Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1409 lines
32 KiB

/*++
Copyright (c) 1993 Digital Equipment Corporation
Copyright (c) 1994,1996 Digital Equipment Corporation
Module Name:
lginitnt.c
Abstract:
This module implements the platform-specific initialization for
a Lego system.
Author:
Joe Notarangelo 25-Oct-1993
Environment:
Kernel mode only.
Revision History:
Gene Morgan [Digital] 11-Oct-1995
Initial version for Lego. Adapted from Avanti and Mikasa.
Gene Morgan 15-Apr-1996
Error loggin/correction, OCP model/speed display,
screen display of server management features.
--*/
#include "halp.h"
#include "pcrtc.h"
#include "legodef.h"
#include "halpcsl.h"
#include "eisa.h"
#include "pci.h"
#include "pcip.h"
#include "iousage.h"
#include "arccodes.h"
#include "pcf8574.h"
#include "errframe.h"
#include "stdio.h"
#include "fwcallbk.h"
#include <ntverp.h> // to get the product build number.
//
// Define extern global buffer for the Uncorrectable Error Frame.
// declared in halalpha\inithal.c
//
extern PERROR_FRAME PUncorrectableError;
//[wem]
//[wem] *******************DEBUG*********************
//[wem]
#ifdef WEMDBG
extern PVOID DBG_IOBASE;
#define DBGPUTCHR(c) \
{ UCHAR lsr; \
while (1) { \
lsr = READ_REGISTER_UCHAR ((PUCHAR)(((ULONG)DBG_IOBASE) | 0x3FD)); \
if ((lsr & 0x60) != 0) \
break; \
} \
WRITE_REGISTER_UCHAR ((PUCHAR)(((ULONG)DBG_IOBASE) | 0x3F8), c ); \
}
#else
#define DBGPUTCHR(c)
#endif
VOID
DBGPUTNL(VOID);
VOID
DBGPUTHEXB(UCHAR Datum);
VOID
DBGPUTHEXL(ULONG Datum);
VOID
DBGPUTHEXP(PVOID Datum);
VOID
DBGPUTSTR(UCHAR *str);
//[wem]
//[wem] *******************DEBUG*********************
//[wem]
//
// Product Naming data.
//
PCHAR HalpFamilyName = "DMCC"; //[wem] ??? real values needed
PCHAR HalpProductName = "Alpha 21064A PICMG SBC";
ULONG HalpProcessorNumber = 4;
// Qvas for Server Management and Watchdog Timer functions
//
extern PVOID HalpLegoWatchdogQva;
extern PVOID HalpLegoServerMgmtQva;
//
// Globals for conveying Cpu and Backplane type
//
BOOLEAN HalpLegoCpu;
BOOLEAN HalpLegoBackplane;
ULONG HalpLegoCpuType;
ULONG HalpLegoBackplaneType;
UCHAR HalpLegoFeatureMask;
ULONG HalpLegoPciRoutingType;
//
// True if we are servicing watchdog
//
BOOLEAN HalpLegoServiceWatchdog;
BOOLEAN HalpLegoWatchdogSingleMode;
BOOLEAN LegoDebugWatchdogIsr;
//
// True if someone has "enabled" interrupts
// for a particular server management event.
//
BOOLEAN HalpLegoDispatchWatchdog;
BOOLEAN HalpLegoDispatchNmi;
BOOLEAN HalpLegoDispatchInt;
BOOLEAN HalpLegoDispatchPsu;
BOOLEAN HalpLegoDispatchHalt;
#define MAX_INIT_MSG (80)
//
// Define global data for builtin device interrupt enables.
//
USHORT HalpBuiltinInterruptEnable;
// irql mask and tables
//
// irql 0 - passive
// irql 1 - sfw apc level
// irql 2 - sfw dispatch level
// irql 3 - device low
// irql 4 - device high
// irql 5 - clock
// irql 6 - real time, ipi, performance counters
// irql 7 - error, mchk, nmi, halt
//
//
// IDT mappings:
// For the built-ins, GetInterruptVector will need more info,
// or it will have to be built-in to the routines, since
// these don't match IRQL levels in any meaningful way.
