Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1105 lines
28 KiB

/*
* Copyright (c) 1995 FirePower Systems, Inc.
* DO NOT DISTRIBUTE without permission
*
* $RCSfile: pxcache.s $
* $Revision: 1.12 $
* $Date: 1996/03/05 02:16:01 $
* $Locker: $
*/
//++
//
// Copyright (c) 1993, 1994, 1995 IBM Corporation
//
// Copyright (c) 1994 MOTOROLA, INC. All Rights Reserved. This file
// contains copyrighted material. Use of this file is restricted
// by the provisions of a Motorola Software License Agreement.
//
// Module Name:
//
// pxcache.s
//
// Abstract:
//
// This module implements the routines to flush cache on the PowerPC.
//
// Author:
//
// Peter L. Johnston ([email protected]) September 1993
//
// Environment:
//
// Kernel mode only.
//
// Revision History:
// 27-Dec-93 plj Added 603 support.
// 13-Mar-94 plj Fixed problem introduced during switch to pas,
// added 604 support.
// 18-Jan-95 plj Add 603+, 604+ and 620 support.
//
//--
#include "kxppc.h"
.set HID0, 1008 // H/W Implementation Dependent reg 0
//
// Define various known processor types.
//
.set PV601, 1 // 601
.set PV603, 3 // 603
.set PV603P, 6 // 603 plus
.set PV604, 4 // 604
.set PV604P, 9 // 604 plus
.set PV620, 20 // 620
//
// Note, in the following, the 603's "I-Cache Flash Invalidate"
// and the 604's "I-Cache Invalidate All" basically perform the
// same function although the usage is slightly different.
// In the 603 case, ICFI must be cleared under program control
// after it is set. In the 604 the bit clears automatically.
// The 620's ICEFI behaves in the same way as the 604's ICIA.
//
.set H0_603_ICFI, 0x0800 // I-Cache Flash Invalidate
.set H0_604_ICIA, 0x0800 // I-Cache Invalidate All
.set H0_620_ICEFI,0x0800 // I-Cache Edge Flash Invalidate
//
// Cache layout
//
// Processor | Size (bytes) | Line Size | Block Size | PVR Processor
// | I-Cache | D-Cache | | | Version
// ----------------------------------------------------------------------
// 601 | 32KB Unified | 64 bytes | 32 bytes | 0x0001xxxx
// 603 | 8KB | 8KB | 32 | 32 | 0x0003xxxx
// 603+ | 16KB | 16KB | 32 | 32 | 0x0006xxxx
// 604 | 16KB | 16KB | 32 | 32 | 0x0004xxxx
// 604+ | 32KB | 32KB | 32 | 32 | 0x0009xxxx
// 620 | 32KB | 32KB | 64 | 64 | 0x0014xxxx
//
.set DCLSZ601, 64 // 601 cache line size
.set DCBSZ601, 32 // 601 cache block size
.set DCL601, 32 * 1024 / DCLSZ601 // 601 num cache lines
.set DCBSZL2601, 5 // 601 log2(block size)
.set DCBSZ603, 32 // 603 cache block size
.set DCB603, 8 * 1024 / DCBSZ603 // 603 num cache blocks
.set DCBSZL2603, 5 // 603 log2(block size)
.set DCB603P, 16 * 1024 / DCBSZ603 // 603+ num cache blocks
.set DCBSZ604, 32 // 604 cache block size
.set DCB604, 16 * 1024 / DCBSZ604 // 604 num cache blocks
.set DCBSZL2604, 5 // 604 log2(block size)
.set DCB604P, 32 * 1024 / DCBSZ604 // 604+ num cache blocks
.set DCBSZ620, 64 // 620 cache block size
.set DCB620, 32 * 1024 / DCBSZ620 // 620 num cache blocks
.set DCBSZL2620, 6 // 620 log2(block size)
//
// The following variables are declared locally so their addresses
// will appear in the TOC. During initialization, we overwrite
// the TOC entries with the entry points for the cache flushing
// routines appropriate for the processor we are running on.
