Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

556 lines
16 KiB

#ident "@(#) NEC xxinitnt.c 1.18 95/03/17 11:59:37"
/*++
Copyright (c) 1991-1994 Microsoft Corporation
Module Name:
xxinitnt.c
Abstract:
This module implements the interrupt initialization for a MIPS R3000
or R4000 system.
--*/
/*
* Original source: Build Number 1.612
*
* Modify for R98(MIPS/R4400)
*
***********************************************************************
*
* L001 94.03/22-5/13 T.Samezima
*
* add control of Eif interrupt.
* make table of change from iRRE bit number to NABus code.
* make table of arbitration table and arbitration pointer.
* make variable for access of registers.
* connect the timer interrupt service routine.
* clear unknown interrupt counter
*
* del only '#if defined(_DUO_)'
* '#if defined(_JAZZ_)' with content
* HalpCountInterrupt()
*
* change interrupt control
* various vector of interrupt service routine
*
***********************************************************************
*
* S002 94.5/17 T.Samezima
*
* del Arbitration table
*
***********************************************************************
*
* S003 94.6/10-14 T.Samezima
*
* del Compile err
*
***********************************************************************
*
* S004 94.7/7 T.Samezima
*
* Chg Use UNKNOWN_COUNT_BUF_LEN to max
* for HalpUnknownInterruptCount
*
***********************************************************************
*
* S005 94.7/7 T.Samezima
*
* Del move interrupt arbitration pointer to r98dspt.c
*
***********************************************************************
*
* S006 94.7/23 T.Samezima
*
* Add Enable EIF interrupt on SIC.
*
***********************************************************************
*
* S007 94.8/22 T.Samezima on SNES
*
* Chg Register buffer size from USHORT to ULONG
* Value of set to MKSR register
* Condition change
*
* Add Clear interrupt pending bit on edge level interrupt
*
* Del Move EISA NMI enable logic to HalpCreateEisaStructure()
*
***********************************************************************
*
* S008 94.9/5 T.Samezima
*
* Add Institute number of repeat for interrupt clear loop
*
***********************************************************************
*
* S009 94.9/16 T.Samezima
*
* Chg Only CPU#0 on I/O Initerrupt clear
*
***********************************************************************
*
* S00a 94.10/14 T.Samezima
*
* Fix Version Up at build807
* -Move Int1 interrupt enable to allstart.c
*
* S00b 94.10/18 T.Samezima
* Chg Enable interrupt on MKR register only exist device,
*
* S00c 94.12/06 T.Samezima
* Bug Disable ECC 1bit error interrupt.
*
* S00d 94.12/06 T.Samezima
* Add Disable NMI
*
* S00e 95.01/10 T.Samezima
* Add Enable ECC 1bit error interrupt
* Rewrite cycle start on ecc 1bit error
*
* S00f 95.01/24 T.Samezima
* Add Disable rewrite cycle on ecc 1bit error
*
* S010 95.03/13 T.Samezima
* Add Enable HW cache flush.
*
*/
#include "halp.h"
#include "eisa.h" // S003
//
// Put all code for HAL initialization in the INIT section. It will be
// deallocated by memory management when phase 1 initialization is
// completed.
//
#if defined(ALLOC_PRAGMA)
#pragma alloc_text(INIT, HalpInitializeInterrupts)
#endif
//
// Define global data for builtin device interrupt enables.
//
ULONG HalpBuiltinInterruptEnable; // S007
//
// Define the IRQL mask and level mapping table.
//
// These tables are transfered to the PCR and determine the priority of
// interrupts.
//
// N.B. The two software interrupt levels MUST be the lowest levels.