//
// 0 passive 8 perf cntr 1
// 1 apc 9
// 2 dispatch 10 PIC
// 3 11
// 4 12 errors
// 5 clock 13
// 6 perf cntr 0 14 halt
// 7 nmi 15
//
// This is assuming the following prioritization:
// nmi
// halt
// errors
// performance counters
// clock
// pic
//
// The hardware interrupt pins are used as follows for Lego/K2
//
// IRQ_H[0] = EPIC Error
// IRQ_H[1] = PCI Interrupt (if PCI Interrupt controller enabled)
// IRQ_H[2] = PIC (ISA Device interrupt)
// IRQ_H[3] = NMI, Server management fatal errors, Halt button
// IRQ_H[4] = Clock
// IRQ_H[5] = Watchdog timer, Server Management warning conditions
//
// For information purposes: here is what the IDT division looks like:
//
// 000-015 Built-ins (we only use 8 entries; NT wants 10)
// 016-031 ISA
// 048-063 EISA
// 064-127 PCI
// 128-144 Server Management and Watchdog Timer
// 144-255 unused, as are all other holes
//
//[wem] Here's what it is really like (as per alpharef.h and legodef.h)
//
// 000-019 Built-ins DEVICE_VECTORS - MAXIMUM_BUILTIN_VECTOR
// 020-029 Platform-specific PRIMARY_VECTORS, PRIMARY0_VECTOR - PRIMARY9_VECTOR
// 048-063 EISA & ISA ISA_VECTORS - MAXIMUM_ISA_VECTOR
// 080-089 Server Mgmt and Watchdog Timer SERVER_MGMT_VECTORS - MAXIMUM_SERVER_MGMT_VECTORS
// 100-164 PCI PCI_VECTORS - MAXIMUM_PCI_VECTOR
// 165-255 unused, as are all other holes
//
//[wem] Here's what Lego uses for PCI
//
// 117-180 PCI (64h + 11h through 64h + 50h) Same size range, just shifted (16 vectors wasted).
// PCI_VECTORS - LEGO_MAXIMUM_PCI_VECTOR
// 181-255 unused, as are all other holes
//
// HalpClockFrequency is the processor cycle counter frequency in units
// of cycles per second (Hertz). It is a large number (e.g., 125,000,000)
// but will still fit in a ULONG.
//
// HalpClockMegaHertz is the processor cycle counter frequency in units
// of megahertz. It is a small number (e.g., 125) and is also the number
// of cycles per microsecond. The assumption here is that clock rates will
// always be an integral number of megahertz.
//
// Having the frequency available in both units avoids multiplications, or
// especially divisions in time critical code.
//
extern ULONG HalpClockFrequency;
extern ULONG HalpClockMegaHertz;
//
// Define the bus type, this value allows us to distinguish between
// EISA and ISA systems.
//
ULONG HalpBusType = MACHINE_TYPE_ISA;
//
// Define global data used to communicate new clock rates to the clock
// interrupt service routine.
//
ULONG HalpCurrentTimeIncrement;
ULONG HalpNextRateSelect;
ULONG HalpNextTimeIncrement;
ULONG HalpNewTimeIncrement;
VOID
HalpInitializeHAERegisters(
VOID
);
VOID
HalpClearInterrupts(
);
BOOLEAN
HalpInitializeLegoInterrupts(
VOID
);
VOID
HalpParseLoaderBlock(
PLOADER_PARAMETER_BLOCK LoaderBlock
);
VOID
HalpRegisterPlatformResources(
VOID
);
VOID
HalpDetermineMachineType(
VOID
);
BOOLEAN
HalpInitializeInterrupts (
VOID
)
/*++
Routine Description:
This function initializes interrupts for a Lego/K2 system.
Arguments:
None.
Return Value:
A value of TRUE is returned if the initialization is successfully
completed. Otherwise a value of FALSE is returned.
--*/
{
UCHAR DataByte;
ULONG DataLong;
ULONG Index;
ULONG Irq;
KIRQL Irql;
UCHAR Priority;
ULONG Vector;
//
// Initialize HAL private data from the PCR. This must be done before
// HalpStallExecution is called.
//
//
// Compute integral megahertz first to
// avoid rounding errors due to imprecise cycle clock period values.
