Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3241 lines
72 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
timt.c
Abstract:
This module contains native NT performance tests for the system
calls and context switching.
Author:
David N. Cutler (davec) 23-Nov-1991
Environment:
Kernel mode only.
Revision History:
--*/
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "nt.h"
#include "ntrtl.h"
#include "nturtl.h"
#include "slist.h"
//
// Define locals constants.
//
#define CALLBACK_ITERATIONS 500000
#define CHECKSUM_BUFFER_SIZE (1 << 16)
#define CHECKSUM_ITERATIONS 1000
#define CHECKSUM_IP_ITERATIONS 40000000
#define EVENT_CLEAR_ITERATIONS 500000
#define EVENT_RESET_ITERATIONS 500000
#define EVENT_CREATION_ITERATIONS 20000
#define EVENT_OPEN_ITERATIONS 20000
#define EVENT_QUERY_ITERATIONS 500000
#define EVENT1_SWITCHES 300000
#define EVENT2_SWITCHES 200000
#define EVENT3_SWITCHES 1500000
#define EVENT4_SWITCHES 400000
#define IO_ITERATIONS 70000
#define MUTANT_SWITCHES 100000
#define SLIST_ITERATIONS 20000000
#define SEMAPHORE1_SWITCHES 300000
#define SEMAPHORE2_SWITCHES 600000
#define SYSCALL_ITERATIONS 2000000
#define TIMER_INDEX_ITERATIONS 10000000
#define TIMER_OPERATION_ITERATIONS 500000
#define WAIT_SINGLE_ITERATIONS 200000
#define WAIT_MULTIPLE_ITERATIONS 200000
//
// Define event desired access.
//
#define DESIRED_EVENT_ACCESS (EVENT_QUERY_STATE | EVENT_MODIFY_STATE | SYNCHRONIZE)
//
// Define local types.
//
typedef struct _PERFINFO {
LARGE_INTEGER StartTime;
LARGE_INTEGER StopTime;
LARGE_INTEGER StartCycles;
LARGE_INTEGER StopCycles;
ULONG ContextSwitches;
ULONG InterruptCount;
ULONG FirstLevelFills;
ULONG SecondLevelFills;
ULONG SystemCalls;
PCHAR Title;
ULONG Iterations;
} PERFINFO, *PPERFINFO;
//
// Define test prototypes.
//
VOID
CallbackTest (
VOID
);
VOID
ChecksumTest (
VOID
);
VOID
EventClearTest (
VOID
);
VOID
EventCreationTest (
VOID
);
VOID
EventOpenTest (
VOID
);
VOID
EventQueryTest (
VOID
);
VOID
EventResetTest (
VOID
);
VOID
Event1SwitchTest (
VOID
);
VOID
Event2SwitchTest (
VOID
);
VOID
Event3SwitchTest (
VOID
);
VOID
Event4SwitchTest (
VOID
);
VOID
Io1Test (
VOID
);
VOID
MutantSwitchTest (
VOID
);
VOID
Semaphore1SwitchTest (
VOID
);
VOID
Semaphore2SwitchTest (
VOID
);
VOID
SlistTest (
VOID
);
VOID
SystemCallTest (
VOID
);
VOID
TimerIndexTest (
VOID
);
VOID
TimerOperationTest (
VOID
);
VOID
WaitSingleTest (
VOID
);
VOID
WaitMultipleTest (
VOID
);
//
// Define thread routine prototypes.
//
NTSTATUS
Event1Thread1 (
IN PVOID Context
);
NTSTATUS
Event1Thread2 (
IN PVOID Context
);
NTSTATUS
Event2Thread1 (
IN PVOID Context
);
NTSTATUS
Event2Thread2 (
IN PVOID Context
);
NTSTATUS
Event3Thread1 (
IN PVOID Context
);
NTSTATUS
Event3Thread2 (
IN PVOID Context
);
NTSTATUS
Event4Thread1 (
IN PVOID Context
);
NTSTATUS
Event4Thread2 (
IN PVOID Context
);
NTSTATUS
MutantThread1 (
IN PVOID Context
);
NTSTATUS
MutantThread2 (
IN PVOID Context
);
NTSTATUS
Semaphore1Thread1 (
IN PVOID Context
);
NTSTATUS
Semaphore1Thread2 (
IN PVOID Context
);
NTSTATUS
Semaphore2Thread1 (
IN PVOID Context
);
NTSTATUS
Semaphore2Thread2 (
IN PVOID Context
);
NTSTATUS
TimerThread (
IN PVOID Context
);
//
// Define utility routine prototypes.