//
// It is done this way rather than filling in a table to reduce the
// number of access required to get the address at runtime.
// (This is known as "Data in TOC" which is not very much used in
// NT at this time).
//
.data
.globl HalpSweepDcache
HalpSweepDcache: .long 0
.globl HalpSweepIcache
HalpSweepIcache: .long 0
.globl HalpSweepDcacheRange
HalpSweepDcacheRange: .long 0
.globl HalpSweepIcacheRange
HalpSweepIcacheRange: .long 0
//++
//
// Routine Description:
//
// HalpCacheSweepSetup
//
// This routine is called during HAL initialization. Its function
// is to set the branch tables for cache flushing routines according
// to the processor type.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpCacheSweepSetup)
mfpvr r.3 // get processor type
rlwinm r.3, r.3, 16, 0xffff // remove version
cmpwi r.3, PV603P // binary search for the right code
lwz r.4, [toc].data(r.toc) // get address of local data section
bge hcss.high // jif 603+ or greater
cmpwi r.3, PV603
beq hcss.603 // jif 603
bgt hcss.604 // > 603, < 603+ must be 604
//
// processor is a 601
//
lwz r.5, [toc]HalpSweepDcache601(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange601(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange601(r.toc)
mr r.6, r.5 // 601 icache use dcache routine
b hcss.done
//
// processor is a 603
//
hcss.603:
lwz r.5, [toc]HalpSweepDcache603(r.toc)
lwz r.6, [toc]HalpSweepIcache603(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange603(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange603(r.toc)
b hcss.done
//
// processor is a 604
//
hcss.604:
lwz r.5, [toc]HalpSweepDcache604(r.toc)
lwz r.6, [toc]HalpSweepIcache604(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange604(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange604(r.toc)
b hcss.done
//
// Processor type >= 603+, continue isolation of processor type.
//
hcss.high:
beq hcss.603p // jif 603 plus
cmpwi cr.0, r.3, PV604P
cmpwi cr.1, r.3, PV620
beq cr.0, hcss.604p // jif 604 plus
beq cr.1, hcss.620 // jif 620
//
// If we got here we are running on a processor whose cache characteristics
// are not known. Return non-zero for error.
//
li r.3, 1
blr
//
// processor is a 603 plus
//
hcss.603p:
lwz r.5, [toc]HalpSweepDcache603p(r.toc)
lwz r.6, [toc]HalpSweepIcache603p(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange603p(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange603p(r.toc)
b hcss.done
//
// processor is a 604 plus
//
hcss.604p:
lwz r.5, [toc]HalpSweepDcache604p(r.toc)
lwz r.6, [toc]HalpSweepIcache604p(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange604p(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange604p(r.toc)
b hcss.done
//
// processor is a 620
//
hcss.620:
lwz r.5, [toc]HalpSweepDcache620(r.toc)
lwz r.6, [toc]HalpSweepIcache620(r.toc)
lwz r.7, [toc]HalpSweepDcacheRange620(r.toc)
lwz r.8, [toc]HalpSweepIcacheRange620(r.toc)
b hcss.done
hcss.done:
//
// r.5 thru r.9 contain the address of the function descriptors
// for the routines we really want to use. Dereference them to
// get at the entry point addresses.
//
lwz r.5, 0(r.5)
lwz r.6, 0(r.6)
lwz r.7, 0(r.7)
lwz r.8, 0(r.8)
//
// Store the entry point addresses directly into the TOC.
// This is so direct linkage from within the HAL to the
// generic cache flushing routines can get to the desired
// routines for this processor.
//
stw r.5, [toc]HalpSweepDcache(r.toc)
stw r.6, [toc]HalpSweepIcache(r.toc)
stw r.7, [toc]HalpSweepDcacheRange(r.toc)
stw r.8, [toc]HalpSweepIcacheRange(r.toc)
//
// Modify the Function Descriptors for the generic routines to
// point directly at the target routines so that linkage from
// other executables (eg the kernel) will be direct rather
// than via the generic routines.