//
UCHAR HalpIrqlMask[] = {4, 5, 6, 6, 7, 7, 7, 7, // 0000 - 0111 high 4-bits
8, 8, 8, 8, 8, 8, 8, 8, // 1000 - 1111 high 4-bits
0, 1, 2, 2, 3, 3, 3, 3, // 0000 - 0111 low 4-bits
4, 4, 4, 4, 4, 4, 4, 4}; // 1000 - 1111 low 4-bits
UCHAR HalpIrqlTable[] = {0xff, // IRQL 0
0xfe, // IRQL 1
0xfc, // IRQL 2
0xf8, // IRQL 3
0xf0, // IRQL 4
0xe0, // IRQL 5
0xc0, // IRQL 6
0x80, // IRQL 7
0x00}; // IRQL 8
/* Start L001 */
//
// Define table of change from iRRE bit number to NABus code
//
ULONG HalpNaBusCodeTable[] = {0x8000, 0x0010, // iRRE bit0,1
0x0006, 0x0000, // iRRE bit2,3
0x0002, 0x0002, // iRRE bit4,5
0x000a, 0x000a, // iRRE bit6,7
0x0008, 0x000c, // iRRE bit8,9
0x8000, 0x8000, // iRRE bit10,11
0x8000, 0x8000, // iRRE bit12,13
0x8000, 0x8000, // iRRE bit14,15
0x8000, 0x0004, // iRRE bit16,17
0x8000, 0x8000, // iRRE bit18,19
0x8000, 0x8000, // iRRE bit20,21
0x000c, 0x8000, // iRRE bit22,23
0x8000, 0x8000, // iRRE bit24,25
0x8000, 0x8000, // iRRE bit26,27
0x8000, 0x8000, // iRRE bit28,29
0x8000, 0x8000 }; // iRRE bit30,31
//
// Define table of order of interrupt arbitration
//
ULONG HalpUnknownInterruptCount[UNKNOWN_COUNT_BUF_LEN]; // S004
/* End L001*/
BOOLEAN
HalpInitializeInterrupts (
VOID
)
/*++
Routine Description:
This function initializes interrupts for a Jazz or Duo MIPS system.
N.B. This function is only called during phase 0 initialization.
Arguments:
None.
Return Value:
A value of TRUE is returned if the initialization is successfully
completed. Otherwise a value of FALSE is returned.
--*/
{
USHORT DataShort;
ULONG DataLong;
ULONG Index;
PKPRCB Prcb;
/* Start L001 */
ULONG pmcRegisterAddr;
ULONG pmcRegisterUpperPart;
ULONG pmcRegisterLowerPart;
ULONG bitCount;
ULONG buffer;
ULONG buffer2; // S006
UCHAR charBuffer;
LONG repeatCounter; // S008
/* End L001 */
//
// Get the address of the processor control block for the current
// processor.
//
Prcb = PCR->Prcb;
//
// Initialize the IRQL translation tables in the PCR. These tables are
// used by the interrupt dispatcher to determine the new IRQL and the
// mask value that is to be loaded into the PSR. They are also used by
// the routines that raise and lower IRQL to load a new mask value into
// the PSR.
//
for (Index = 0; Index < sizeof(HalpIrqlMask); Index += 1) {
PCR->IrqlMask[Index] = HalpIrqlMask[Index];
}
for (Index = 0; Index < sizeof(HalpIrqlTable); Index += 1) {
PCR->IrqlTable[Index] = HalpIrqlTable[Index];
}
/* Start L001 */
//
// All interrupt disables.
//
pmcRegisterAddr = (ULONG)( &(PMC_CONTROL1)->MKR ); // S003
pmcRegisterUpperPart = MKR_DISABLE_ALL_INTERRUPT_HIGH;
pmcRegisterLowerPart = MKR_DISABLE_ALL_INTERRUPT_LOW;
HalpWriteLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
//
// If processor 0 is being initialized, then set all device
// interrupt disables.
//
if (Prcb->Number == 0) {
HalpBuiltinInterruptEnable = iREN_DISABLE_ALL_INTERRUPT;
for (Index = 0; Index < UNKNOWN_COUNT_BUF_LEN; Index += 1) { // S004
HalpUnknownInterruptCount[Index] = 0;
}
// } // S009
/* End L001 */
//
// Disable individual device interrupts and make sure no device interrupts
// are pending.
//
/* Start L001 */
WRITE_REGISTER_ULONG( &( LR_CONTROL2 )->iREN,
HalpBuiltinInterruptEnable );
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->EIMR.Long,
EIMR_DISABLE_ALL_EIF );
repeatCounter = 0; // S008
while( ((DataLong = READ_REGISTER_ULONG( &( LR_CONTROL2 )->iRRE) & iRRE_MASK) != 0) &&
(++repeatCounter < 16) ) { // S008
for( bitCount = 0 ; bitCount <= 31 ; bitCount++ ) {
if( (DataLong & ( 1 << bitCount )) != 0) {
// Start S007
if( bitCount < 15 ){
WRITE_REGISTER_ULONG( &( LR_CONTROL2 )->iRSF,
( 1 << bitCount ) );
}
// End S007
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->AIMR.Long,
HalpNaBusCodeTable[bitCount] );
}
}
WRITE_REGISTER_ULONG( &( LR_CONTROL2 )->iRSF,
iRSF_CLEAR_INTERRUPT );
pmcRegisterAddr = (ULONG)( &(PMC_CONTROL1)->IPRR ); // S003
pmcRegisterUpperPart = 0x0;
pmcRegisterLowerPart = 0xffffffff;
HalpWriteLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
}
/* End L001 */
HalpBuiltinInterruptEnable |= 0x10; // S010
//
// If processor 0 is being initialized, then enable device interrupts.
