Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

501 lines
12 KiB

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
spsproc.c
Abstract:
SystemPro Start Next Processor c code.
This module implements the initialization of the system dependent
functions that define the Hardware Architecture Layer (HAL) for an
MP Compaq SystemPro
Author:
Ken Reneris (kenr) 22-Jan-1991
Environment:
Kernel mode only.
Revision History:
--*/
#include "halp.h"
UCHAR HalName[] = "SystemPro or compatible MP Hal";
ADDRESS_USAGE HalpSystemProIoSpace = {
NULL, CmResourceTypePort, InternalUsage,
{
0xC70, 1, // WhoAmI
0xC6A, 1, // P0 Processor control register
0xFC6A, 1, // P1 Processor control register
0xFC67, 2, // P1 cache control, interrupt vector
0,0
}
};
ADDRESS_USAGE HalpAcerIoSpace = {
NULL, CmResourceTypePort, InternalUsage,
{
0xCC67, 2, // P2 cache control, interrupt vector
0xCC6A, 1, // P2 Processor control register
0xDC67, 2, // P3 cache control, interrupt vector
0xDC6A, 1, // P3 Processor control register
0,0
}
};
ADDRESS_USAGE HalpBelizeIoSpace = {
NULL, CmResourceTypePort, InternalUsage,
{
0xC67, 1, // Mode Select
0xC71, 6, // CPU assignment, reserverd[2], CPU index, address, data
0xCB0, 36, // IRQx Control/Status
0xCC9, 1, // INT13 Extended control/status port
0,0
}
};
VOID
HalpMapCR3 (
IN ULONG VirtAddress,
IN PVOID PhysicalAddress,
IN ULONG Length
);
ULONG
HalpBuildTiledCR3 (
IN PKPROCESSOR_STATE ProcessorState
);
VOID
HalpFreeTiledCR3 (
VOID
);
VOID
HalpNonPrimaryClockInterrupt(
VOID
);
BOOLEAN
HalpInitMP (
IN ULONG Phase,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
);
VOID HalpInitOtherBuses (VOID);
VOID HalpInitializePciBus (VOID);
#define LOW_MEMORY 0x000100000
#define MAX_PT 8
extern VOID StartPx_PMStub(VOID);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,HalpInitMP)
#pragma alloc_text(INIT,HalAllProcessorsStarted)
#pragma alloc_text(INIT,HalReportResourceUsage)
#pragma alloc_text(INIT,HalReportResourceUsage)
#pragma alloc_text(INIT,HalpInitOtherBuses)
#pragma alloc_text(INIT,HalpFreeTiledCR3)
#pragma alloc_text(INIT,HalpMapCR3)
#pragma alloc_text(INIT,HalpBuildTiledCR3)
#endif
ULONG MpCount; // zero based. 0 = 1, 1 = 2, ...
PUCHAR MpLowStub; // pointer to low memory bootup stub
PVOID MpLowStubPhysicalAddress; // pointer to low memory bootup stub
PUCHAR MppIDT; // pointer to physical memory 0:0
PVOID MpFreeCR3[MAX_PT]; // remember pool memory to free
extern ULONG HalpIpiClock; // bitmask of processors to ipi
extern UCHAR SpCpuCount;
extern UCHAR Sp8259PerProcessorMode;
extern UCHAR SpType;
extern PKPCR HalpProcessorPCR[];
BOOLEAN
HalpInitMP (
IN ULONG Phase,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
/*++
Routine Description:
Allows MP initialization from HalInitSystem.
Arguments:
Same as HalInitSystem
Return Value:
none.