//
lwz r.3, [toc]HalSweepDcache(r.toc)
lwz r.4, [toc]HalSweepIcache(r.toc)
stw r.5, 0(r.3)
stw r.6, 0(r.4)
lwz r.3, [toc]HalSweepDcacheRange(r.toc)
lwz r.4, [toc]HalSweepIcacheRange(r.toc)
stw r.7, 0(r.3)
stw r.8, 0(r.4)
li r.3, 0 // return code = success
LEAF_EXIT(HalpCacheSweepSetup)
//++
//
// Routines HalSweepDcache
// HalSweepIcache
// HalSweepDcacheRange
// HalSweepIcacheRange
//
// are simply dispatch points for the appropriate routine for
// the processor being used.
//
//--
LEAF_ENTRY(HalSweepDcache)
lwz r.12, [toc]HalpSweepDcache(r.toc)
mtctr r.12
bctr
DUMMY_EXIT(HalSweepDcache)
LEAF_ENTRY(HalSweepIcache)
lwz r.12, [toc]HalpSweepIcache(r.toc)
mtctr r.12
bctr
DUMMY_EXIT(HalSweepIcache)
LEAF_ENTRY(HalSweepDcacheRange)
lwz r.12, [toc]HalpSweepDcacheRange(r.toc)
mtctr r.12
bctr
DUMMY_EXIT(HalSweepDcacheRange)
LEAF_ENTRY(HalSweepIcacheRange)
lwz r.12, [toc]HalpSweepIcacheRange(r.toc)
mtctr r.12
bctr
DUMMY_EXIT(HalSweepIcacheRange)
//++
//
// 601 Cache Flushing Routines
//
// The 601 has a unified instruction/data cache. For this reason
// we need only two routines, one to sweep the entire cache and
// another to sweep a given range.
//
//
//
//
// HalpSweepDcache601
//
// Sweep the entire instruction/data cache. This is accomplished
// by loading the cache with data corresponding to a known address
// range and then ensuring that each block in the cache is not dirty.
//
// Note that the 601 line size is 64 bytes and its block size is 32
// bytes. When we load any byte within a line, both blocks in that
// line are loaded into the cache (if not already present). We must
// clean each block individually.
//
// In an effort to maximize the possibilities that (a) the addressed
// data is already in the cache and (b) there is some use in having
// this data in the cache, we use the lower end of the hashed page
// table as the data to be loaded and we use dcbst rather than dcbf
// to force the block to memory (and leave it valid in the cache as
// well).
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcache601)
mfsdr1 r.3 // fill the D cache from memory
// allocated to the hashed page
// table (it's something useful).
li r.4, DCL601 // size of cache in cache lines
mtctr r.4
DISABLE_INTERRUPTS(r.10,r.11)
sync
oris r.3, r.3, 0x8000 // get VA of hashed page table
subi r.5, r.3, DCBSZ601 // dec addr prior to inc
hsd601.ld:
lbzu r.8, DCLSZ601(r.5)
bdnz hsd601.ld
ENABLE_INTERRUPTS(r.10)
LEAF_EXIT(HalpSweepDcache601)
//++
//
// HalpSweepDcacheRange601
//
// HalpSweepDcacheRange603
//
// HalpSweepDcacheRange603p
//
// HalpSweepDcacheRange604
//
// HalpSweepDcacheRange604p
//
// Force data in a given address range to memory.