//
HalpClockMegaHertz =
((1000 * 1000) + (PCR->CycleClockPeriod >> 1)) / PCR->CycleClockPeriod;
HalpClockFrequency = HalpClockMegaHertz * (1000 * 1000);
//
// Connect the Stall interrupt vector to the clock. When the
// profile count is calculated, we then connect the normal
// clock.
PCR->InterruptRoutine[CLOCK2_LEVEL] = HalpStallInterrupt;
//
// Clear all pending interrupts
//
HalpClearInterrupts();
//
// Start the peridodic interrupt from the RTC
//
HalpProgramIntervalTimer(MAXIMUM_RATE_SELECT);
//jnfix, wkc - init the Eisa interrupts after the chip, don't init the
// PIC here, fix halenablesysteminterrupt to init the pic
// interrrupt, as in sable
//
// Initialize the PCI/ISA interrupt controller.
//
HalpInitializeLegoInterrupts();
//
// Initialize the 21064 interrupts.
//
HalpInitialize21064Interrupts();
HalpEnable21064SoftwareInterrupt( Irql = APC_LEVEL );
HalpEnable21064SoftwareInterrupt( Irql = DISPATCH_LEVEL );
HalpEnable21064HardwareInterrupt( Irq = 5,
Irql = SERVER_MGMT_LEVEL,
Vector = SERVER_MGMT_VECTOR,
Priority = 0 );
HalpEnable21064HardwareInterrupt( Irq = 4,
Irql = CLOCK_LEVEL,
Vector = CLOCK_VECTOR,
Priority = 0 );
HalpEnable21064HardwareInterrupt( Irq = 3,
Irql = HIGH_LEVEL,
Vector = EISA_NMI_VECTOR,
Priority = 0 );
HalpEnable21064HardwareInterrupt( Irq = 2,
Irql = DEVICE_LEVEL,
Vector = PIC_VECTOR,
Priority = 0 );
if (HalpLegoPciRoutingType == PCI_INTERRUPT_ROUTING_FULL) {
HalpEnable21064HardwareInterrupt( Irq = 1,
Irql = PCI_DEVICE_LEVEL,
Vector = PCI_VECTOR,
Priority = 0 );
#if DBG
} else {
DbgPrint("Irq 1 disabled -- PCI interrupts via SIO\n");
#endif
}
return TRUE;
}
VOID
HalpClearInterrupts(
)
/*++
Routine Description:
This function no longer does anything.
Arguments:
None.
Return Value:
None.
--*/
{
return;
}
VOID
HalpSetTimeIncrement(
VOID
)
/*++
Routine Description:
This routine is responsible for setting the time increment for an EV4
based machine via a call into the kernel.
Arguments:
None.
Return Value:
None.
--*/
{
//
// Set the time increment value.
//
HalpCurrentTimeIncrement = MAXIMUM_INCREMENT;
HalpNextTimeIncrement = MAXIMUM_INCREMENT;
HalpNextRateSelect = 0;
KeSetTimeIncrement( MAXIMUM_INCREMENT, MINIMUM_INCREMENT );
}
//
// Define global data used to calibrate and stall processor execution.
//
ULONG HalpProfileCountRate;
VOID
HalpInitializeClockInterrupts(
VOID
)
/*++
Routine Description:
This function is called during phase 1 initialization to complete
the initialization of clock interrupts. For EV4, this function
connects the true clock interrupt handler and initializes the values
required to handle profile interrupts.
Arguments:
None.
Return Value:
None.
--*/
{
LEGO_WATCHDOG WdRegister;
//
// Compute the profile interrupt rate.
//
HalpProfileCountRate = ((1000 * 1000 * 10) / KeQueryTimeIncrement());
//
// Set the time increment value and connect the real clock interrupt
// routine.
//
PCR->InterruptRoutine[CLOCK2_LEVEL] = HalpClockInterrupt;
//
// If desired, turn on the watchdog timer
//
if (HalpLegoServiceWatchdog) {
WdRegister.All = READ_REGISTER_USHORT ((PUSHORT)HalpLegoWatchdogQva );
WdRegister.Enabled = 1;
WRITE_REGISTER_USHORT ((PUSHORT)HalpLegoWatchdogQva, WdRegister.All);
}
return;
}
VOID
HalpEstablishErrorHandler(
VOID
)
/*++
Routine Description:
This routine performs the initialization necessary for the HAL to
begin servicing machine checks.
