransition
} KPROCESS_STATE;
//
// Thread scheduling states.
//
typedef enum _KTHREAD_STATE {
Initialized,
Ready,
Running,
Standby,
Terminated,
Waiting,
Transition
} KTHREAD_STATE;
// begin_ntddk begin_nthal begin_ntifs
//
// Wait reasons
//
typedef enum _KWAIT_REASON {
Executive,
FreePage,
PageIn,
PoolAllocation,
DelayExecution,
Suspended,
UserRequest,
WrExecutive,
WrFreePage,
WrPageIn,
WrPoolAllocation,
WrDelayExecution,
WrSuspended,
WrUserRequest,
WrEventPair,
WrQueue,
WrLpcReceive,
WrLpcReply,
WrVirtualMemory,
WrPageOut,
WrRendezvous,
Spare2,
Spare3,
Spare4,
Spare5,
Spare6,
WrKernel,
MaximumWaitReason
} KWAIT_REASON;
// end_ntddk end_nthal end_ntifs
//
// Miscellaneous type definitions
//
// APC state
//
typedef struct _KAPC_STATE {
LIST_ENTRY ApcListHead[MaximumMode];
struct _KPROCESS *Process;
BOOLEAN KernelApcInProgress;
BOOLEAN KernelApcPending;
BOOLEAN UserApcPending;
} KAPC_STATE, *PKAPC_STATE, *RESTRICTED_POINTER PRKAPC_STATE;
// begin_ntddk begin_nthal begin_ntifs begin_ntndis
//
// Common dispatcher object header
//
// N.B. The size field contains the number of dwords in the structure.
//
typedef struct _DISPATCHER_HEADER {
UCHAR Type;
UCHAR Absolute;
UCHAR Size;
UCHAR Inserted;
LONG SignalState;
LIST_ENTRY WaitListHead;
} DISPATCHER_HEADER;
// end_ntddk end_nthal end_ntifs end_ntndis
//
// Page frame
//
typedef ULONG KPAGE_FRAME;
//
// Wait block
//
// begin_ntddk begin_nthal begin_ntifs
typedef struct _KWAIT_BLOCK {
LIST_ENTRY WaitListEntry;
struct _KTHREAD *RESTRICTED_POINTER Thread;
PVOID Object;
struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock;
USHORT WaitKey;
USHORT WaitType;
} KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK;
// end_ntddk end_nthal end_ntifs
//
// System service table descriptor.
//
// N.B. A system service number has a 12-bit service table offset and a
// 3-bit service table number.
//
// N.B. Descriptor table entries must be a power of 2 in size. Currently
// this is 16 bytes.
//
#define NUMBER_SERVICE_TABLES 4
#define SERVICE_NUMBER_MASK ((1 << 12) - 1)
#define SERVICE_TABLE_SHIFT (12 - 4)
#define SERVICE_TABLE_MASK (((1 << 2) - 1) << 4)
#define SERVICE_TABLE_TEST (1 << 4)
typedef struct _KSERVICE_TABLE_DESCRIPTOR {
PULONG Base;
PULONG Count;
ULONG Limit;
PUCHAR Number;
} KSERVICE_TABLE_DESCRIPTOR, *PKSERVICE_TABLE_DESCRIPTOR;
//
// Procedure type definitions
//
// Debug routine
//
typedef
BOOLEAN
(*PKDEBUG_ROUTINE) (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextRecord,
IN KPROCESSOR_MODE PreviousMode,
IN BOOLEAN SecondChance
);
typedef
BOOLEAN
(*PKDEBUG_SWITCH_ROUTINE) (
IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextRecord,
IN BOOLEAN SecondChance
);
typedef enum {
ContinueError = FALSE,
ContinueSuccess = TRUE,
ContinueProcessorReselected,
ContinueNextProcessor
} KCONTINUE_STATUS;
// begin_ntddk begin_nthal begin_ntifs
//
// Thread start function
//
typedef
VOID
(*PKSTART_ROUTINE) (
IN PVOID StartContext
);
// end_ntddk end_nthal end_ntifs
//
// Thread system function
//
typedef
VOID
(*PKSYSTEM_ROUTINE) (
IN PKSTART_ROUTINE StartRoutine OPTIONAL,
IN PVOID StartContext OPTIONAL
);
// begin_ntddk begin_nthal begin_ntifs
//
// Kernel object structure definitions
//
//
// Device Queue object and entry
//
typedef struct _KDEVICE_QUEUE {
CSHORT Type;
CSHORT Size;
LIST_ENTRY DeviceListHead;
KSPIN_LOCK Lock;
BOOLEAN Busy;
} KDEVICE_QUEUE, *PKDEVICE_QUEUE, *RESTRICTED_POINTER PRKDEVICE_QUEUE;
typedef struct _KDEVICE_QUEUE_ENTRY {
LIST_ENTRY DeviceListEntry;
ULONG SortKey;
BOOLEAN Inserted;
} KDEVICE_QUEUE_ENTRY, *PKDEVICE_QUEUE_ENTRY, *RESTRICTED_POINTER PRKDEVICE_QUEUE_ENTRY;
// begin_ntndis
//
// Event object
//
typedef struct _KEVENT {
DISPATCHER_HEADER Header;
} KEVENT, *PKEVENT, *RESTRICTED_POINTER PRKEVENT;
// end_ntddk end_nthal end_ntifs end_ntndis
//
// Event pair object
//
typedef struct _KEVENT_PAIR {
CSHORT Type;
CSHORT Size;
KEVENT EventLow;
KEVENT EventHigh;
} KEVENT_PAIR, *PKEVENT_PAIR, *RESTRICTED_POINTER PRKEVENT_PAIR;
// begin_nthal begin_ntddk begin_ntifs
//
// Define the interrupt service function type and the empty struct
// type.
//
// end_ntddk end_ntifs
struct _KINTERRUPT;
// begin_ntddk begin_ntifs
typedef
BOOLEAN
(*PKSERVICE_ROUTINE) (
IN struct _KINTERRUPT *Interrupt,
IN PVOID ServiceContext
);
// end_ntddk end_ntifs
//
// Interrupt object
//
// N.B. The layout of this structure cannot change. It is exported to HALs
// to short circuit interrupt dispatch.