//
// Because this routine works on a range of blocks and block size
// is the same on 601, 603, 603+, 604 and 604+ we can use the same
// code for each of them.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcacheRange601)
ALTERNATE_ENTRY(HalpSweepDcacheRange603)
ALTERNATE_ENTRY(HalpSweepDcacheRange603p)
ALTERNATE_ENTRY(HalpSweepDcacheRange604)
ALTERNATE_ENTRY(HalpSweepDcacheRange604p)
rlwinm r.5, r.3, 0, DCBSZ601-1 // isolate offset in start block
addi r.4, r.4, DCBSZ601-1 // bump range by block sz - 1
add r.4, r.4, r.5 // add start block offset
srwi r.4, r.4, DCBSZL2601 // number of blocks
mtctr r.4
sync
hsdr601.fl:
dcbst 0, r.3 // flush block
addi r.3, r.3, DCBSZ601 // bump address
bdnz hsdr601.fl
LEAF_EXIT(HalpSweepDcacheRange601)
//++
//
// HalpSweepIcacheRange601
//
// Due to the unified cache, this routine is meaningless on a 601.
// The reason for flushing a range of instruction address is because
// of code modification (eg breakpoints) in which case the nature
// of the unified cache is that the *right* code is in the cache,
// or because of a transfer of a code page in which case the unified
// snooping cache will have done the right thing.
//
// Therefore this routine simply returns.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcacheRange601)
// return
LEAF_EXIT(HalpSweepIcacheRange601)
//++
//
// 603, 603+ Cache Flushing Routines
//
// The 603 has seperate instruction and data caches of 8 KB each.
// The 603+ has seperate instruction and data caches of 16 KB each.
// Line size = Block size = 32 bytes.
//
// The mechanics of cache manipulation are the same for the 603 and
// 603+.
//
//
//
// HalpSweepDcache603 HalpSweepDcache603p
//
// Sweep the entire data cache. This is accomplished by loading
// the cache with data corresponding to a known address range and
// then ensuring that each block in the cache is not dirty.
//
// The 603 does not have a hashed page table so we can't use the
// hashed page table as the data range. Instead use the start of
// KSEG0.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcache603p)
li r.4, DCB603P // size of 603+ cache in blocks
b hsd603
DUMMY_EXIT(HalpSweepDcache603p)
LEAF_ENTRY(HalpSweepDcache603)
li r.4, DCB603 // size of 603 cache in blocks
hsd603:
mtctr r.4
DISABLE_INTERRUPTS(r.10,r.11)
sync // ensure ALL previous stores completed
LWI(r.3,0x80000000) // known usable virtual address
subi r.5, r.3, DCBSZ603 // dec addr prior to inc
hsd603.ld:
lbzu r.8, DCBSZ603(r.5)
bdnz hsd603.ld
ENABLE_INTERRUPTS(r.10)
mtctr r.4
hsd603.fl:
dcbst 0, r.3 // ensure block is in memory
addi r.3, r.3, DCBSZ603 // bump address
bdnz hsd603.fl
LEAF_EXIT(HalpSweepDcache603)
//++
//
// HalpSweepIcache603 HalpSweepIcache603p
//
// Sweep the entire instruction cache. The instruction cache (by
// definition) can never contain modified code (hence there are no
// icbf or icbst instructions). Therefore what we really need to do
// here is simply invalidate every block in the cache. This can be
// done by toggling the Instruction Cache Flash Invalidate (ICFI) bit
// in the 603's HID0 register.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcache603)
ALTERNATE_ENTRY(HalpSweepIcache603p)
mfspr r.3, HID0 // 603, use Instruction
ori r.4, r.3, H0_603_ICFI // Cache Flash Invalidate
isync
mtspr HID0, r.4 // invalidate I-Cache
mtspr HID0, r.3 // re-enable
LEAF_EXIT(HalpSweepIcache603)
//++
//
// HalpSweepIcacheRange603 HalpSweepIcacheRange603p
//
// Remove a range of instructions from the instruction cache.
//
// Note that if this is going to take a long time we flash
// invalidate the I cache instead. Currently I define a
// "long time" as greater than 4096 bytes which amounts to
// 128 trips thru this loop (which should run in 256 clocks).