--*/
{
ULONG paddress;
ULONG adjust;
PKPCR pPCR;
pPCR = KeGetPcr();
if (Phase == 0) {
//
// Register the IO space used by the SystemPro
//
HalpRegisterAddressUsage (&HalpSystemProIoSpace);
switch (SpType) {
case 2:
HalpRegisterAddressUsage (&HalpBelizeIoSpace);
break;
case 3:
HalpRegisterAddressUsage (&HalpAcerIoSpace);
break;
}
#if 0
//
// Register IPI vector
//
HalpRegisterVector (
DeviceUsage,
13,
13 + PRIMARY_VECTOR_BASE,
IPI_LEVEL );
#endif
//
// Get pointer to real-mode idt table
//
MppIDT = HalpMapPhysicalMemory (0, 1);
//
// Allocate some low memory for processor bootup stub
//
MpLowStubPhysicalAddress = (PVOID)HalpAllocPhysicalMemory (LoaderBlock,
LOW_MEMORY, 1, FALSE);
if (!MpLowStubPhysicalAddress)
return TRUE;
MpLowStub = (PCHAR) HalpMapPhysicalMemory (MpLowStubPhysicalAddress, 1);
MpCount = SpCpuCount-1;
return TRUE;
} else {
//
// Phase 1 for another processor
//
if (pPCR->Prcb->Number != 0) {
if (Sp8259PerProcessorMode & 1) {
//
// Each processor has it's own pics - we broadcast profile
// interrupts to each processor by enabling it on each
// processor
//
HalpInitializeStallExecution( pPCR->Prcb->Number );
HalpEnableInterruptHandler (
DeviceUsage, // Report as device vector
V2I (PROFILE_VECTOR), // Bus interrupt level
PROFILE_VECTOR, // System IDT
PROFILE_LEVEL, // System Irql
HalpProfileInterrupt, // ISR
Latched );
} else {
//
// Without a profile interrupt we can not callibrate
// KeStallExecutionProcessor, so we inherrit the value from P0.
//
pPCR->StallScaleFactor = HalpProcessorPCR[0]->StallScaleFactor;
}
if (Sp8259PerProcessorMode & 4) {
//
// Each processor can get it's own clock device - we
// program each processor's 8254 and enable to interrupt
// on each processor
//
HalpInitializeClock ();
HalpEnableInterruptHandler (
DeviceUsage, // Report as device vector
V2I (CLOCK_VECTOR), // Bus interrupt level
CLOCK_VECTOR, // System IDT
CLOCK2_LEVEL, // System Irql
HalpNonPrimaryClockInterrupt, // ISR
Latched );
} else {
//
// This processor doesn't have a clock, so we emulate it by
// sending an ipi at clock intervals.
//
HalpIpiClock |= 1 << pPCR->Prcb->Number;
}
}
}
}
BOOLEAN
HalAllProcessorsStarted (
VOID
)
{
return TRUE;
}
VOID
HalReportResourceUsage (
VOID
)
/*++
Routine Description:
The registery is now enabled - time to report resources which are
used by the HAL.
Arguments:
Return Value:
--*/
{
ANSI_STRING AHalName;
UNICODE_STRING UHalName;
HalInitSystemPhase2();
RtlInitAnsiString (&AHalName, HalName);
RtlAnsiStringToUnicodeString (&UHalName, &AHalName, TRUE);
HalpReportResourceUsage (
&UHalName, // descriptive name
Eisa // SystemPro's are Eisa machines
);
RtlFreeUnicodeString (&UHalName);
//
// Turn on MCA support if present
//
HalpMcaInit();
//
// Registry is now intialized, see if there are any PCI buses
//
HalpInitializePciBus ();
}
ULONG
HalpBuildTiledCR3 (
IN PKPROCESSOR_STATE ProcessorState
)
/*++
Routine Description:
When the x86 processor is reset it starts in real-mode. In order to
move the processor from real-mode to protected mode with flat addressing
the segment which loads CR0 needs to have it's linear address mapped
to machine the phyiscal location of the segment for said instruction so
the processor can continue to execute the following instruction.
This function is called to built such a tiled page directory. In
addition, other flat addresses are tiled to match the current running
flat address for the new state. Once the processor is in flat mode,
we move to a NT tiled page which can then load up the remaining processors
state.
Arguments:
ProcessorState - The state the new processor should start in.