Arguments:
None.
Return Value:
None.
--*/
{
BOOLEAN ReportCorrectables;
//
// Connect the machine check handler via the PCR.
//
PCR->MachineCheckError = HalMachineCheck;
//
// Initialize error handling for APECS.
//
HalpInitializeMachineChecks( ReportCorrectables = TRUE );
return;
}
VOID
HalpInitializeMachineDependent(
IN ULONG Phase,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
/*++
Routine Description:
This function performs any EV4-specific initialization based on
the current phase on initialization.
Arguments:
Phase - Supplies an indicator for phase of initialization, phase 0 or
phase 1.
LoaderBlock - supplies a pointer to the loader block.
Return Value:
None.
--*/
{
UCHAR MsgBuffer[MAX_INIT_MSG];
CHAR MhzString[9];
if( Phase == 0 ){
//
// Phase 0 Initialization.
//
//
// Parse the Loader Parameter block looking for PCI entry to determine
// if PCI parity should be disabled
//
HalpParseLoaderBlock( LoaderBlock );
//
// Re-establish the error handler, to reflect the parity checking
//
HalpEstablishErrorHandler();
HalpInitializeHAERegisters();
//
// Determine what flavor platform we are on
//
HalpDetermineMachineType();
} else {
//
// Phase 1 Initialization.
//
//
// Initialize the existing bus handlers.
//
HalpRegisterInternalBusHandlers();
//
// Initialize PCI Bus.
//
HalpInitializePCIBus (LoaderBlock);
//
// Initialize profiler.
//
HalpInitializeProfiler();
//
// Print out a cool-o message
//
sprintf(MsgBuffer,
"Digital Equipment Corporation %s %s\n",
HalpFamilyName,
HalpProductName);
HalDisplayString(MsgBuffer);
//
// Display system speed on the OCP
//
sprintf (MhzString, " 4A/%3d ", HalpClockMegaHertz);
HalpOcpInitDisplay();
HalpOcpPutSlidingString(MhzString,8);
//
// Register HAL name and I/O resources
//
HalpRegisterPlatformResources();
}
return;
}
VOID
HalpRegisterPlatformResources(
VOID
)
/*++
Routine Description:
Register I/O resources used by the HAL.
Arguments:
HalName - Supplies a pointer to the name for the HAL.
Return Value:
None.
--*/
{
RESOURCE_USAGE Resource;
UCHAR HalName[256];
//
// Register the buses.
//
HalpRegisterBusUsage(Internal);
HalpRegisterBusUsage(Isa);
HalpRegisterBusUsage(PCIBus);
//
// Register the name of the HAL.
//
sprintf(HalName,
"%s %s, %d Mhz, PCI/ISA HAL\n",
HalpFamilyName,
HalpProductName,
HalpClockMegaHertz );
HalpRegisterHalName( HalName );
//
// Report the apecs mapping to the Io subsystem
//
// This is the PCI Memory space that cannot be used by anyone
// and therefore the HAL says it is reserved for itself
//
//[wem] ??? check register resource for PCI memory ?
//
Resource.BusType = PCIBus;
Resource.BusNumber = 0;
Resource.ResourceType = CmResourceTypeMemory;
Resource.Next = NULL;
Resource.u.Start = __8MB;
Resource.u.Length = __32MB - __8MB;
HalpRegisterResourceUsage(&Resource);
//
// Register the interrupt vector used for the cascaded interrupt
// on the 8254s.
//
Resource.BusType = Isa;
Resource.BusNumber = 0;
Resource.ResourceType = CmResourceTypeInterrupt;
Resource.u.InterruptMode = Latched;
Resource.u.BusInterruptVector = 2;
Resource.u.SystemInterruptVector = 2;
Resource.u.SystemIrql = 2;
HalpRegisterResourceUsage(&Resource);
//
// Register machine specific io/memory addresses.
//
Resource.BusType = Isa;
Resource.BusNumber = 0;
Resource.ResourceType = CmResourceTypePort;
Resource.u.Start = I2C_INTERFACE_DATA_PORT;
Resource.u.Length = I2C_INTERFACE_LENGTH;
HalpRegisterResourceUsage(&Resource);
//[wem] ??? What is this?