//
NTSTATUS
CreateThread (
OUT PHANDLE Handle,
IN PUSER_THREAD_START_ROUTINE StartRoutine,
IN KPRIORITY Priority
);
VOID
FinishBenchMark (
IN PPERFINFO PerfInfo
);
VOID
StartBenchMark (
IN PCHAR Title,
IN ULONG Iterations,
IN PPERFINFO PerfInfo
);
//
// Define external routine prototypes.
//
ULONG
ComputeTimerTableIndex32 (
IN LARGE_INTEGER Interval,
IN LARGE_INTEGER CurrentTime,
IN PULONGLONG DueTime
);
ULONG
ComputeTimerTableIndex64 (
IN LARGE_INTEGER Interval,
IN LARGE_INTEGER CurrentTime,
IN PULONGLONG DueTime
);
ULONG
ChkSum (
IN ULONG Sum,
IN PUSHORT Buffer,
IN ULONG Length
);
ULONG
oldxsum (
IN ULONG Sum,
IN PUCHAR Buffer,
IN ULONG Length
);
ULONG
tcpxsum (
IN ULONG Sum,
IN PUCHAR Buffer,
IN ULONG Length
);
//
// Define static storage.
//
HANDLE EventHandle1;
HANDLE EventHandle2;
HANDLE EventPairHandle;
HANDLE MutantHandle;
HANDLE SemaphoreHandle1;
HANDLE SemaphoreHandle2;
HANDLE Thread1Handle;
HANDLE Thread2Handle;
HANDLE TimerEventHandle;
HANDLE TimerTimerHandle;
HANDLE TimerThreadHandle;
USHORT ChecksumBuffer[CHECKSUM_BUFFER_SIZE / sizeof(USHORT)];
VOID
main(
int argc,
char *argv[]
)
{
KPRIORITY Priority = LOW_REALTIME_PRIORITY + 8;
NTSTATUS Status;
//
// set priority of current thread.
//
Status = NtSetInformationThread(NtCurrentThread(),
ThreadPriority,
&Priority,
sizeof(KPRIORITY));
if (!NT_SUCCESS(Status)) {
printf("Failed to set thread priority during initialization\n");
goto EndOfTest;
}
//
// Create an event object to signal the timer thread at the end of the
// test.
//
Status = NtCreateEvent(&TimerEventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event during initialization\n");
goto EndOfTest;
}
//
// Create a timer object for use by the timer thread.
//
Status = NtCreateTimer(&TimerTimerHandle,
TIMER_ALL_ACCESS,
NULL,
NotificationTimer);
if (!NT_SUCCESS(Status)) {
printf("Failed to create timer during initialization\n");
goto EndOfTest;
}
//
// Create and start the background timer thread.
//
Status = CreateThread(&TimerThreadHandle,
TimerThread,
LOW_REALTIME_PRIORITY + 12);
if (!NT_SUCCESS(Status)) {
printf("Failed to create timer thread during initialization\n");
goto EndOfTest;
}
//
// Execute performance tests.
//
// CallbackTest();
// ChecksumTest();
// EventClearTest();
// EventCreationTest();
// EventOpenTest();
// EventQueryTest();
// EventResetTest();
// Event1SwitchTest();
// Event2SwitchTest();
// Event3SwitchTest();
// Event4SwitchTest();
// Io1Test();
// MutantSwitchTest();
// Semaphore1SwitchTest();
// Semaphore2SwitchTest();
SlistTest();
// SystemCallTest();
// TimerIndexTest();
// TimerOperationTest();
// WaitSingleTest();
// WaitMultipleTest();
//
// Set timer event and wait for timer thread to terminate.
//
Status = NtSetEvent(TimerEventHandle, NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to set event in main loop\n");
goto EndOfTest;
}
Status = NtWaitForSingleObject(TimerThreadHandle,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to wait for timer thread at end of test\n");
}
//
// Close event, timer, and timer thread handles.