//
typedef struct _KINTERRUPT {
CSHORT Type;
CSHORT Size;
LIST_ENTRY InterruptListEntry;
PKSERVICE_ROUTINE ServiceRoutine;
PVOID ServiceContext;
KSPIN_LOCK SpinLock;
ULONG Spare1;
PKSPIN_LOCK ActualLock;
PKINTERRUPT_ROUTINE DispatchAddress;
ULONG Vector;
KIRQL Irql;
KIRQL SynchronizeIrql;
BOOLEAN FloatingSave;
BOOLEAN Connected;
CCHAR Number;
BOOLEAN ShareVector;
KINTERRUPT_MODE Mode;
ULONG Spare2;
ULONG Spare3;
ULONG DispatchCode[DISPATCH_LENGTH];
} KINTERRUPT;
typedef struct _KINTERRUPT *PKINTERRUPT, *RESTRICTED_POINTER PRKINTERRUPT; // ntndis
// begin_ntifs begin_ntddk
//
// Mutant object
//
typedef struct _KMUTANT {
DISPATCHER_HEADER Header;
LIST_ENTRY MutantListEntry;
struct _KTHREAD *RESTRICTED_POINTER OwnerThread;
BOOLEAN Abandoned;
UCHAR ApcDisable;
} KMUTANT, *PKMUTANT, *RESTRICTED_POINTER PRKMUTANT, KMUTEX, *PKMUTEX, *RESTRICTED_POINTER PRKMUTEX;
// end_ntddk
//
// Queue object
//
typedef struct _KQUEUE {
DISPATCHER_HEADER Header;
LIST_ENTRY EntryListHead;
ULONG CurrentCount;
ULONG MaximumCount;
LIST_ENTRY ThreadListHead;
} KQUEUE, *PKQUEUE, *RESTRICTED_POINTER PRKQUEUE;
// begin_ntddk
//
//
// Semaphore object
//
typedef struct _KSEMAPHORE {
DISPATCHER_HEADER Header;
LONG Limit;
} KSEMAPHORE, *PKSEMAPHORE, *RESTRICTED_POINTER PRKSEMAPHORE;
// begin_ntndis
//
// Timer object
//
typedef struct _KTIMER {
DISPATCHER_HEADER Header;
ULARGE_INTEGER DueTime;
LIST_ENTRY TimerListEntry;
struct _KDPC *Dpc;
LONG Period;
} KTIMER, *PKTIMER, *RESTRICTED_POINTER PRKTIMER;
// end_ntddk end_nthal end_ntifs end_ntndis
//
// Thread object
//
struct _ECHANNEL;
typedef struct _KTHREAD {
//
// The dispatcher header and mutant listhead are faifly infrequently
// referenced, but pad the thread to a 32-byte boundary (assumption
// that pool allocation is in units of 32-bytes).
//
DISPATCHER_HEADER Header;
LIST_ENTRY MutantListHead;
//
// The following fields are referenced during trap, interrupts, or
// context switches.
//
// N.B. The Teb address and TlsArray are loaded as a quadword quantity
// on MIPS and therefore must to on a quadword boundary.
//
PVOID InitialStack;
PVOID StackLimit;
PVOID Teb;
PVOID TlsArray;
PVOID KernelStack;
BOOLEAN DebugActive;
UCHAR State;
BOOLEAN Alerted[MaximumMode];
UCHAR Iopl;
UCHAR NpxState;
BOOLEAN Saturation;
SCHAR Priority;
KAPC_STATE ApcState;
ULONG ContextSwitches;
//
// The following fields are referenced during wait operations.
//
NTSTATUS WaitStatus;
KIRQL WaitIrql;
KPROCESSOR_MODE WaitMode;
BOOLEAN WaitNext;
UCHAR WaitReason;
PRKWAIT_BLOCK WaitBlockList;
LIST_ENTRY WaitListEntry;
ULONG WaitTime;
SCHAR BasePriority;
UCHAR DecrementCount;
SCHAR PriorityDecrement;
SCHAR Quantum;
KWAIT_BLOCK WaitBlock[THREAD_WAIT_OBJECTS + 1];
PVOID LegoData;
ULONG KernelApcDisable;
KAFFINITY UserAffinity;
BOOLEAN SystemAffinityActive;
UCHAR Pad[3];
PVOID ServiceTable;
// struct _ECHANNEL *Channel;
// PVOID Section;
// PCHANNEL_MESSAGE SystemView;
// PCHANNEL_MESSAGE ThreadView;
//
// The following fields are referenced during queue operations.
//
PRKQUEUE Queue;
KSPIN_LOCK ApcQueueLock;
KTIMER Timer;
LIST_ENTRY QueueListEntry;
//
// The following fields are referenced during read and find ready
// thread.
//
KAFFINITY Affinity;
BOOLEAN Preempted;
BOOLEAN ProcessReadyQueue;
BOOLEAN KernelStackResident;
UCHAR NextProcessor;
//
// The following fields are referenced suring system calls.
//
PVOID CallbackStack;
PVOID Win32Thread;
PKTRAP_FRAME TrapFrame;
PKAPC_STATE ApcStatePointer[2];
UCHAR EnableStackSwap;
UCHAR LargeStack;
UCHAR ResourceIndex;
CCHAR PreviousMode;
//
// The following entries are reference during clock interrupts.
//
ULONG KernelTime;
ULONG UserTime;
//
// The following fileds are referenced during APC queuing and process
// attach/detach.
//
KAPC_STATE SavedApcState;
BOOLEAN Alertable;
UCHAR ApcStateIndex;
BOOLEAN ApcQueueable;
BOOLEAN AutoAlignment;
//
// The following fields are referenced when the thread is initialized
// and very infrequently thereafter.
//
PVOID StackBase;
KAPC SuspendApc;
KSEMAPHORE SuspendSemaphore;
LIST_ENTRY ThreadListEntry;
//
// N.B. The below four UCHARs share the same DWORD and are modified
// by other threads. Therefore, they must ALWAYS be modified
// under the dispatcher lock to prevent granularity problems
// on Alpha machines.
//
CCHAR FreezeCount;
CCHAR SuspendCount;
UCHAR IdealProcessor;
UCHAR DisableBoost;
} KTHREAD, *PKTHREAD, *RESTRICTED_POINTER PRKTHREAD;
//
// Process object structure definition
//
typedef struct _KPROCESS {
//
// The dispatch header and profile listhead are fairly infrequently
// referenced, but pad the process to a 32-byte boundary (assumption
// that pool block allocation is in units of 32-bytes).
//
DISPATCHER_HEADER Header;
LIST_ENTRY ProfileListHead;
//
// The following fields are referenced during context switches.
//
ULONG DirectoryTableBase[2];
#if defined(_X86_)
KGDTENTRY LdtDescriptor;
KIDTENTRY Int21Descriptor;
USHORT IopmOffset;
UCHAR Iopl;
BOOLEAN VdmFlag;
#endif
#if defined(_PPC_)
ULONG ProcessPid;
ULONG ProcessSequence;
#endif
KAFFINITY ActiveProcessors;
//
// The following fields are referenced during clock interrupts.
//
ULONG KernelTime;
ULONG UserTime;
//
// The following fields are reference infrequently.
//
LIST_ENTRY ReadyListHead;
LIST_ENTRY SwapListEntry;
LIST_ENTRY ThreadListHead;
KSPIN_LOCK ProcessLock;
KAFFINITY Affinity;
USHORT StackCount;
SCHAR BasePriority;
SCHAR ThreadQuantum;
BOOLEAN AutoAlignment;
UCHAR State;
UCHAR ThreadSeed;
BOOLEAN DisableBoost;
} KPROCESS, *PKPROCESS, *RESTRICTED_POINTER PRKPROCESS;
//
// Profile object structure definition
//
typedef struct _KPROFILE {
CSHORT Type;
CSHORT Size;
LIST_ENTRY ProfileListEntry;
PKPROCESS Process;
PVOID RangeBase;
PVOID RangeLimit;
ULONG BucketShift;
PVOID Buffer;
ULONG Segment;
KAFFINITY Affinity;
CSHORT Source;
BOOLEAN Started;
} KPROFILE, *PKPROFILE, *RESTRICTED_POINTER PRKPROFILE;
//
// Define kernel channel object structure and types.