// Resource.u.Start = SUPERIO_INDEX_PORT;
// Resource.u.Length = SUPERIO_PORT_LENGTH;
// HalpRegisterResourceUsage(&Resource);
//
// Register the DMA channel used for the cascade.
//
Resource.BusType = Isa;
Resource.BusNumber = 0;
Resource.ResourceType = CmResourceTypeDma;
Resource.u.DmaPort = 0x0;
Resource.u.DmaChannel = 0x4;
HalpRegisterResourceUsage(&Resource);
}
VOID
HalpStallInterrupt (
VOID
)
/*++
Routine Description:
This function serves as the stall calibration interrupt service
routine. It is executed in response to system clock interrupts
during the initialization of the HAL layer.
Arguments:
None.
Return Value:
None.
--*/
{
HalpAcknowledgeClockInterrupt();
return;
}
ULONG
HalSetTimeIncrement (
IN ULONG DesiredIncrement
)
/*++
Routine Description:
This function is called to set the clock interrupt rate to the frequency
required by the specified time increment value.
Arguments:
DesiredIncrement - Supplies desired number of 100ns units between clock
interrupts.
Return Value:
The actual time increment in 100ns units.
--*/
{
ULONG NewTimeIncrement;
ULONG NextRateSelect;
KIRQL OldIrql;
//
// Raise IRQL to the highest level, set the new clock interrupt
// parameters, lower IRQl, and return the new time increment value.
//
KeRaiseIrql(HIGH_LEVEL, &OldIrql);
if (DesiredIncrement < MINIMUM_INCREMENT) {
DesiredIncrement = MINIMUM_INCREMENT;
}
if (DesiredIncrement > MAXIMUM_INCREMENT) {
DesiredIncrement = MAXIMUM_INCREMENT;
}
//
// Find the allowed increment that is less than or equal to
// the desired increment.
//
if (DesiredIncrement >= RTC_PERIOD_IN_CLUNKS4) {
NewTimeIncrement = RTC_PERIOD_IN_CLUNKS4;
NextRateSelect = RTC_RATE_SELECT4;
} else if (DesiredIncrement >= RTC_PERIOD_IN_CLUNKS3) {
NewTimeIncrement = RTC_PERIOD_IN_CLUNKS3;
NextRateSelect = RTC_RATE_SELECT3;
} else if (DesiredIncrement >= RTC_PERIOD_IN_CLUNKS2) {
NewTimeIncrement = RTC_PERIOD_IN_CLUNKS2;
NextRateSelect = RTC_RATE_SELECT2;
} else {
NewTimeIncrement = RTC_PERIOD_IN_CLUNKS1;
NextRateSelect = RTC_RATE_SELECT1;
}
HalpNextRateSelect = NextRateSelect;
HalpNewTimeIncrement = NewTimeIncrement;
KeLowerIrql(OldIrql);
return NewTimeIncrement;
}
VOID
HalpInitializeHAERegisters(
VOID
)
/*++
Routine Description:
This function initializes the HAE registers in the EPIC/APECS chipset.
Arguments:
none
Return Value:
none
--*/
{
//
// We set HAXR1 to 0. This means no address extension
//
WRITE_EPIC_REGISTER( &((PEPIC_CSRS)(APECS_EPIC_BASE_QVA))->Haxr1, 0);
//
// We set HAXR2 to 0. Which means we have the following
// PCI IO addresses:
// 0 to 64KB VALID. HAXR2 Not used in address translation
// 64K to 16MB VALID. HAXR2 is used in the address translation
//
WRITE_EPIC_REGISTER( &((PEPIC_CSRS)(APECS_EPIC_BASE_QVA))->Haxr2, 0);
#if 0
#if DBG
DumpEpic();
#endif // DBG
#endif
}
VOID
HalpResetHAERegisters(
VOID
)
/*++
Routine Description:
This function resets the HAE registers in the EPIC/APECS chipset to 0.
This is routine called during a shutdown so that the prom
gets a predictable environment.
Arguments:
none
Return Value:
none
--*/
{
WRITE_EPIC_REGISTER( &((PEPIC_CSRS)(APECS_EPIC_BASE_QVA))->Haxr1, 0 );
WRITE_EPIC_REGISTER( &((PEPIC_CSRS)(APECS_EPIC_BASE_QVA))->Haxr2, 0 );
}
VOID
HalpGetMachineDependentErrorFrameSizes(
PULONG RawProcessorSize,
PULONG RawSystemInfoSize
)
/*++
Routine Description:
This function returns the size of the system specific structures.