//
// if (Prcb->Number == 0) { // S009
/* Start L001 */
//
// Enable INT0-1 interrupt on PMC
//
/* Start S003 */
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->AII0.Long,
AII_INIT_DATA );
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->AII1.Long,
AII_INIT_DATA );
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->AII2.Long,
AII_INIT_DATA );
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->AII3.Long,
AII_INIT_DATA );
/* End S003 */
pmcRegisterAddr = (ULONG)( &(PMC_CONTROL1)->MKR ); // S003
HalpReadLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
pmcRegisterLowerPart = ( pmcRegisterLowerPart
| MKR_INT0_DEVICE_ENABLE_LOW // S00b
// | MKR_INT1_DEVICE_ENABLE_LOW // S00a, S00b
| MKR_INT2_DEVICE_ENABLE_LOW // S00b
); // S003
HalpWriteLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
// DataLong = READ_REGISTER_ULONG(&((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InterruptEnable.Long);
// DataLong |= ENABLE_DEVICE_INTERRUPTS;
// WRITE_REGISTER_ULONG(&((PDMA_REGISTERS)DMA_VIRTUAL_BASE)->InterruptEnable.Long,
// DataLong);
/* End L001 */
}
/* Start L001 */
//
// Connect the eif interrupt to the eif interrupt routine
//
PCR->InterruptRoutine[EIF_LEVEL] = HalpEifDispatch;
//
// Enable the eif interrupt
//
pmcRegisterAddr = (ULONG)( &(PMC_CONTROL1)->MKR ); // S003
HalpReadLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
pmcRegisterUpperPart = ( pmcRegisterUpperPart | MKR_INT5_ENABLE_HIGH );
pmcRegisterLowerPart = ( pmcRegisterLowerPart | MKR_INT5_ENABLE_LOW );
HalpWriteLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
buffer = READ_REGISTER_ULONG( &( PMC_CONTROL1 )->STSR.Long);
buffer = (buffer | STSR_EIF_ENABLE);
#if defined(DISABLE_NMI) // S00d
buffer = (buffer | STSR_NMI_DISABLE);
#endif
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->STSR.Long, buffer);
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->ERRMK.Long, ERRMK_EIF_ENABLE);
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->IEMR.Long, IEMR_ENABLE_ALL_EIF);
WRITE_REGISTER_ULONG( &( IOB_CONTROL )->EIMR.Long, EIMR_ENABLE_ALL_EIF);
/* Start S006 */
buffer = READ_REGISTER_ULONG( &( IOB_CONTROL )->SCFR.Long );
IOB_DUMMY_READ;
if( (buffer & SCFR_SIC_SET0_CONNECT) == 0 ) { // S007
buffer2 = READ_REGISTER_ULONG( &(SIC_ERR_CONTROL_OR(SIC_NO0_OFFSET))->CKE0.Long );
buffer2 &= CKE0_DISABLE_SBE; // S00c
buffer2 |= CKE0_ENABLE_ALL_EIF;
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET0_OFFSET) )->CKE0.Long,
buffer2
);
// S00e vvv
buffer2 = READ_REGISTER_ULONG( &(SIC_DATA_CONTROL_OR(SIC_NO0_OFFSET))->DPCM.Long );
buffer2 &= DPCM_ENABLE_MASK; // S00c
WRITE_REGISTER_ULONG( &( SIC_DATA_CONTROL_OR(SIC_SET0_OFFSET) )->DPCM.Long,
buffer2
);
#if 0 // S00f
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET0_OFFSET) )->SECT.Long,
SECT_REWRITE_ENABLE
);
#endif
// S00e ^^^
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET0_OFFSET) )->CKE1.Long,
CKE1_ENABLE_ALL_EIF
);
}
if( (buffer & SCFR_SIC_SET1_CONNECT) == 0 ) { // S007
buffer2 = READ_REGISTER_ULONG( &(SIC_ERR_CONTROL_OR(SIC_NO2_OFFSET))->CKE0.Long );
buffer2 &= CKE0_DISABLE_SBE; // S00c
buffer2 |= CKE0_ENABLE_ALL_EIF;
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET1_OFFSET) )->CKE0.Long,