//
#define LISTEN_CHANNEL 0x1
#define MESSAGE_CHANNEL 0x2
typedef enum _ECHANNEL_STATE {
ClientIdle,
ClientSendWaitReply,
ClientShutdown,
ServerIdle,
ServerReceiveMessage,
ServerShutdown
} ECHANNEL_STATE;
typedef struct _ECHANNEL {
USHORT Type;
USHORT State;
PKPROCESS OwnerProcess;
PKTHREAD ClientThread;
PKTHREAD ServerThread;
PVOID ServerContext;
struct _ECHANNEL *ServerChannel;
KEVENT ReceiveEvent;
KEVENT ClearToSendEvent;
} ECHANNEL, *PECHANNEL, *RESTRICTED_POINTER PRECHANNEL;
//
// Kernel control object functions
//
// APC object
//
NTKERNELAPI
VOID
KeInitializeApc (
IN PRKAPC Apc,
IN PRKTHREAD Thread,
IN KAPC_ENVIRONMENT Environment,
IN PKKERNEL_ROUTINE KernelRoutine,
IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,
IN KPROCESSOR_MODE ProcessorMode OPTIONAL,
IN PVOID NormalContext OPTIONAL
);
PLIST_ENTRY
KeFlushQueueApc (
IN PKTHREAD Thread,
IN KPROCESSOR_MODE ProcessorMode
);
NTKERNELAPI
BOOLEAN
KeInsertQueueApc (
IN PRKAPC Apc,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2,
IN KPRIORITY Increment
);
BOOLEAN
KeRemoveQueueApc (
IN PKAPC Apc
);
// begin_ntddk begin_nthal begin_ntifs
//
// DPC object
//
NTKERNELAPI
VOID
KeInitializeDpc (
IN PRKDPC Dpc,
IN PKDEFERRED_ROUTINE DeferredRoutine,
IN PVOID DeferredContext
);
NTKERNELAPI
BOOLEAN
KeInsertQueueDpc (
IN PRKDPC Dpc,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
NTKERNELAPI
BOOLEAN
KeRemoveQueueDpc (
IN PRKDPC Dpc
);
NTKERNELAPI
VOID
KeSetImportanceDpc (
IN PRKDPC Dpc,
IN KDPC_IMPORTANCE Importance
);
NTKERNELAPI
VOID
KeSetTargetProcessorDpc (
IN PRKDPC Dpc,
IN CCHAR Number
);
//
// Device queue object
//
NTKERNELAPI
VOID
KeInitializeDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue
);
NTKERNELAPI
BOOLEAN
KeInsertDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);
NTKERNELAPI
BOOLEAN
KeInsertByKeyDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry,
IN ULONG SortKey
);
NTKERNELAPI
PKDEVICE_QUEUE_ENTRY
KeRemoveDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue
);
NTKERNELAPI
PKDEVICE_QUEUE_ENTRY
KeRemoveByKeyDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN ULONG SortKey
);
NTKERNELAPI
BOOLEAN
KeRemoveEntryDeviceQueue (
IN PKDEVICE_QUEUE DeviceQueue,
IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);
// end_ntddk end_nthal end_ntifs
//
// Interrupt object
//
NTKERNELAPI // nthal
VOID // nthal
KeInitializeInterrupt ( // nthal
IN PKINTERRUPT Interrupt, // nthal
IN PKSERVICE_ROUTINE ServiceRoutine, // nthal
IN PVOID ServiceContext, // nthal
IN PKSPIN_LOCK SpinLock OPTIONAL, // nthal
IN ULONG Vector, // nthal
IN KIRQL Irql, // nthal
IN KIRQL SynchronizeIrql, // nthal
IN KINTERRUPT_MODE InterruptMode, // nthal
IN BOOLEAN ShareVector, // nthal
IN CCHAR ProcessorNumber, // nthal
IN BOOLEAN FloatingSave // nthal
); // nthal
// nthal
NTKERNELAPI // nthal
BOOLEAN // nthal
KeConnectInterrupt ( // nthal
IN PKINTERRUPT Interrupt // nthal
); // nthal
// nthal
NTKERNELAPI
BOOLEAN
KeDisconnectInterrupt (
IN PKINTERRUPT Interrupt
);
NTKERNELAPI // ntddk nthal
BOOLEAN // ntddk nthal
KeSynchronizeExecution ( // ntddk nthal
IN PKINTERRUPT Interrupt, // ntddk nthal
IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine, // ntddk nthal
IN PVOID SynchronizeContext // ntddk nthal
); // ntddk nthal
// ntddk nthal
//
// Profile object
//
VOID
KeInitializeProfile (
IN PKPROFILE Profile,
IN PKPROCESS Process OPTIONAL,
IN PVOID RangeBase,
IN ULONG RangeSize,
IN ULONG BucketSize,
IN ULONG Segment,
IN KPROFILE_SOURCE ProfileSource,
IN KAFFINITY Affinity
);
BOOLEAN
KeStartProfile (
IN PKPROFILE Profile,
IN PULONG Buffer
);
BOOLEAN
KeStopProfile (
IN PKPROFILE Profile
);
VOID
KeSetIntervalProfile (
IN ULONG Interval,
IN KPROFILE_SOURCE Source
);
ULONG
KeQueryIntervalProfile (
IN KPROFILE_SOURCE Source
);
// begin_ntddk begin_nthal begin_ntifs
//
// Kernel dispatcher object functions
//
// Event Object
//
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_)
NTKERNELAPI
VOID
KeInitializeEvent (
IN PRKEVENT Event,
IN EVENT_TYPE Type,
IN BOOLEAN State
);
NTKERNELAPI
VOID
KeClearEvent (
IN PRKEVENT Event
);
#else
#define KeInitializeEvent(_Event, _Type, _State) \
(_Event)->Header.Type = (UCHAR)_Type; \
(_Event)->Header.Size = sizeof(KEVENT) / sizeof(LONG); \
(_Event)->Header.SignalState = _State; \
InitializeListHead(&(_Event)->Header.WaitListHead)
#define KeClearEvent(Event) (Event)->Header.SignalState = 0
#endif
// end_ntddk end_nthal end_ntifs
LONG
KePulseEvent (
IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);
// begin_ntddk begin_nthal begin_ntifs
NTKERNELAPI
LONG
KeReadStateEvent (
IN PRKEVENT Event
);
NTKERNELAPI
LONG
KeResetEvent (
IN PRKEVENT Event
);
NTKERNELAPI
LONG
KeSetEvent (
IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);
// end_ntddk end_nthal end_ntifs
VOID
KeSetEventBoostPriority (
IN PRKEVENT Event,
IN PRKTHREAD *Thread OPTIONAL
);
VOID
KeInitializeEventPair (
IN PKEVENT_PAIR EventPair
);
#define KeSetHighEventPair(EventPair, Increment, Wait) \
KeSetEvent(&((EventPair)->EventHigh), \
Increment, \
Wait)
#define KeSetLowEventPair(EventPair, Increment, Wait) \
KeSetEvent(&((EventPair)->EventLow), \
Increment, \
Wait)
//
// Mutant object
//
NTKERNELAPI
VOID
KeInitializeMutant (
IN PRKMUTANT Mutant,
IN BOOLEAN InitialOwner
);
LONG
KeReadStateMutant (
IN PRKMUTANT
);
NTKERNELAPI
LONG
KeReleaseMutant (
IN PRKMUTANT Mutant,
IN KPRIORITY Increment,
IN BOOLEAN Abandoned,
IN BOOLEAN Wait
);
// begin_ntddk begin_nthal begin_ntifs
//
// Mutex object
//
NTKERNELAPI
VOID
KeInitializeMutex (
IN PRKMUTEX Mutex,
IN ULONG Level
);
#define KeReadStateMutex(Mutex) KeReadStateMutant(Mutex)
NTKERNELAPI
LONG
KeReleaseMutex (
IN PRKMUTEX Mutex,
IN BOOLEAN Wait
);
// end_ntddk
//
// Queue Object.