// This number was selected without bias or forethought from
// thin air - plj. I chose this number because gut feel tells
// me that it will cost me more than 256 clocks in cache misses
// trying to get back to the function that requested the cache
// flush in the first place.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcacheRange603)
ALTERNATE_ENTRY(HalpSweepIcacheRange603p)
cmpwi r.4, 4096 // if range > 4096 bytes, flush
bgt- ..HalpSweepIcache603 // entire I cache
rlwinm r.5, r.3, 0, DCBSZ603-1 // isolate offset in start block
addi r.4, r.4, DCBSZ603-1 // bump range by block sz - 1
add r.4, r.4, r.5 // add start block offset
srwi r.4, r.4, DCBSZL2603 // number of blocks
mtctr r.4
hsir603.fl:
icbi 0, r.3 // invalidate block in I cache
addi r.3, r.3, DCBSZ603 // bump address
bdnz hsir603.fl
LEAF_EXIT(HalpSweepIcacheRange603)
//++
//
// 604 Cache Flushing Routines
//
// The 604 has seperate instruction and data caches of 16 KB each.
// The 604+ has seperate instruction and data caches of 32 KB each.
// Line size = Block size = 32 bytes.
//
//
//
// HalpSweepDcache604 HalpSweepDcache604p
//
// Sweep the entire data cache. This is accomplished by loading
// the cache with data corresponding to a known address range and
// then ensuring that each block in the cache is not dirty.
//
// As in the 601 case, we use the Hashed Page Table for the data
// in an effort to minimize performance lost by force feeding the
// cache.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcache604p)
li r.4, DCB604P // size of 604+ cache in blocks
b hsd604
DUMMY_EXIT(HalpSweepDcache604p)
LEAF_ENTRY(HalpSweepDcache604)
li r.4, DCB604 // size of cache in cache blocks
hsd604:
mfsdr1 r.3 // fill the D cache from memory
// allocated to the hashed page
// table (it's something useful).
mtctr r.4
DISABLE_INTERRUPTS(r.10,r.11)
sync // ensure ALL previous stores completed
oris r.3, r.3, 0x8000 // get VA of hashed page table
subi r.5, r.3, DCBSZ604 // dec addr prior to inc
hsd604.ld:
lbzu r.8, DCBSZ604(r.5)
bdnz hsd604.ld
ENABLE_INTERRUPTS(r.10)
LEAF_EXIT(HalpSweepDcache604)
//++
//
// HalpSweepIcache604 HalpSweepIcache604p
//
// Sweep the entire instruction cache. This routine is functionally
// similar to the 603 version except that on the 604 the bit in HID0
// (coincidentally the *same* bit) is called Instruction Cache Invali-
// sate All (ICIA) and it clears automatically after being set.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcache604)
ALTERNATE_ENTRY(HalpSweepIcache604p)
mfspr r.3, HID0 // 604, use Instruction
ori r.3, r.3, H0_604_ICIA // Cache Invalidate All
isync
mtspr HID0, r.3 // invalidate I-Cache
LEAF_EXIT(HalpSweepIcache604)
//++
//
// HalpSweepIcacheRange604 HalpSweepIcacheRange604p
//
// Remove a range of instructions from the instruction cache.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcacheRange604)
ALTERNATE_ENTRY(HalpSweepIcacheRange604p)
rlwinm r.5, r.3, 0, DCBSZ604-1 // isolate offset in start block
addi r.4, r.4, DCBSZ604-1 // bump range by block sz - 1
add r.4, r.4, r.5 // add start block offset
srwi r.4, r.4, DCBSZL2604 // number of blocks
mtctr r.4
hsir604.fl:
icbi 0, r.3 // invalidate block in I cache
addi r.3, r.3, DCBSZ604 // bump address
bdnz hsir604.fl
LEAF_EXIT(HalpSweepIcacheRange604)
//++
//
// 620 Cache Flushing Routines
//
// The 620 has seperate instruction and data caches of 32 KB each.
// Line size = Block size = 64 bytes.