Arguments:
RawProcessorSize - Pointer to a buffer that will receive the
size of the processor specific error information buffer.
RawSystemInfoSize - Pointer to a buffer that will receive the
size of the system specific error information buffer.
Return Value:
none
--*/
{
*RawProcessorSize = sizeof(PROCESSOR_EV4_UNCORRECTABLE);
*RawSystemInfoSize = sizeof(APECS_UNCORRECTABLE_FRAME);
return;
}
VOID
HalpGetSystemInfo(SYSTEM_INFORMATION *SystemInfo)
/*++
Routine Description:
This function fills in the System information.
Arguments:
SystemInfo - Pointer to the SYSTEM_INFORMATION buffer that needs
to be filled in.
Return Value:
none
--*/
{
char systemtype[] = "LegoK2"; // 8 char max.
EXTENDED_SYSTEM_INFORMATION FwExtSysInfo;
VenReturnExtendedSystemInformation(&FwExtSysInfo);
RtlCopyMemory(SystemInfo->FirmwareRevisionId,
FwExtSysInfo.FirmwareVersion,
16);
RtlCopyMemory(SystemInfo->SystemType,systemtype, 8);
SystemInfo->ClockSpeed =
((1000 * 1000) + (PCR->CycleClockPeriod >> 1)) / PCR->CycleClockPeriod;
SystemInfo->SystemRevision = PCR->SystemRevision;
RtlCopyMemory(SystemInfo->SystemSerialNumber,
PCR->SystemSerialNumber,
16);
SystemInfo->SystemVariant = PCR->SystemVariant;
SystemInfo->PalMajorVersion = PCR->PalMajorVersion;
SystemInfo->PalMinorVersion = PCR->PalMinorVersion;
SystemInfo->OsRevisionId = VER_PRODUCTBUILD;
//
// For now fill in dummy values.
//
SystemInfo->ModuleVariant = 1UL;
SystemInfo->ModuleRevision = 1UL;
SystemInfo->ModuleSerialNumber = 0;
return;
}
VOID
HalpInitializeUncorrectableErrorFrame (
VOID
)
/*++
Routine Description:
Allocate an Uncorrectable Error frame for this
system and initializes the frame with certain constant/global
values.
Called during machine dependent system initialization.
Arguments:
none
Return Value:
none
--*/
{
PROCESSOR_EV4_UNCORRECTABLE processorFrame;
APECS_UNCORRECTABLE_FRAME LegoUnCorrrectable; //[wem] used?
//
// If the Uncorrectable error buffer is not set then simply return
//
if(PUncorrectableError == NULL)
return;
PUncorrectableError->Signature = ERROR_FRAME_SIGNATURE;
PUncorrectableError->FrameType = UncorrectableFrame;
//
// ERROR_FRAME_VERSION is define in errframe.h and will
// change as and when there is a change in the errframe.h.
// This Version number helps the service, that reads this
// information from the dumpfile, to check if it knows about
// this frmae version type to decode. If it doesn't know, it
// will dump the entire frame to the EventLog with a message
// "Error Frame Version Mismatch".
//
PUncorrectableError->VersionNumber = ERROR_FRAME_VERSION;
//
// The sequence number will always be 1 for Uncorrectable errors.
//
PUncorrectableError->SequenceNumber = 1;
//
// The PerformanceCounterValue field is not used for Uncorrectable
// errors.
//
PUncorrectableError->PerformanceCounterValue = 0;
//
// We will fill in the UncorrectableFrame.SystemInfo here.
//
HalpGetSystemInfo(&PUncorrectableError->UncorrectableFrame.System);
PUncorrectableError->UncorrectableFrame.Flags.SystemInformationValid = 1;
return;
}
VOID
HalpDetermineMachineType(
VOID
)
/*++
Routine Description:
Determine which Lego variant of backplane and cpu we're on
and set HalpLegoCpu, HalpLegoBackplane, HalpLegoCpuType,
and HalpLegoBackplaneType accordingly.
Arguments:
None.
Return value:
None.