//
NTKERNELAPI
VOID
KeInitializeQueue (
IN PRKQUEUE Queue,
IN ULONG Count OPTIONAL
);
NTKERNELAPI
LONG
KeReadStateQueue (
IN PRKQUEUE Queue
);
NTKERNELAPI
LONG
KeInsertQueue (
IN PRKQUEUE Queue,
IN PLIST_ENTRY Entry
);
NTKERNELAPI
LONG
KeInsertHeadQueue (
IN PRKQUEUE Queue,
IN PLIST_ENTRY Entry
);
NTKERNELAPI
PLIST_ENTRY
KeRemoveQueue (
IN PRKQUEUE Queue,
IN KPROCESSOR_MODE WaitMode,
IN PLARGE_INTEGER Timeout OPTIONAL
);
PLIST_ENTRY
KeRundownQueue (
IN PRKQUEUE Queue
);
// begin_ntddk
//
// Semaphore object
//
NTKERNELAPI
VOID
KeInitializeSemaphore (
IN PRKSEMAPHORE Semaphore,
IN LONG Count,
IN LONG Limit
);
NTKERNELAPI
LONG
KeReadStateSemaphore (
IN PRKSEMAPHORE Semaphore
);
NTKERNELAPI
LONG
KeReleaseSemaphore (
IN PRKSEMAPHORE Semaphore,
IN KPRIORITY Increment,
IN LONG Adjustment,
IN BOOLEAN Wait
);
// end_ntddk end_nthal end_ntifs
//
// Process object
//
VOID
KeInitializeProcess (
IN PRKPROCESS Process,
IN KPRIORITY Priority,
IN KAFFINITY Affinity,
IN ULONG DirectoryTableBase[2],
IN BOOLEAN Enable
);
// begin_ntifs
NTKERNELAPI
VOID
KeAttachProcess (
IN PRKPROCESS Process
);
BOOLEAN
KeTryToAttachProcess (
IN PRKPROCESS Process
);
NTKERNELAPI
VOID
KeDetachProcess (
VOID
);
// end_ntifs
#define KeIsAttachedProcess() \
(KeGetCurrentThread()->ApcStateIndex == AttachedApcEnvironment)
LONG
KeReadStateProcess (
IN PRKPROCESS Process
);
BOOLEAN
KeSetAutoAlignmentProcess (
IN PRKPROCESS Process,
IN BOOLEAN Enable
);
LONG
KeSetProcess (
IN PRKPROCESS Process,
IN KPRIORITY Increment,
IN BOOLEAN Wait
);
KPRIORITY
KeSetPriorityProcess (
IN PKPROCESS Process,
IN KPRIORITY BasePriority
);
#define KeTerminateProcess(Process) \
(Process)->StackCount += 1;
//
// Thread object
//
VOID
KeInitializeThread (
IN PKTHREAD Thread,
IN PVOID KernelStack,
IN PKSYSTEM_ROUTINE SystemRoutine,
IN PKSTART_ROUTINE StartRoutine OPTIONAL,
IN PVOID StartContext OPTIONAL,
IN PCONTEXT ContextFrame OPTIONAL,
IN PVOID Teb OPTIONAL,
IN PKPROCESS Process
);
BOOLEAN
KeAlertThread (
IN PKTHREAD Thread,
IN KPROCESSOR_MODE ProcessorMode
);
ULONG
KeAlertResumeThread (
IN PKTHREAD Thread
);
VOID
KeBoostPriorityThread (
IN PKTHREAD Thread,
IN KPRIORITY Increment
);
KAFFINITY
KeConfineThread (
VOID
);
NTKERNELAPI // ntddk nthal ntifs
NTSTATUS // ntddk nthal ntifs
KeDelayExecutionThread ( // ntddk nthal ntifs
IN KPROCESSOR_MODE WaitMode, // ntddk nthal ntifs
IN BOOLEAN Alertable, // ntddk nthal ntifs
IN PLARGE_INTEGER Interval // ntddk nthal ntifs
); // ntddk nthal ntifs
// ntddk nthal ntifs
BOOLEAN
KeDisableApcQueuingThread (
IN PKTHREAD Thread
);
BOOLEAN
KeEnableApcQueuingThread (
IN PKTHREAD
);
LOGICAL
KeSetDisableBoostThread (
IN PKTHREAD Thread,
IN LOGICAL Disable
);
ULONG
KeForceResumeThread (
IN PKTHREAD Thread
);
VOID
KeFreezeAllThreads (
VOID
);
BOOLEAN
KeQueryAutoAlignmentThread (
IN PKTHREAD Thread
);
LONG
KeQueryBasePriorityThread (
IN PKTHREAD Thread
);
BOOLEAN
KeReadStateThread (
IN PKTHREAD Thread
);
VOID
KeReadyThread (
IN PKTHREAD Thread
);
ULONG
KeResumeThread (
IN PKTHREAD Thread
);
VOID
KeRevertToUserAffinityThread (
VOID
);
VOID
KeRundownThread (
VOID
);
KAFFINITY // nthal
KeSetAffinityThread ( // nthal
IN PKTHREAD Thread, // nthal
IN KAFFINITY Affinity // nthal
); // nthal
VOID
KeSetSystemAffinityThread (
IN KAFFINITY Affinity
);
BOOLEAN
KeSetAutoAlignmentThread (
IN PKTHREAD Thread,
IN BOOLEAN Enable
);
NTKERNELAPI // ntddk nthal ntifs
LONG // ntddk nthal ntifs
KeSetBasePriorityThread ( // ntddk nthal ntifs
IN PKTHREAD Thread, // ntddk nthal ntifs
IN LONG Increment // ntddk nthal ntifs
); // ntddk nthal ntifs
// ntddk nthal ntifs
// begin_ntsrv
NTKERNELAPI
CCHAR
KeSetIdealProcessorThread (
IN PKTHREAD Thread,
IN CCHAR Processor
);
// end_ntsrv
NTKERNELAPI
BOOLEAN
KeSetKernelStackSwapEnable (
IN BOOLEAN Enable
);
NTKERNELAPI // ntddk nthal ntifs
KPRIORITY // ntddk nthal ntifs
KeSetPriorityThread ( // ntddk nthal ntifs
IN PKTHREAD Thread, // ntddk nthal ntifs
IN KPRIORITY Priority // ntddk nthal ntifs
); // ntddk nthal ntifs
// ntddk nthal ntifs
ULONG
KeSuspendThread (
IN PKTHREAD
);
NTKERNELAPI
VOID
KeTerminateThread (
IN KPRIORITY Increment
);
BOOLEAN
KeTestAlertThread (
IN KPROCESSOR_MODE
);
VOID
KeThawAllThreads (
VOID
);
//
// Define leave critial region macro used for inline and function code
// generation.