//
EndOfTest:
NtClose(TimerEventHandle);
NtClose(TimerTimerHandle);
NtClose(TimerThreadHandle);
return;
}
CHAR InputBuffer[] = "this is the input buffer";
CHAR OutputBuffer[] = "this is the output buffer";
NTSTATUS
Callback (
IN PVOID ValueBuffer,
IN ULONG ValueLength
)
{
NtCallbackReturn((PVOID)&OutputBuffer[0], 26, STATUS_SUCCESS);
return STATUS_SUCCESS;
}
VOID
CallbackTest (
VOID
)
{
PVOID Buffer;
ULONG Index;
ULONG Length;
PERFINFO PerfInfo;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Callback Benchmark (NtW32Call)",
CALLBACK_ITERATIONS,
&PerfInfo);
//
// Repeatedly call a short callback routine.
//
for (Index = 0; Index < CALLBACK_ITERATIONS; Index += 1) {
NtW32Call((ULONG)Callback, (PVOID)&InputBuffer[0], 24, &Buffer, &Length);
if ((Buffer != (PVOID)&OutputBuffer[0]) || (Length != 26)) {
printf("**** output buffer mismatch\n");
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
return;
}
ULONG
SwapSum(
ULONG Sum
)
{
ULONG newSum;
newSum = ((Sum & 0x000000FF) << 8); // byte 1 -> byte 2
newSum |= ((Sum & 0x0000FF00) >> 8); // byte 2 -> byte 1
newSum |= ((Sum & 0x00FF0000) << 8); // byte 3 -> byte 4
newSum |= ((Sum & 0xFF000000) >> 8); // byte 4 -> byte 3
return(newSum);
}
ULONG
xsum(
PVOID Buffer,
ULONG Size)
{
USHORT UNALIGNED *Buffer1 = (USHORT UNALIGNED *)Buffer;
ULONG csum = 0;
while (Size > 1) {
csum += *Buffer1++;
Size -= sizeof(USHORT);
}
if (Size)
csum += *(PUCHAR)Buffer1;
csum = (csum >> 16) + (csum & 0xffff);
csum += (csum >> 16);
return (ULONG)((USHORT)csum);
}
ULONG
oldxsum(
ULONG Sum,
PVOID Buffer,
ULONG BufferLength
)
{
if (BufferLength) {
//
// Check for word alignment.
//
if (!((ULONG)Buffer & 0x1)) {
//
// Make sure the length is an even number of words. If not, add
// in the last byte now.
//
if (!(BufferLength & 0x1)) {
return(ChkSum(Sum, (PUSHORT)Buffer, BufferLength >> 1));
}
Sum += (ULONG) *(((PUCHAR) Buffer) + BufferLength - 1);
return(ChkSum(Sum, (PUSHORT) Buffer, BufferLength >> 1));
}
//
// Buffer is not word aligned. Add in the first byte now and then
// swap the sum. When we're finished, we'll swap it back.
//
Sum += (ULONG) *((PUCHAR) Buffer);
((PUCHAR) Buffer)++;
BufferLength--;
Sum = SwapSum(Sum);
//
// Make sure the length is an even number of words. If not, add in the
// last byte now. Since we've already taken care of alignment, the last
// byte must be the low order one (if not, we've already swapped to
// handle it).
//
if (BufferLength & 0x1) {
Sum += (ULONG) *(((PUCHAR) Buffer) + BufferLength - 1);
}
return(SwapSum(ChkSum(Sum, Buffer, BufferLength >> 1)));
}
return(Sum);
}
VOID
ChecksumTest (
VOID
)
{
LONG Count;
LONG Index;
PERFINFO PerfInfo;
ULONG Sum1;
ULONG Sum2;
PUCHAR Source;
//
// Initial the checksum buffers.
//
for (Index = 0; Index < (CHECKSUM_BUFFER_SIZE / sizeof(USHORT)); Index += 1) {
ChecksumBuffer[Index] = (USHORT)rand();
}
Source = (PUCHAR)&ChecksumBuffer[0];
Source += 1;
//
// Test if old and new get algorithms get the same checksum.