Notes:
[wem] ??? Missing - method of detecting OCP Display from HAL
--*/
{
PSYSTEM_ID SystemId;
PUCHAR ProductId;
LEGO_SRV_MGMT SmRegister;
LEGO_WATCHDOG WdRegister;
BOOLEAN PsuMask;
UCHAR temp;
//
// Get the ProductId, and see if it is one of the
// Lego strings.
//
// Product ID is only eight characters!
//
SystemId = ArcGetSystemId();
ProductId = &SystemId->ProductId[0];
#if DBG
DbgPrint("ProductId: %s, product type: ",ProductId);
#endif
if (strstr(ProductId,PLATFORM_NAME_K2_ATA)!=0) {
#if DBG
DbgPrint("K2+Atacama");
#endif
HalpLegoCpu = TRUE;
HalpLegoBackplane = TRUE;
HalpLegoCpuType = CPU_LEGO_K2;
HalpLegoBackplaneType = BACKPLANE_ATACAMA;
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_FULL;
} else if (strstr(ProductId,PLATFORM_NAME_K2_GOBI)!=0) {
#if DBG
DbgPrint("K2+Gobi");
#endif
HalpLegoCpu = TRUE;
HalpLegoBackplane = TRUE;
HalpLegoCpuType = CPU_LEGO_K2;
HalpLegoBackplaneType = BACKPLANE_GOBI;
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_FULL;
} else if (strstr(ProductId,PLATFORM_NAME_K2_SAHA)!=0) {
#if DBG
DbgPrint("K2+Sahara");
#endif
HalpLegoCpu = TRUE;
HalpLegoBackplane = TRUE;
HalpLegoCpuType = CPU_LEGO_K2;
HalpLegoBackplaneType = BACKPLANE_SAHARA;
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_FULL;
} else if (strstr(ProductId,PLATFORM_NAME_LEGO_K2)!=0) {
#if DBG
DbgPrint("K2+unknown backplane");
#endif
HalpLegoCpu = TRUE;
HalpLegoBackplane = FALSE;
HalpLegoCpuType = CPU_LEGO_K2;
HalpLegoBackplaneType = BACKPLANE_UNKNOWN;
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_SIO;
} else {
#if DBG
DbgPrint("unknown cpu, unknown backplane");
#endif
HalpLegoCpu = FALSE;
HalpLegoBackplane = FALSE;
HalpLegoCpuType = CPU_UNKNOWN;
HalpLegoBackplaneType = BACKPLANE_UNKNOWN;
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_SIO;
}
#if DBG
DbgPrint("\n");
#endif
//
// Read environment variable to get PCI Interrupt Routing
//
// If environment variable is absent or unreadable, use
// default setting of PCI_INTERRUPT_ROUTING_SIO
//
{
ARC_STATUS Status;
CHAR Buffer[16];
Status = HalGetEnvironmentVariable ("LGPCII",16,Buffer);
#if DBG
DbgPrint("Get LGPCII = %s\n",Buffer);
#endif
if (Status==ESUCCESS) {
if (tolower(*Buffer) == 's') {
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_SIO;
}
else if (tolower(*Buffer) == 'f') {
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_FULL;
}
else if (tolower(*Buffer) == 'd') {
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_DIRECT;
}
else {
//
// Bad setting
//
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_SIO;
}
}
else {
//
// No setting - use default
//
HalpLegoPciRoutingType = PCI_INTERRUPT_ROUTING_SIO;
}
}
HalDisplayString ("DMCC Interrupt Routing: ");
HalDisplayString ((HalpLegoPciRoutingType==PCI_INTERRUPT_ROUTING_SIO) ? "ISA PIRQs" :
(HalpLegoPciRoutingType==PCI_INTERRUPT_ROUTING_DIRECT) ? "Interrupt Registers" :
(HalpLegoPciRoutingType==PCI_INTERRUPT_ROUTING_FULL) ? "Interrupt Accelerator" : "Unknown!");
HalDisplayString ("\n");
#if DBG
DbgPrint("\n");
DbgPrint("Interrupt Routing is via ");
DbgPrint((HalpLegoPciRoutingType == PCI_INTERRUPT_ROUTING_SIO)
? "SIO.\n\r" : "Interrupt accelerator.\n\r");
#endif
// Setup feature mask
//
HalpLegoFeatureMask = 0;
if (HalpLegoCpu) {
// Is watchdog timer present?