//
// Warning: assembly versions of this code are included directly in
// ntgdi assembly routines mutexs.s for MIPS and locka.asm for i386.
// Any changes made to KeEnterCriticalRegion/KeEnterCriticalRegion
// must be reflected in these routines.
//
#define KiLeaveCriticalRegion() { \
PKTHREAD Thread; \
Thread = KeGetCurrentThread(); \
if (((*((volatile ULONG *)&Thread->KernelApcDisable) += 1) == 0) && \
(((volatile LIST_ENTRY *)&Thread->ApcState.ApcListHead[KernelMode])->Flink != \
&Thread->ApcState.ApcListHead[KernelMode])) { \
Thread->ApcState.KernelApcPending = TRUE; \
KiRequestSoftwareInterrupt(APC_LEVEL); \
} \
}
// begin_ntddk begin_nthal begin_ntifs
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_)
NTKERNELAPI
VOID
KeEnterCriticalRegion (
VOID
);
NTKERNELAPI
VOID
KeLeaveCriticalRegion (
VOID
);
#else
//++
//
// VOID
// KeEnterCriticalRegion (
// VOID
// )
//
//
// Routine Description:
//
// This function disables kernel APC's.
//
// N.B. The following code does not require any interlocks. There are
// two cases of interest: 1) On an MP system, the thread cannot
// be running on two processors as once, and 2) if the thread is
// is interrupted to deliver a kernel mode APC which also calls
// this routine, the values read and stored will stack and unstack
// properly.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//--
#define KeEnterCriticalRegion() KeGetCurrentThread()->KernelApcDisable -= 1;
//++
//
// VOID
// KeLeaveCriticalRegion (
// VOID
// )
//
//
// Routine Description:
//
// This function enables kernel APC's.
//
// N.B. The following code does not require any interlocks. There are
// two cases of interest: 1) On an MP system, the thread cannot
// be running on two processors as once, and 2) if the thread is
// is interrupted to deliver a kernel mode APC which also calls
// this routine, the values read and stored will stack and unstack
// properly.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//--
#define KeLeaveCriticalRegion() KiLeaveCriticalRegion()
#endif
//
// Timer object
//
NTKERNELAPI
VOID
KeInitializeTimer (
IN PKTIMER Timer
);
NTKERNELAPI
VOID
KeInitializeTimerEx (
IN PKTIMER Timer,
IN TIMER_TYPE Type
);
NTKERNELAPI
BOOLEAN
KeCancelTimer (
IN PKTIMER
);
NTKERNELAPI
BOOLEAN
KeReadStateTimer (
PKTIMER Timer
);
NTKERNELAPI
BOOLEAN
KeSetTimer (
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN PKDPC Dpc OPTIONAL
);
NTKERNELAPI
BOOLEAN
KeSetTimerEx (
IN PKTIMER Timer,
IN LARGE_INTEGER DueTime,
IN LONG Period OPTIONAL,
IN PKDPC Dpc OPTIONAL
);
// end_ntddk end_nthal end_ntifs
//
// Wait functions
//
NTSTATUS
KiSetServerWaitClientEvent (
IN PKEVENT SeverEvent,
IN PKEVENT ClientEvent,
IN ULONG WaitMode
);
NTSTATUS
KeReleaseWaitForSemaphore (
IN PKSEMAPHORE Server,
IN PKSEMAPHORE Client,
IN ULONG WaitReason,
IN ULONG WaitMode
);
#define KeSetHighWaitLowEventPair(EventPair, WaitMode) \
KiSetServerWaitClientEvent(&((EventPair)->EventHigh), \
&((EventPair)->EventLow), \
WaitMode)
#define KeSetLowWaitHighEventPair(EventPair, WaitMode) \
KiSetServerWaitClientEvent(&((EventPair)->EventLow), \
&((EventPair)->EventHigh), \
WaitMode)
#define KeWaitForHighEventPair(EventPair, WaitMode, Alertable, TimeOut) \
KeWaitForSingleObject(&((EventPair)->EventHigh), \
WrEventPair, \
WaitMode, \
Alertable, \
TimeOut)
#define KeWaitForLowEventPair(EventPair, WaitMode, Alertable, TimeOut) \
KeWaitForSingleObject(&((EventPair)->EventLow), \
WrEventPair, \
WaitMode, \
Alertable, \
TimeOut)
// begin_ntddk begin_nthal begin_ntifs
#define KeWaitForMutexObject KeWaitForSingleObject
NTKERNELAPI
NTSTATUS
KeWaitForMultipleObjects (
IN ULONG Count,
IN PVOID Object[],
IN WAIT_TYPE WaitType,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL,
IN PKWAIT_BLOCK WaitBlockArray OPTIONAL
);
NTKERNELAPI
NTSTATUS
KeWaitForSingleObject (
IN PVOID Object,
IN KWAIT_REASON WaitReason,
IN KPROCESSOR_MODE WaitMode,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout OPTIONAL
);
// end_ntddk end_nthal end_ntifs
// begin_ntddk begin_nthal begin_ntifs
//
// spin lock functions
//
NTKERNELAPI
VOID
NTAPI