//
Sum1 = oldxsum(0, &ChecksumBuffer[0], CHECKSUM_BUFFER_SIZE);
Sum2 = tcpxsum(0, &ChecksumBuffer[0], CHECKSUM_BUFFER_SIZE);
Sum1 = (Sum1 >> 16) + (Sum1 & 0xffff);
Sum1 = ((Sum1 >> 16) + Sum1) & 0xffff;
if (Sum1 != Sum2) {
printf("Checksum 1 mismatch, sum1 = %lx, sum2 = %lx\n", Sum1, Sum2);
}
Sum1 = oldxsum(Sum1, Source, CHECKSUM_BUFFER_SIZE - 1);
Sum2 = tcpxsum(Sum2, Source, CHECKSUM_BUFFER_SIZE - 1);
Sum1 = (Sum1 >> 16) + (Sum1 & 0xffff);
Sum1 = ((Sum1 >> 16) + Sum1) & 0xffff;
if (Sum1 != Sum2) {
printf("Checksum 2 mismatch, sum1 = %lx, sum2 = %lx\n", Sum1, Sum2);
}
Sum1 = oldxsum(Sum1, Source, CHECKSUM_BUFFER_SIZE - 2);
Sum2 = tcpxsum(Sum2, Source, CHECKSUM_BUFFER_SIZE - 2);
Sum1 = (Sum1 >> 16) + (Sum1 & 0xffff);
Sum1 = ((Sum1 >> 16) + Sum1) & 0xffff;
if (Sum1 != Sum2) {
printf("Checksum 4 mismatch, sum1 = %lx, sum2 = %lx\n", Sum1, Sum2);
}
for (Index = (CHECKSUM_BUFFER_SIZE - 2); Index >= 2 ; Index -= 2) {
Sum1 = oldxsum(Sum1, Source, Index);
Sum2 = tcpxsum(Sum2, Source, Index);
Sum1 = (Sum1 >> 16) + (Sum1 & 0xffff);
Sum1 = ((Sum1 >> 16) + Sum1) & 0xffff;
if (Sum1 != Sum2) {
printf("Checksum 3 mismatch, size = %d sum1 = %lx, sum2 = %lx\n",
Index,
Sum1,
Sum2);
}
}
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("New Checksum (aligned) Benchmark",
CHECKSUM_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_ITERATIONS; Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum2 = tcpxsum(Sum2, &ChecksumBuffer[0], Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("New Checksum (unaligned) Benchmark",
CHECKSUM_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_ITERATIONS; Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum2 = tcpxsum(Sum2, Source, Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Old Checksum (aligned) Benchmark",
CHECKSUM_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_ITERATIONS; Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum1 = oldxsum(Sum1, &ChecksumBuffer[0], Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Old Checksum (unaligned) Benchmark",
CHECKSUM_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_ITERATIONS; Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum2 = oldxsum(Sum2, Source, Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Ip Checksum (aligned) Benchmark",
CHECKSUM_ITERATIONS / 2,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < (CHECKSUM_ITERATIONS / 2); Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum1 = xsum(&ChecksumBuffer[0], Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Ip Checksum (unaligned) Benchmark",
CHECKSUM_ITERATIONS / 2,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < (CHECKSUM_ITERATIONS / 2); Count += 1) {
for (Index = 1024; Index >= 2 ; Index -= 1) {
Sum2 = xsum(Source, Index);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("New Ip Header Checksum (aligned) Benchmark",
CHECKSUM_IP_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_IP_ITERATIONS; Count += 1) {
Sum1 = tcpxsum(0, &ChecksumBuffer[0], 20);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("New Ip Header Checksum (unaligned) Benchmark",
CHECKSUM_IP_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_IP_ITERATIONS; Count += 1) {
Sum2 = tcpxsum(0, Source, 20);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Old Ip Header Checksum (aligned) Benchmark",
CHECKSUM_IP_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_IP_ITERATIONS; Count += 1) {
Sum1 = xsum(&ChecksumBuffer[0], 20);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Old Ip Header Checksum (unaligned) Benchmark",
CHECKSUM_IP_ITERATIONS,
&PerfInfo);
//
// Repeatedly checksum buffers of varying sizes.
//
for (Count = 0; Count < CHECKSUM_IP_ITERATIONS; Count += 1) {
Sum2 = xsum(Source, 20);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
return;
}
VOID
EventClearTest (
VOID
)
{
HANDLE EventHandle;
LONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Create an event for clear operations.
//
Status = NtCreateEvent(&EventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for clear test\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Clear Event Benchmark",
EVENT_CLEAR_ITERATIONS,
&PerfInfo);
//
// Repeatedly clear an event.
//
for (Index = 0; Index < EVENT_RESET_ITERATIONS; Index += 1) {
Status = NtClearEvent(EventHandle);
if (!NT_SUCCESS(Status)) {
printf(" Clear event bad status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of clear event test.