//
//
//
// HalpSweepDcache620
//
// Sweep the entire data cache. This is accomplished by loading
// the cache with data corresponding to a known address range and
// then ensuring that each block in the cache is not dirty.
//
// As in the 601 case, we use the Hashed Page Table for the data
// in an effort to minimize performance lost by force feeding the
// cache.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcache620)
li r.4, DCB620 // size of cache in cache blocks
hsd620:
mfsdr1 r.3 // fill the D cache from memory
// allocated to the hashed page
// table (it's something useful).
mtctr r.4
DISABLE_INTERRUPTS(r.10,r.11)
sync
oris r.3, r.3, 0x8000 // get VA of hashed page table
subi r.5, r.3, DCBSZ620 // dec addr prior to inc
hsd620.ld:
lbzu r.8, DCBSZ620(r.5)
bdnz hsd620.ld
ENABLE_INTERRUPTS(r.10)
LEAF_EXIT(HalpSweepDcache620)
//++
//
// HalpSweepIcache620
//
// Sweep the entire instruction cache. This routine is functionally
// identical to the 604 version except that on the 620 the bit in HID0
// (coincidentally the *same* bit) is called Instruction Cache Edge
// Flash Invalidate (ICEFI).
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcache620)
mfspr r.3, HID0 // 620, use Instruction
ori r.3, r.3, H0_620_ICEFI // Cache Edge Flash Invalidate
isync
mtspr HID0, r.3 // invalidate I-Cache
LEAF_EXIT(HalpSweepIcache620)
//++
//
// HalpSweepIcacheRange620
//
// Remove a range of instructions from the instruction cache.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepIcacheRange620)
rlwinm r.5, r.3, 0, DCBSZ620-1 // isolate offset in start block
addi r.4, r.4, DCBSZ620-1 // bump range by block sz - 1
add r.4, r.4, r.5 // add start block offset
srwi r.4, r.4, DCBSZL2620 // number of blocks
mtctr r.4
hsir620.fl:
icbi 0, r.3 // invalidate block in I cache
addi r.3, r.3, DCBSZ620 // bump address
bdnz hsir620.fl
LEAF_EXIT(HalpSweepIcacheRange620)
//++
//
// HalpSweepDcacheRange620
//
// Force data in a given address range to memory.
//
// Arguments:
//
// r.3 Start address
// r.4 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepDcacheRange620)
rlwinm r.5, r.3, 0, DCBSZ620-1 // isolate offset in start block
addi r.4, r.4, DCBSZ620-1 // bump range by block sz - 1
add r.4, r.4, r.5 // add start block offset
srwi r.4, r.4, DCBSZL2620 // number of blocks
mtctr r.4
sync
hsdr620.fl:
dcbst 0, r.3 // flush block
addi r.3, r.3, DCBSZ620 // bump address
bdnz hsdr620.fl
LEAF_EXIT(HalpSweepDcacheRange620)
//++
//
// HalpSweepPhysicalRangeInBothCaches
//
// Force data in a given PHYSICAL address range to memory and
// invalidate from the block in the instruction cache.
//
// This implementation assumes a block size of 32 bytes. It
// will still work on the 620.
//
// Arguments:
//
// r.3 Start physical PAGE number.
// r.4 Starting offset within page. Cache block ALIGNED.
// r.5 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
.set PAGE_SHIFT, 12
LEAF_ENTRY(HalpSweepPhysicalRangeInBothCaches)
//
// Starting physical address = (PageNumber << PAGE_SHIFT) | Offset
//
rlwimi r.4, r.3, PAGE_SHIFT, 0xfffff000
addi r.5, r.5, 31 // bump length by block size - 1
srwi r.5, r.5, 5 // get number of blocks
mflr r.0 // save return address
mtctr r.5 // set loop count
//
// Interrupts MUST be disabled for the duration of this function as
// we use srr0 and srr1 which will be destroyed by any exception or
// interrupt.