KeInitializeSpinLock (
IN PKSPIN_LOCK SpinLock
);
#if defined(_X86_)
NTKERNELAPI
VOID
FASTCALL
KefAcquireSpinLockAtDpcLevel (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
VOID
FASTCALL
KefReleaseSpinLockFromDpcLevel (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLockAtDpcLevel(a) KefAcquireSpinLockAtDpcLevel(a)
#define KeReleaseSpinLockFromDpcLevel(a) KefReleaseSpinLockFromDpcLevel(a)
#else
NTKERNELAPI
VOID
KeAcquireSpinLockAtDpcLevel (
IN PKSPIN_LOCK SpinLock
);
NTKERNELAPI
VOID
KeReleaseSpinLockFromDpcLevel (
IN PKSPIN_LOCK SpinLock
);
#endif
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || (defined(_X86_) && !defined(_NTHAL_))
#if defined(_X86_)
__declspec(dllimport)
KIRQL
FASTCALL
KfAcquireSpinLock (
IN PKSPIN_LOCK SpinLock
);
__declspec(dllimport)
VOID
FASTCALL
KfReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
__declspec(dllimport)
KIRQL
FASTCALL
KeAcquireSpinLockRaiseToSynch (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLock(a,b) *(b) = KfAcquireSpinLock(a)
#define KeReleaseSpinLock(a,b) KfReleaseSpinLock(a,b)
#else
__declspec(dllimport)
KIRQL
KeAcquireSpinLockRaiseToDpc (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLock(SpinLock, OldIrql) \
*(OldIrql) = KeAcquireSpinLockRaiseToDpc(SpinLock)
__declspec(dllimport)
VOID
KeReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
#endif
#else
#if defined(_X86_)
KIRQL
FASTCALL
KfAcquireSpinLock (
IN PKSPIN_LOCK SpinLock
);
VOID
FASTCALL
KfReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
#define KeAcquireSpinLock(a,b) *(b) = KfAcquireSpinLock(a)
#define KeReleaseSpinLock(a,b) KfReleaseSpinLock(a,b)
KIRQL
FASTCALL
KeAcquireSpinLockRaiseToSynch (
IN PKSPIN_LOCK SpinLock
);
#else
KIRQL
KeAcquireSpinLockRaiseToDpc (
IN PKSPIN_LOCK SpinLock
);
KIRQL
KeAcquireSpinLockRaiseToSynch (
IN PKSPIN_LOCK SpinLock
);
#define KeAcquireSpinLock(SpinLock, OldIrql) \
*(OldIrql) = KeAcquireSpinLockRaiseToDpc(SpinLock)
VOID
KeReleaseSpinLock (
IN PKSPIN_LOCK SpinLock,
IN KIRQL NewIrql
);
#endif
#endif
// end_ntddk end_nthal end_ntifs
BOOLEAN
KeTryToAcquireSpinLock (
IN PKSPIN_LOCK SpinLock,
OUT PKIRQL OldIrql
);
//
// Raise and lower IRQL functions.
//
// begin_ntddk begin_nthal begin_ntifs
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || ((defined(_X86_) || defined(_PPC_)) && !defined(_NTHAL_)) || defined(_ALPHA_)
#if defined(_X86_)
__declspec(dllimport)
VOID
FASTCALL
KfLowerIrql (
IN KIRQL NewIrql
);
__declspec(dllimport)
KIRQL
FASTCALL
KfRaiseIrql (
IN KIRQL NewIrql
);
__declspec(dllimport)
KIRQL
KeRaiseIrqlToDpcLevel(
VOID
);
__declspec(dllimport)
KIRQL
KeRaiseIrqlToSynchLevel(
VOID
);
#define KeLowerIrql(a) KfLowerIrql(a)
#define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a)
#elif defined(_MIPS_)
__declspec(dllimport)
KIRQL
KeSwapIrql (
IN KIRQL NewIrql
);
#define KeLowerIrql(NewIrql) KeSwapIrql(NewIrql)
#define KeRaiseIrql(NewIrql, OldIrql) *(OldIrql) = KeSwapIrql(NewIrql)
__declspec(dllimport)
KIRQL
KeRaiseIrqlToDpcLevel (
VOID
);
#elif defined(_PPC_)
__declspec(dllimport)
VOID
KeLowerIrql (
IN KIRQL NewIrql
);
__declspec(dllimport)
VOID
KeRaiseIrql (
IN KIRQL NewIrql,
OUT PKIRQL OldIrql
);
#elif defined(_ALPHA_)
#define KeLowerIrql(a) __swpirql(a)
#define KeRaiseIrql(a,b) *(b) = __swpirql(a)
#define KeRaiseIrqlToDpcLevel() __swpirql(DISPATCH_LEVEL)
#define KeRaiseIrqlToSynchLevel() __swpirql((UCHAR)KiSynchIrql)
#endif
#else
#if defined(_X86_)
VOID
FASTCALL
KfLowerIrql (
IN KIRQL NewIrql
);
KIRQL
FASTCALL
KfRaiseIrql (
IN KIRQL NewIrql
);
KIRQL
KeRaiseIrqlToSynchLevel(
VOID
);
#define KeLowerIrql(a) KfLowerIrql(a)
#define KeRaiseIrql(a,b) *(b) = KfRaiseIrql(a)
#elif defined(_MIPS_)
KIRQL
KeSwapIrql (
IN KIRQL NewIrql
);
#define KeLowerIrql(NewIrql) KeSwapIrql(NewIrql)
#define KeRaiseIrql(NewIrql, OldIrql) *(OldIrql) = KeSwapIrql(NewIrql)
KIRQL
KeRaiseIrqlToDpcLevel (
VOID
);
KIRQL
KeRaiseIrqlToSynchLevel(
VOID
);
#else
VOID
KeLowerIrql (
IN KIRQL NewIrql
);
VOID
KeRaiseIrql (
IN KIRQL NewIrql,
OUT PKIRQL OldIrql
);
#endif
#endif
// end_ntddk end_nthal end_ntifs
//
// Initialize kernel in phase 1.