//
EndOfTest:
ZwClose(EventHandle);
return;
}
VOID
EventCreationTest (
VOID
)
{
ULONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event Creation Benchmark",
EVENT_CREATION_ITERATIONS,
&PerfInfo);
//
// Create an event and then close it.
//
for (Index = 0; Index < EVENT_CREATION_ITERATIONS; Index += 1) {
Status = NtCreateEvent(&EventHandle1,
DESIRED_EVENT_ACCESS,
NULL,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for event creation test.\n");
goto EndOfTest;
}
NtClose(EventHandle1);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event creation test.
//
EndOfTest:
return;
}
VOID
EventOpenTest (
VOID
)
{
ANSI_STRING EventName;
ULONG Index;
OBJECT_ATTRIBUTES ObjectAttributes;
PERFINFO PerfInfo;
NTSTATUS Status;
UNICODE_STRING UnicodeEventName;
//
// Create a named event for event open test.
//
RtlInitAnsiString(&EventName, "\\BaseNamedObjects\\EventOpenName");
Status = RtlAnsiStringToUnicodeString(&UnicodeEventName,
&EventName,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create UNICODE string for event open test\n");
goto EndOfTest;
}
InitializeObjectAttributes(&ObjectAttributes,
&UnicodeEventName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
Status = NtCreateEvent(&EventHandle1,
DESIRED_EVENT_ACCESS,
&ObjectAttributes,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for event open test.\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event Open Benchmark",
EVENT_OPEN_ITERATIONS,
&PerfInfo);
//
// Open a named event and then close it.
//
for (Index = 0; Index < EVENT_OPEN_ITERATIONS; Index += 1) {
Status = NtOpenEvent(&EventHandle2,
EVENT_QUERY_STATE | EVENT_MODIFY_STATE | SYNCHRONIZE,
&ObjectAttributes);
if (!NT_SUCCESS(Status)) {
printf("Failed to open event for open event test\n");
goto EndOfTest;
}
NtClose(EventHandle2);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event open test.
//
EndOfTest:
NtClose(EventHandle1);
return;
}
VOID
EventQueryTest (
VOID
)
{
HANDLE EventHandle;
EVENT_BASIC_INFORMATION EventInformation;
LONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Create an event for query operations.
//
Status = NtCreateEvent(&EventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for query test\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Query Event Benchmark",
EVENT_QUERY_ITERATIONS,
&PerfInfo);
//
// Repeatedly query an event.
//
for (Index = 0; Index < EVENT_QUERY_ITERATIONS; Index += 1) {
Status = NtQueryEvent(EventHandle,
EventBasicInformation,
&EventInformation,
sizeof(EVENT_BASIC_INFORMATION),
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Query event bad status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of query event test.
//
EndOfTest:
ZwClose(EventHandle);
return;
}
VOID
EventResetTest (
VOID
)
{
HANDLE EventHandle;
LONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Create an event for reset operations.
//
Status = NtCreateEvent(&EventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for reset test\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Reset Event Benchmark",
EVENT_RESET_ITERATIONS,
&PerfInfo);
//
// Repeatedly reset an event.
//
for (Index = 0; Index < EVENT_RESET_ITERATIONS; Index += 1) {
Status = NtResetEvent(EventHandle,
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Reset event bad status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of reset event test.
//
EndOfTest:
ZwClose(EventHandle);
return;
}
VOID
Event1SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
HANDLE WaitObjects[2];
//
// Create two event objects for the event1 context switch test.
//
Status = NtCreateEvent(&EventHandle1,
DESIRED_EVENT_ACCESS,
NULL,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event1 object for context switch test.\n");
goto EndOfTest;
}
Status = NtCreateEvent(&EventHandle2,
DESIRED_EVENT_ACCESS,
NULL,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event1 object for context switch test.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Event1Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create first thread event1 context switch test\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Event1Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create second thread event1 context switch test\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event (synchronization) Context Switch Benchmark (Round Trips)",
EVENT1_SWITCHES,
&PerfInfo);
//
// Set event and wait for threads to terminate.
//
Status = NtSetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to set event event1 context switch test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to wait event1 context switch test.\n");
goto EndOfTest;
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event1 context switch test.
//
EndOfTest:
NtClose(EventHandle1);
NtClose(EventHandle2);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Event1Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 1 and then set event 2.
//
for (Index = 0; Index < EVENT1_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(EventHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event1 test bad wait status, %x\n", Status);
break;
}
Status = NtSetEvent(EventHandle2, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event1 test bad set status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Event1Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 2 and then set event 1.