//
DISABLE_INTERRUPTS(r.12,r.11) // r.11 <- disabled MSR
// r.12 <- previous MSR
//
// Find ourselves in memory. This is needed as we must disable
// both instruction and data translation. We do this while
// interrupts are disabled only to try to avoid changing the
// Link Register when an unwind might/could occur.
//
// The HAL is known to be in KSEG0 so its physical address is
// its effective address with the top bit stripped off.
//
bl hspribc
hspribc:
mflr r.6 // r.6 <- &hspribc
rlwinm r.6, r.6, 0, 0x7fffffff // r.6 &= 0x7fffffff
addi r.6, r.6, hspribc.real - hspribc
// r.6 = real &hspribc.real
sync // ensure all previous loads and
// stores are complete.
mtsrr0 r.6 // address in real space
rlwinm r.11, r.11, 0, ~0x30 // turn off Data and Instr relocation
mtsrr1 r.11
rfi // leap to next instruction
hspribc.real:
mtsrr0 r.0 // set return address
mtsrr1 r.12 // set old MSR value
hspribc.loop:
dcbst 0, r.4 // flush data block to memory
icbi 0, r.4 // invalidate i-cache
addi r.4, r.4, 32 // point to next block
bdnz hspribc.loop // jif more to do
sync // ensure all translations complete
isync // don't even *think* about getting
// ahead.
rfi // return to caller and translated
// mode
DUMMY_EXIT(HalpSweepPhysicalRangeInBothCaches)
//++
//
// HalpSweepPhysicalIcacheRange
//
// Invalidate a given PHYSICAL address range from the instruction
// cache.
//
// This implementation assumes a block size of 32 bytes. It
// will still work on the 620.
//
// Arguments:
//
// r.3 Start physical PAGE number.
// r.4 Starting offset within page. Cache block ALIGNED.
// r.5 Length (in bytes)
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(HalpSweepPhysicalIcacheRange)
//
// Starting physical address = (PageNumber << PAGE_SHIFT) | Offset
//
rlwimi r.4, r.3, PAGE_SHIFT, 0xfffff000
addi r.5, r.5, 31 // bump length by block size - 1
srwi r.5, r.5, 5 // get number of blocks
mflr r.0 // save return address
mtctr r.5 // set loop count
//
// Interrupts MUST be disabled for the duration of this function as
// we use srr0 and srr1 which will be destroyed by any exception or
// interrupt.
//
DISABLE_INTERRUPTS(r.12,r.11) // r.11 <- disabled MSR
// r.12 <- previous MSR
//
// Find ourselves in memory. This is needed as we must disable
// both instruction and data translation. We do this while
// interrupts are disabled only to try to avoid changing the
// Link Register when an unwind might/could occur.
//
// The HAL is known to be in KSEG0 so its physical address is
// its effective address with the top bit stripped off.
//
bl hspir
hspir:
mflr r.6 // r.6 <- &hspribc
rlwinm r.6, r.6, 0, 0x7fffffff // r.6 &= 0x7fffffff
addi r.6, r.6, hspir.real - hspir
// r.6 = real &hspribc.real
sync // ensure all previous loads and
// stores are complete.
mtsrr0 r.6 // address in real space
//
// N.B. It may not be required that Data Relocation be disabled here.
// I can't tell from my Arch spec if ICBI works on a Data or
// Instruction address. I believe it is probably a Data
// address even though it would be sensible for it to be an
// instruction address,....
//
rlwinm r.11, r.11, 0, ~0x30 // turn off Data and Instr relocation
mtsrr1 r.11
rfi // leap to next instruction
hspir.real:
mtsrr0 r.0 // set return address
mtsrr1 r.12 // set old MSR value
hspir.loop:
icbi 0, r.4 // invalidate i-cache
addi r.4, r.4, 32 // point to next block
bdnz hspir.loop // jif more to do
sync // ensure all translations complete
isync // don't even *think* about getting
// ahead.
rfi // return to caller and translated
// mode
DUMMY_EXIT(HalpSweepPhysicalIcacheRange)