//
BOOLEAN
KeInitSystem(
VOID
);
// begin_ntddk begin_nthal begin_ntifs
//
// Miscellaneous kernel functions
//
BOOLEAN
KeGetBugMessageText(
IN ULONG MessageId,
IN PANSI_STRING ReturnedString OPTIONAL
);
typedef enum _KBUGCHECK_BUFFER_DUMP_STATE {
BufferEmpty,
BufferInserted,
BufferStarted,
BufferFinished,
BufferIncomplete
} KBUGCHECK_BUFFER_DUMP_STATE;
typedef
VOID
(*PKBUGCHECK_CALLBACK_ROUTINE) (
IN PVOID Buffer,
IN ULONG Length
);
typedef struct _KBUGCHECK_CALLBACK_RECORD {
LIST_ENTRY Entry;
PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine;
PVOID Buffer;
ULONG Length;
PUCHAR Component;
ULONG Checksum;
UCHAR State;
} KBUGCHECK_CALLBACK_RECORD, *PKBUGCHECK_CALLBACK_RECORD;
NTKERNELAPI
VOID
NTAPI
KeBugCheck (
IN ULONG BugCheckCode
);
NTKERNELAPI
VOID
KeBugCheckEx(
IN ULONG BugCheckCode,
IN ULONG BugCheckParameter1,
IN ULONG BugCheckParameter2,
IN ULONG BugCheckParameter3,
IN ULONG BugCheckParameter4
);
#define KeInitializeCallbackRecord(CallbackRecord) \
(CallbackRecord)->State = BufferEmpty
NTKERNELAPI
BOOLEAN
KeDeregisterBugCheckCallback (
IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord
);
NTKERNELAPI
BOOLEAN
KeRegisterBugCheckCallback (
IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord,
IN PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Buffer,
IN ULONG Length,
IN PUCHAR Component
);
NTKERNELAPI
VOID
KeEnterKernelDebugger (
VOID
);
// end_ntddk end_nthal end_ntifs
typedef
PCHAR
(*PKE_BUGCHECK_UNICODE_TO_ANSI) (
IN PUNICODE_STRING UnicodeString,
OUT PCHAR AnsiBuffer,
IN ULONG MaxAnsiLength
);
VOID
KeDumpMachineState (
IN PKPROCESSOR_STATE ProcessorState,
IN PCHAR Buffer,
IN PULONG BugCheckParameters,
IN ULONG NumberOfParameters,
IN PKE_BUGCHECK_UNICODE_TO_ANSI UnicodeToAnsiRoutine
);
VOID
KeContextFromKframes (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN OUT PCONTEXT ContextFrame
);
VOID
KeContextToKframes (
IN OUT PKTRAP_FRAME TrapFrame,
IN OUT PKEXCEPTION_FRAME ExceptionFrame,
IN PCONTEXT ContextFrame,
IN ULONG ContextFlags,
IN KPROCESSOR_MODE PreviousMode
);
VOID
KeCopyTrapDispatcher (
VOID
);
//
// GDI TEB Batch Flush routine
//
typedef
VOID
(*PGDI_BATCHFLUSH_ROUTINE) (
VOID
);
NTKERNELAPI // nthal
VOID // nthal
KeFlushCurrentTb ( // nthal
VOID // nthal
); // nthal
// nthal
//
// UCHAR
// FindFirstSetRightMember(Set)
//
// This function only works for MAXIMUM_PROCESSORS (which is currently 32),
// and it assumes at least one bit is set
//
#define KiFindFirstSetRightMember(Set) \
((Set & 0xFF) ? KiFindFirstSetRight[Set & 0xFF] : \
((Set & 0xFF00) ? KiFindFirstSetRight[(Set >> 8) & 0xFF] + 8 : \
((Set & 0xFF0000) ? KiFindFirstSetRight[(Set >> 16) & 0xFF] + 16 : \
KiFindFirstSetRight[Set >> 24] + 24 )))
//
// TB Flush routines
//
#if defined(_ALPHA_) && defined(NT_UP) && \
!defined(_NTDRIVER_) && !defined(_NTDDK_) && !defined(_NTIFS_) && !defined(_NTHAL_)
#define KeFlushEntireTb(Invalid, AllProcessors) __tbia()
#define KeFlushMultipleTb(Number, Virtual, Invalid, AllProcessors, PtePointer, PteValue) \
{ \
ULONG _Index_; \
\
if (ARGUMENT_PRESENT(PtePointer)) { \
for (_Index_ = 0; _Index_ < (Number); _Index_ += 1) { \
*((PHARDWARE_PTE *)(PtePointer))[_Index_] = (PteValue); \
} \
} \
KiFlushMultipleTb((Invalid), &(Virtual)[0], (Number)); \
}
__inline
HARDWARE_PTE
KeFlushSingleTb(
IN PVOID Virtual,
IN BOOLEAN Invalid,
IN BOOLEAN AllProcesors,
IN PHARDWARE_PTE PtePointer,
IN HARDWARE_PTE PteValue
)
{
HARDWARE_PTE OldPte;
OldPte = *PtePointer;
*PtePointer = PteValue;
__tbis(Virtual);
return(OldPte);
}
#elif defined(_M_IX86) && defined(NT_UP) && \
!defined(_NTDRIVER_) && !defined(_NTDDK_) && !defined(_NTIFS_) && !defined(_NTHAL_)
#define KeFlushEntireTb(Invalid, AllProcessors) KeFlushCurrentTb()
__inline
HARDWARE_PTE
KeFlushSingleTb(
IN PVOID Virtual,
IN BOOLEAN Invalid,
IN BOOLEAN AllProcesors,
IN PHARDWARE_PTE PtePointer,
IN HARDWARE_PTE PteValue
)
{
HARDWARE_PTE OldPte;
OldPte = *PtePointer;
*PtePointer = PteValue;
__asm {
mov eax, Virtual
invlpg [eax]
}
return(OldPte);
}
#define KeFlushMultipleTb(Number, Virtual, Invalid, AllProcessors, PtePointer, PteValue) \
{ \
ULONG _Index_; \
PVOID _VA_; \
\
for (_Index_ = 0; _Index_ < (Number); _Index_ += 1) { \
if (ARGUMENT_PRESENT(PtePointer)) { \
*((PHARDWARE_PTE *)(PtePointer))[_Index_] = (PteValue); \
} \
_VA_ = (Virtual)[_Index_]; \
__asm { mov eax, _VA_ } \
__asm { invlpg [eax] } \
} \
}
#else
NTKERNELAPI
VOID
KeFlushEntireTb (
IN BOOLEAN Invalid,
IN BOOLEAN AllProcessors
);
VOID
KeFlushMultipleTb (
IN ULONG Number,
IN PVOID *Virtual,
IN BOOLEAN Invalid,
IN BOOLEAN AllProcesors,
IN PHARDWARE_PTE *PtePointer OPTIONAL,
IN HARDWARE_PTE PteValue
);
HARDWARE_PTE
KeFlushSingleTb (
IN PVOID Virtual,
IN BOOLEAN Invalid,
IN BOOLEAN AllProcesors,
IN PHARDWARE_PTE PtePointer,
IN HARDWARE_PTE PteValue
);
#endif
BOOLEAN
KeFreezeExecution (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame
);
KCONTINUE_STATUS
KeSwitchFrozenProcessor (
IN ULONG ProcessorNumber
);
VOID
KeGetNonVolatileContextPointers (
IN PKNONVOLATILE_CONTEXT_POINTERS NonVolatileContext
);
#define DMA_READ_DCACHE_INVALIDATE 0x1 // nthal
#define DMA_READ_ICACHE_INVALIDATE 0x2 // nthal
#define DMA_WRITE_DCACHE_SNOOP 0x4 // nthal
// nthal
NTKERNELAPI // nthal
VOID // nthal
KeSetDmaIoCoherency ( // nthal
IN ULONG Attributes // nthal
); // nthal
// nthal
#if defined(i386)
NTKERNELAPI // nthal
VOID // nthal
KeSetProfileIrql ( // nthal
IN KIRQL ProfileIrql // nthal
); // nthal
// nthal
#endif
#if defined(_MIPS_) || defined(_ALPHA_)
NTKERNELAPI // nthal
VOID // nthal
KeSetSynchIrql ( // nthal
IN KIRQL SynchIrql // nthal
); // nthal
// nthal
#endif
VOID
KeSetSystemTime (
IN PLARGE_INTEGER NewTime,
OUT PLARGE_INTEGER OldTime,
IN PLARGE_INTEGER HalTimeToSet OPTIONAL
);
#define SYSTEM_SERVICE_INDEX 0
#define WIN32K_SERVICE_INDEX 1
#define IIS_SERVICE_INDEX 2
NTKERNELAPI
BOOLEAN
KeAddSystemServiceTable(
IN PULONG Base,
IN PULONG Count OPTIONAL,
IN ULONG Limit,
IN PUCHAR Number,
IN ULONG Index
);
NTSTATUS
KeSuspendHibernateSystem (
IN PTIME_FIELDS ResumeTime OPTIONAL,
IN PVOID SystemCallback
);
// begin_ntddk begin_nthal begin_ntifs
NTKERNELAPI
VOID
KeQuerySystemTime (
OUT PLARGE_INTEGER CurrentTime
);
NTKERNELAPI
ULONG
KeQueryTimeIncrement (
VOID
);
// end_ntddk end_nthal end_ntifs
// begin_nthal
NTKERNELAPI
VOID
KeSetTimeIncrement (
IN ULONG MaximumIncrement,
IN ULONG MimimumIncrement
);
// end_nthal
VOID
KeThawExecution (
IN BOOLEAN Enable
);
// begin_nthal
//
// Define the firmware routine types
//
typedef enum _FIRMWARE_REENTRY {
HalHaltRoutine,
HalPowerDownRoutine,
HalRestartRoutine,
HalRebootRoutine,
HalInteractiveModeRoutine,
HalMaximumRoutine
} FIRMWARE_REENTRY, *PFIRMWARE_REENTRY;
// end_nthal
VOID
KeReturnToFirmware (
IN FIRMWARE_REENTRY Routine
);
VOID
KeStartAllProcessors (
VOID
);
//
// Balance set manager thread startup function.