//
for (Index = 0; Index < EVENT1_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(EventHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event1 test bad wait status, %x\n", Status);
break;
}
Status = NtSetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event1 test bad set status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Event2SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
PVOID WaitObjects[2];
//
// Create two event objects for the event2 context switch test.
//
Status = NtCreateEvent(&EventHandle1,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event2 object for context switch test.\n");
goto EndOfTest;
}
Status = NtCreateEvent(&EventHandle2,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event2 object for context switch test.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Event2Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create first thread event2 context switch test\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Event2Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create second thread event2 context switch test\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event (notification) Context Switch Benchmark (Round Trips)",
EVENT2_SWITCHES,
&PerfInfo);
//
// Set event and wait for threads to terminate.
//
Status = NtSetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to set event2 object for context switch test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event2 context switch test.
//
EndOfTest:
NtClose(EventHandle1);
NtClose(EventHandle2);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Event2Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 1, reset event 1, and then set event 2.
//
for (Index = 0; Index < EVENT2_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(EventHandle1, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event2 test bad wait status, %x\n", Status);
break;
}
Status = NtResetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event2 test bad reset status, %x\n", Status);
break;
}
Status = NtSetEvent(EventHandle2, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event2 test bad set status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Event2Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 2, reset event 2, and then set event 1.
//
for (Index = 0; Index < EVENT2_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(EventHandle2, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event2 test bad wait status, %x\n", Status);
break;
}
Status = NtResetEvent(EventHandle2, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event2 test bad reset status, %x\n", Status);
break;
}
Status = NtSetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event2 test bad set status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Event3SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
PVOID WaitObjects[2];
//
// Create an event pair object for the event3 context switch test.
//
Status = NtCreateEventPair(&EventPairHandle,
EVENT_PAIR_ALL_ACCESS,
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event3 object for context switch test.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Event3Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create first thread event3 context switch test\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Event3Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("Failed to create second thread event3 context switch test\n");
goto EndOfTest;
}
//
// Set the client/server event pair object for thread1.
//
Status = NtSetInformationThread(Thread1Handle,
ThreadEventPair,
&EventPairHandle,
sizeof(HANDLE));
// if (!NT_SUCCESS(Status)) {
// printf("Failed to set client/server event pair handle thread 1\n");
// goto EndOfTest;
// }
//
// Set the client/server event pair object for thread2.
//
Status = NtSetInformationThread(Thread2Handle,
ThreadEventPair,
&EventPairHandle,
sizeof(HANDLE));
// if (!NT_SUCCESS(Status)) {
// printf("Failed to set client/server event pair handle thread 2\n");
// goto EndOfTest;
// }
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event (pair) Context Switch Benchmark (Round Trips)",
EVENT3_SWITCHES,
&PerfInfo);
//
// Set event and wait for threads to terminate.
//
Status = NtSetLowEventPair(EventPairHandle);
if (!NT_SUCCESS(Status)) {
printf("Failed to set event3 object for context switch test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event3 context switch test.
//
EndOfTest:
NtClose(EventPairHandle);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Event3Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for low event before entering loop.
//
Status = NtWaitLowEventPair(EventPairHandle);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event3 test bad wait status, %x\n", Status);
NtTerminateThread(Thread1Handle, Status);
}
//
// Set high event and wait for low event.
//
for (Index = 0; Index < EVENT3_SWITCHES; Index += 1) {
Status = NtSetHighWaitLowThread();
if (!NT_SUCCESS(Status)) {
printf(" Thread1 event3 test bad wait status, %x\n", Status);
break;
}
}
Status = NtSetHighEventPair(EventPairHandle);
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Event3Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for high event before entering loop.
//
Status = NtWaitHighEventPair(EventPairHandle);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event3 test bad wait status, %x\n", Status);
NtTerminateThread(Thread2Handle, Status);
}
//
// Set low event and wait for high event.
//
for (Index = 0; Index < EVENT3_SWITCHES; Index += 1) {
Status = NtSetLowWaitHighThread();
if (!NT_SUCCESS(Status)) {
printf(" Thread2 event3 test bad wait status, %x\n", Status);
break;
}
}
Status = NtSetLowEventPair(EventPairHandle);
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Event4SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
PVOID WaitObjects[2];
//
// Create two event objects for the event1 context switch test.