buffer2
);
// S00e vvv
buffer2 = READ_REGISTER_ULONG( &(SIC_DATA_CONTROL_OR(SIC_NO2_OFFSET))->DPCM.Long );
buffer2 &= DPCM_ENABLE_MASK; // S00c
WRITE_REGISTER_ULONG( &( SIC_DATA_CONTROL_OR(SIC_SET1_OFFSET) )->DPCM.Long,
buffer2
);
#if 0 // S00f
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET1_OFFSET) )->SECT.Long,
SECT_REWRITE_ENABLE
);
#endif
// S00e ^^^
WRITE_REGISTER_ULONG( &( SIC_ERR_CONTROL_OR(SIC_SET1_OFFSET) )->CKE1.Long,
CKE1_ENABLE_ALL_EIF
);
}
/* End S006 */
// S007
//
// If processor 0 is being initialized, then connect the interval timer
// interrupt to the stall interrupt routine so the stall execution count
// can be computed during phase 1 initialization. Otherwise, connect the
// interval timer interrupt to the appropriate interrupt service routine
// and set stall execution count from the computation made on processor
// 0.
//
PCR->InterruptRoutine[TIMER_LEVEL] = HalpTimerDispatch; // S003
if (Prcb->Number == 0) {
/* Start L001 */
PCR->InterruptRoutine[CLOCK_VECTOR] = HalpStallInterrupt;
/* End L001 */
} else {
/* Start L001 */
PCR->InterruptRoutine[CLOCK_VECTOR] = HalpClockInterrupt1;
/* End L001 */
PCR->StallScaleFactor = HalpStallScaleFactor;
}
//
// Initialize the interval timer to interrupt at the specified interval.
//
/* Start L001 */
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->TMSR1.Long, CLOCK_INTERVAL);
//
// Initialize the profile timer to interrupt at the default interval.
//
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->TMSR2.Long,
DEFAULT_PROFILETIMER_COUNT);
/* End L001 */
//
// Enable the interval timer interrupt on the current processor.
//
/* Start L001 */
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->MKSR.Long, 0x3f-IPR_CLOCK_BIT_NO); // S007
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->TMCR1.Long, 0x3);
/* End L001 */
//
// If processor 0 is being initialized, then connect the count/compare
// interrupt to the count interrupt routine to handle early count/compare
// interrupts during phase 1 initialization. Otherwise, connect the
// count\comapre interrupt to the appropriate interrupt service routine.
//
/* Start L001 */
if (Prcb->Number != 0) {
PCR->InterruptRoutine[PROFILE_VECTOR] = HalpProfileInterrupt;
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->MKSR.Long, 0x3f-IPR_PROFILE_BIT_NO); // S007
WRITE_REGISTER_ULONG( &( PMC_CONTROL1 )->TMCR2.Long, 0x3);
}
/* End L001 */
//
// Connect the interprocessor interrupt service routine and enable
// interprocessor interrupts.
//
PCR->InterruptRoutine[IPI_LEVEL] = HalpIpiInterrupt;
/*Start L001 */
pmcRegisterAddr = (ULONG)( &(PMC_CONTROL1)->MKR ); // S003
HalpReadLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
pmcRegisterUpperPart = ( pmcRegisterUpperPart | MKR_INT4_ENABLE_HIGH );
pmcRegisterLowerPart = ( pmcRegisterLowerPart | MKR_INT4_ENABLE_LOW );
HalpWriteLargeRegister( pmcRegisterAddr,
&pmcRegisterUpperPart,
&pmcRegisterLowerPart );
/*End L001 */
//
// Reserve the local device interrupt vector for exclusive use by the HAL.
//
/* Start L001 */
// PCR->ReservedVectors |= (1 << DEVICE_LEVEL);
// PCR->ReservedVectors |= (1 << INT1_LEVEL); // S00a
PCR->ReservedVectors |= (1 << INT2_LEVEL);
/* End L001 */
return TRUE;
}