//
WdRegister.All = READ_REGISTER_USHORT ((PUSHORT)HalpLegoWatchdogQva );
if (WdRegister.All != 0xffff) {
HalpLegoFeatureMask |= LEGO_FEATURE_WATCHDOG;
}
// Is server management register present?
//
SmRegister.All = READ_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva );
if (SmRegister.All != 0xffff) {
HalpLegoFeatureMask |= LEGO_FEATURE_SERVER_MGMT;
// Is multiple PSU support present?
// Write 0 then 1 into PSU mask bit, and read it
// back each time to see if setting sticks.
//
PsuMask = (SmRegister.PsuMask == 1); // save setting
SmRegister.PsuMask = 0; // clear mask
WRITE_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva, SmRegister.All );
SmRegister.All = READ_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva );
if (SmRegister.PsuMask == 0) {
//
// mask bit is cleared
//
SmRegister.PsuMask = 1; // set mask
WRITE_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva, SmRegister.All );
SmRegister.All = READ_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva );
if (SmRegister.PsuMask == 1) {
//
// mask bit is set. Feature is
// present, restore mask bit's original setting
//
HalpLegoFeatureMask |= LEGO_FEATURE_PSU;
SmRegister.PsuMask = (PsuMask) ? 1 : 0;
WRITE_REGISTER_USHORT ((PUSHORT)HalpLegoServerMgmtQva, SmRegister.All );
}
}
}
temp = HalpLegoFeatureMask;
if (temp != 0) {
HalDisplayString ("DMCC Platform Features: ");
if ((temp & LEGO_FEATURE_WATCHDOG) != 0) {
temp &= ~LEGO_FEATURE_WATCHDOG;
HalDisplayString ("Watchdog Timer");
HalDisplayString ((temp!=0)?", ":".");
}
if ((temp & LEGO_FEATURE_SERVER_MGMT) != 0) {
temp &= ~LEGO_FEATURE_SERVER_MGMT;
HalDisplayString ("Server Management");
HalDisplayString ((temp!=0)?", ":".");
}
if ((HalpLegoFeatureMask & LEGO_FEATURE_PSU) != 0) {
HalDisplayString ("Multiple PSU Support.");
}
HalDisplayString ("\n");
} else {
HalDisplayString("No LEGO Platform Features detected!\n");
}
if ((HalpLegoFeatureMask & LEGO_FEATURE_WATCHDOG) != 0) {
//
// Read environment variable to get Watchdog Timer setting
//
// If environment variable is absent or unreadable, use
// default setting of NOT HalpLegoServiceWatchdog
//
{
ARC_STATUS Status;
CHAR Buffer[16];
Status = HalGetEnvironmentVariable ("LGWD",16,Buffer);
#if DBG
DbgPrint("Get LGWD = %s\n",Buffer);
#endif
if (Status==ESUCCESS) {
if (Buffer[0]=='0') {
HalpLegoServiceWatchdog = TRUE;
HalpLegoWatchdogSingleMode = FALSE;
}
else if (Buffer[0]=='1') {
HalpLegoServiceWatchdog = TRUE;
HalpLegoWatchdogSingleMode = TRUE;
}
else {
HalpLegoServiceWatchdog = FALSE;
}
//
// Check for special debug variable -- if set,
// don't service the watchdog in the clock ISR
//
Status = HalGetEnvironmentVariable ("LGWDD",16,Buffer);
if (Status==ESUCCESS) {
LegoDebugWatchdogIsr = TRUE;
}
else {
LegoDebugWatchdogIsr = FALSE;
}
}
else {
//
// No setting - use default
//
HalpLegoServiceWatchdog = FALSE;
HalpLegoWatchdogSingleMode = FALSE;
LegoDebugWatchdogIsr = FALSE;
}
}
HalDisplayString("DMCC Watchdog Timer is ");
if (HalpLegoServiceWatchdog) {
HalDisplayString("active ");
HalDisplayString((HalpLegoWatchdogSingleMode)
? "(single timeout)."
: "(double timeout).");
}
else {
HalDisplayString("inactive.");
}
HalDisplayString("\n");
}
else {
HalpLegoServiceWatchdog = FALSE;
}
}
}