Return Value:
Physical address of Tiled page directory
--*/
{
#define GetPdeAddress(va) ((PHARDWARE_PTE)((((((ULONG)(va)) >> 22) & 0x3ff) << 2) + (PUCHAR)MpFreeCR3[0]))
#define GetPteAddress(va) ((PHARDWARE_PTE)((((((ULONG)(va)) >> 12) & 0x3ff) << 2) + (PUCHAR)pPageTable))
// bugbug kenr 27mar92 - fix physical memory usage!
MpFreeCR3[0] = ExAllocatePool (NonPagedPool, PAGE_SIZE);
RtlZeroMemory (MpFreeCR3[0], PAGE_SIZE);
//
// Map page for real mode stub (one page)
//
HalpMapCR3 ((ULONG) MpLowStubPhysicalAddress,
MpLowStubPhysicalAddress,
PAGE_SIZE);
//
// Map page for protect mode stub (one page)
//
HalpMapCR3 ((ULONG) &StartPx_PMStub, NULL, 0x1000);
//
// Map page(s) for processors GDT
//
HalpMapCR3 (ProcessorState->SpecialRegisters.Gdtr.Base, NULL,
ProcessorState->SpecialRegisters.Gdtr.Limit);
//
// Map page(s) for processors IDT
//
HalpMapCR3 (ProcessorState->SpecialRegisters.Idtr.Base, NULL,
ProcessorState->SpecialRegisters.Idtr.Limit);
return MmGetPhysicalAddress (MpFreeCR3[0]).LowPart;
}
VOID
HalpMapCR3 (
IN ULONG VirtAddress,
IN PVOID PhysicalAddress,
IN ULONG Length
)
/*++
Routine Description:
Called to build a page table entry for the passed page directory.
Used to build a tiled page directory with real-mode & flat mode.
Arguments:
VirtAddress - Current virtual address
PhysicalAddress - Optional. Physical address to be mapped to, if passed
as a NULL then the physical address of the passed
virtual address is assumed.
Length - number of bytes to map
Return Value:
none.
--*/
{
ULONG i;
PHARDWARE_PTE PTE;
PVOID pPageTable;
PHYSICAL_ADDRESS pPhysicalPage;
while (Length) {
PTE = GetPdeAddress (VirtAddress);
if (!PTE->PageFrameNumber) {
pPageTable = ExAllocatePool (NonPagedPool, PAGE_SIZE);
RtlZeroMemory (pPageTable, PAGE_SIZE);
for (i=0; i<MAX_PT; i++) {
if (!MpFreeCR3[i]) {
MpFreeCR3[i] = pPageTable;
break;
}
}
ASSERT (i<MAX_PT);
pPhysicalPage = MmGetPhysicalAddress (pPageTable);
PTE->PageFrameNumber = (pPhysicalPage.LowPart >> PAGE_SHIFT);
PTE->Valid = 1;
PTE->Write = 1;
}
pPhysicalPage.LowPart = PTE->PageFrameNumber << PAGE_SHIFT;
pPhysicalPage.HighPart = 0;
pPageTable = MmMapIoSpace (pPhysicalPage, PAGE_SIZE, TRUE);
PTE = GetPteAddress (VirtAddress);
if (!PhysicalAddress) {
PhysicalAddress = (PVOID)MmGetPhysicalAddress ((PVOID)VirtAddress).LowPart;
}
PTE->PageFrameNumber = ((ULONG) PhysicalAddress >> PAGE_SHIFT);
PTE->Valid = 1;
PTE->Write = 1;
MmUnmapIoSpace (pPageTable, PAGE_SIZE);
PhysicalAddress = 0;
VirtAddress += PAGE_SIZE;
if (Length > PAGE_SIZE) {
Length -= PAGE_SIZE;
} else {
Length = 0;
}
}
}
VOID
HalpFreeTiledCR3 (
VOID
)
/*++
Routine Description:
Free's any memory allocated when the tiled page directory was built.
Arguments:
none
Return Value:
none
--*/
{
ULONG i;
for (i=0; MpFreeCR3[i]; i++) {
ExFreePool (MpFreeCR3[i]);
MpFreeCR3[i] = 0;
}
}
VOID
HalpInitOtherBuses (
VOID
)
{
// no other buses
}