//
Status = NtCreateEvent(&EventHandle1,
DESIRED_EVENT_ACCESS,
NULL,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Failed to create event1 object for context switch test.\n");
goto EndOfTest;
}
Status = NtCreateEvent(&EventHandle2,
DESIRED_EVENT_ACCESS,
NULL,
SynchronizationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Failed to create event2 object for context switch test.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Event4Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Failed to create first thread event4 context switch test\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Event4Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Failed to create second thread event3 context switch test\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Event (signal/wait) Context Switch Benchmark (Round Trips)",
EVENT4_SWITCHES,
&PerfInfo);
//
// Set event and wait for threads to terminate.
//
Status = NtSetEvent(EventHandle1, NULL);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Failed to set event event1 context switch test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of event3 context switch test.
//
EndOfTest:
NtClose(EventHandle1);
NtClose(EventHandle2);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Event4Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 1 and then enter signal/wait loop.
//
Status = NtWaitForSingleObject(EventHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Thread1 initial wait failed, %x\n", Status);
} else {
for (Index = 0; Index < EVENT4_SWITCHES; Index += 1) {
Status = NtSignalAndWaitForSingleObject(EventHandle2,
EventHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Thread1 signal/wait failed, %x\n", Status);
break;
}
}
}
Status = NtSetEvent(EventHandle2, NULL);
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Event4Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for event 1 and then enter signal/wait loop.
//
Status = NtWaitForSingleObject(EventHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Thread2 initial wait failed, %x\n", Status);
} else {
for (Index = 0; Index < EVENT4_SWITCHES; Index += 1) {
Status = NtSignalAndWaitForSingleObject(EventHandle1,
EventHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("EVENT4: Thread2 signal/wait failed, %x\n", Status);
break;
}
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Io1Test (
VOID
)
{
ULONG Buffer[128];
HANDLE DeviceHandle;
ANSI_STRING AnsiName;
HANDLE EventHandle;
LARGE_INTEGER FileAddress;
LONG Index;
IO_STATUS_BLOCK IoStatus;
OBJECT_ATTRIBUTES ObjectAttributes;
PERFINFO PerfInfo;
NTSTATUS Status;
LARGE_INTEGER SystemTime;
UNICODE_STRING UnicodeName;
//
// Create an event for synchronization of I/O operations.
//
Status = NtCreateEvent(&EventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
FALSE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for I/O test 1\n");
goto EndOfTest;
}
//
// Open device object for I/O operations.
//
RtlInitString(&AnsiName, "\\Device\\Null");
Status = RtlAnsiStringToUnicodeString(&UnicodeName,
&AnsiName,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to convert device name to unicode for I/O test 1\n");
goto EndOfTest;
}
InitializeObjectAttributes(&ObjectAttributes,
&UnicodeName,
0,
(HANDLE)0,
NULL);
Status = NtOpenFile(&DeviceHandle,
FILE_READ_DATA | FILE_WRITE_DATA,
&ObjectAttributes,
&IoStatus,
0,
0);
RtlFreeUnicodeString(&UnicodeName);
if (!NT_SUCCESS(Status)) {
printf("Failed to open device I/O test 1, status = %lx\n", Status);
goto EndOfTest;
}
//
// Initialize file address parameter.
//
FileAddress.LowPart = 0;
FileAddress.HighPart = 0;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("I/O Benchmark for Synchronous Null Device",
IO_ITERATIONS,
&PerfInfo);
//
// Repeatedly write data to null device.
//
for (Index = 0; Index < IO_ITERATIONS; Index += 1) {
Status = NtWriteFile(DeviceHandle,
EventHandle,
NULL,
NULL,
&IoStatus,
Buffer,
512,
&FileAddress,
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Failed to write device I/O test 1, status = %lx\n",
Status);
goto EndOfTest;
}
Status = NtWaitForSingleObject(EventHandle, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" I/O test 1 bad wait status, %x\n", Status);
goto EndOfTest;
}
if (NT_SUCCESS(IoStatus.Status) == FALSE) {
printf(" I/O test 1 bad I/O status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of I/O test 1.
//
EndOfTest:
ZwClose(DeviceHandle);
ZwClose(EventHandle);
return;
}
VOID
MutantSwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
HANDLE WaitObjects[2];
//
// Create a mutant object for the mutant context switch test.