//
VOID
KeBalanceSetManager (
IN PVOID Context
);
VOID
KeSwapProcessOrStack (
IN PVOID Context
);
//
// User mode callback.
//
NTSTATUS
KeUserModeCallback (
IN ULONG ApiNumber,
IN PVOID InputBuffer,
IN ULONG InputLength,
OUT PVOID *OutputBuffer,
OUT PULONG OutputLength
);
PVOID
KeSwitchKernelStack (
IN PVOID StackBase,
IN PVOID StackLimit
);
NTSTATUS
KeRaiseUserException(
IN NTSTATUS ExceptionCode
);
// begin_nthal
//
// Find ARC configuration information function.
//
NTKERNELAPI
PCONFIGURATION_COMPONENT_DATA
KeFindConfigurationEntry (
IN PCONFIGURATION_COMPONENT_DATA Child,
IN CONFIGURATION_CLASS Class,
IN CONFIGURATION_TYPE Type,
IN PULONG Key OPTIONAL
);
NTKERNELAPI
PCONFIGURATION_COMPONENT_DATA
KeFindConfigurationNextEntry (
IN PCONFIGURATION_COMPONENT_DATA Child,
IN CONFIGURATION_CLASS Class,
IN CONFIGURATION_TYPE Type,
IN PULONG Key OPTIONAL,
IN PCONFIGURATION_COMPONENT_DATA *Resume
);
// end_nthal
//
// begin_ntddk begin_nthal begin_ntifs
//
// Context swap notify routine.
//
typedef
VOID
(FASTCALL *PSWAP_CONTEXT_NOTIFY_ROUTINE)(
IN HANDLE OldThreadId,
IN HANDLE NewThreadId
);
NTKERNELAPI
VOID
FASTCALL
KeSetSwapContextNotifyRoutine(
IN PSWAP_CONTEXT_NOTIFY_ROUTINE NotifyRoutine
);
//
// Thread select notify routine.
//
typedef
LOGICAL
(FASTCALL *PTHREAD_SELECT_NOTIFY_ROUTINE)(
IN HANDLE ThreadId
);
NTKERNELAPI
VOID
FASTCALL
KeSetThreadSelectNotifyRoutine(
IN PTHREAD_SELECT_NOTIFY_ROUTINE NotifyRoutine
);
//
// Time update notify routine.
//
typedef
VOID
(FASTCALL *PTIME_UPDATE_NOTIFY_ROUTINE)(
IN HANDLE ThreadId,
IN KPROCESSOR_MODE Mode
);
NTKERNELAPI
VOID
FASTCALL
KeSetTimeUpdateNotifyRoutine(
IN PTIME_UPDATE_NOTIFY_ROUTINE NotifyRoutine
);
// end_ntddk end_nthal end_ntifs
//
// External references to public kernel data structures
//
extern KAFFINITY KeActiveProcessors;
extern LARGE_INTEGER KeBootTime;
extern LIST_ENTRY KeBugCheckCallbackListHead;
extern KSPIN_LOCK KeBugCheckCallbackLock;
extern PGDI_BATCHFLUSH_ROUTINE KeGdiFlushUserBatch;
extern PLOADER_PARAMETER_BLOCK KeLoaderBlock;
extern ULONG KeMaximumIncrement;
extern ULONG KeMinimumIncrement;
extern CCHAR KeNumberProcessors; // nthal
extern USHORT KeProcessorArchitecture;
extern USHORT KeProcessorLevel;
extern USHORT KeProcessorRevision;
extern ULONG KeFeatureBits;
extern PKPRCB KiProcessorBlock[];
extern KTHREAD_SWITCH_COUNTERS KeThreadSwitchCounters;
#if !defined(NT_UP)
extern ULONG KeRegisteredProcessors;
extern ULONG KeLicensedProcessors;
#endif
extern PULONG KeServiceCountTable;
extern KSERVICE_TABLE_DESCRIPTOR KeServiceDescriptorTable[NUMBER_SERVICE_TABLES];
extern KSERVICE_TABLE_DESCRIPTOR KeServiceDescriptorTableShadow[NUMBER_SERVICE_TABLES];
extern volatile KSYSTEM_TIME KeTickCount; // ntddk nthal ntifs
// begin_nthal
#if defined(_MIPS_) || defined(_ALPHA_) || defined(_PPC_)
extern ULONG KeNumberProcessIds;
extern ULONG KeNumberTbEntries;
#endif
extern ULONG KeUserApcDispatcher;
extern ULONG KeUserCallbackDispatcher;
extern ULONG KeUserExceptionDispatcher;
extern ULONG KeRaiseUserExceptionDispatcher;
extern ULONG KeTimeAdjustment;
extern ULONG KeTimeIncrement;
extern BOOLEAN KeTimeSynchronization;
// end_nthal
// begin_ntddk begin_nthal begin_ntifs
typedef enum _MEMORY_CACHING_TYPE {
MmNonCached = FALSE,
MmCached = TRUE,
MmFrameBufferCached,
MmHardwareCoherentCached,
MmMaximumCacheType
} MEMORY_CACHING_TYPE;
// end_ntddk end_nthal end_ntifs
#if defined(_X86_)
//
// Routine for setting memory type for physical address ranges
//
NTSTATUS
KeSetPhysicalCacheTypeRange (
IN PHYSICAL_ADDRESS PhysicalAddress,
IN ULONG NumberOfBytes,
IN MEMORY_CACHING_TYPE CacheType
);
#endif
#if defined(_PPC_)
//
// Routine for zeroing a physical page.
//
VOID
KeZeroPage (
IN ULONG PageFrame
);
#endif
#endif // _KE_