//
Status = NtCreateMutant(&MutantHandle, MUTANT_ALL_ACCESS, NULL, TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create mutant object for context switch test.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
MutantThread1,
LOW_REALTIME_PRIORITY + 11);
if (!NT_SUCCESS(Status)) {
printf("Failed to create first thread mutant context switch test\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
MutantThread2,
LOW_REALTIME_PRIORITY + 11);
if (!NT_SUCCESS(Status)) {
printf("Failed to create second thread mutant context switch test\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Mutant Context Switch Benchmark (Round Trips)",
MUTANT_SWITCHES,
&PerfInfo);
//
// Release mutant and wait for threads to terminate.
//
Status = NtReleaseMutant(MutantHandle, NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to release mutant object for context switch test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of mutant context switch test.
//
EndOfTest:
NtClose(MutantHandle);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
MutantThread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for mutant and then release mutant.
//
for (Index = 0; Index < MUTANT_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(MutantHandle, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 mutant test bad wait status, %x\n", Status);
break;
}
Status = NtReleaseMutant(MutantHandle, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread1 mutant test bad release status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
MutantThread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for mutant and then release mutant.
//
for (Index = 0; Index < MUTANT_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(MutantHandle, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 mutant test bad wait status, %x\n", Status);
break;
}
Status = NtReleaseMutant(MutantHandle, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Thread2 mutant test bad release status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Semaphore1SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
HANDLE WaitObjects[2];
//
// Create two semaphore objects for the semaphore1 context switch test.
//
Status = NtCreateSemaphore(&SemaphoreHandle1,
DESIRED_EVENT_ACCESS,
NULL,
0,
1);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to create semaphore1 object.\n");
goto EndOfTest;
}
Status = NtCreateSemaphore(&SemaphoreHandle2,
DESIRED_EVENT_ACCESS,
NULL,
0,
1);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to create semaphore2 object.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Semaphore1Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to create thread1 object.\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Semaphore1Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to create thread2 object.\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Semaphore (release/wait) Context Switch Benchmark (Round Trips)",
SEMAPHORE1_SWITCHES,
&PerfInfo);
//
// Release semaphore and wait for threads to terminate.
//
Status = NtReleaseSemaphore(SemaphoreHandle1, 1, NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to release semaphore1 at start of test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Failed to wait for threads.\n");
goto EndOfTest;
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of semaphore1 context switch test.
//
EndOfTest:
NtClose(SemaphoreHandle1);
NtClose(SemaphoreHandle2);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Semaphore1Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for semaphore 1 and then release semaphore 2.
//
for (Index = 0; Index < SEMAPHORE1_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(SemaphoreHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Thread1 bad wait status, %x\n", Status);
break;
}
Status = NtReleaseSemaphore(SemaphoreHandle2, 1, NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Thread1 bad release status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Semaphore1Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for semaphore 2 and then release semaphore 1.
//
for (Index = 0; Index < SEMAPHORE1_SWITCHES; Index += 1) {
Status = NtWaitForSingleObject(SemaphoreHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Thread2 bad wait status, %x\n", Status);
break;
}
Status = NtReleaseSemaphore(SemaphoreHandle1, 1, NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE1: Thread2 bad release status, %x\n", Status);
break;
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
Semaphore2SwitchTest (
VOID
)
{
PERFINFO PerfInfo;
NTSTATUS Status;
HANDLE WaitObjects[2];
//
// Create two semaphore objects for the semaphore1 context switch test.
//
Status = NtCreateSemaphore(&SemaphoreHandle1,
DESIRED_EVENT_ACCESS,
NULL,
0,
1);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to create semaphore1 object.\n");
goto EndOfTest;
}
Status = NtCreateSemaphore(&SemaphoreHandle2,
DESIRED_EVENT_ACCESS,
NULL,
0,
1);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to create semaphore2 object.\n");
goto EndOfTest;
}
//
// Create the thread objects to execute the test.
//
Status = CreateThread(&Thread1Handle,
Semaphore2Thread1,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to create thread1 object.\n");
goto EndOfTest;
}
Status = CreateThread(&Thread2Handle,
Semaphore2Thread2,
LOW_REALTIME_PRIORITY - 2);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to create thread2 object.\n");
goto EndOfTest;
}
//
// Initialize the wait objects array.
//
WaitObjects[0] = Thread1Handle;
WaitObjects[1] = Thread2Handle;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Semaphore (signal/wait) Context Switch Benchmark (Round Trips)",
SEMAPHORE2_SWITCHES,
&PerfInfo);
//
// Release semaphore and wait for threads to terminate.
//
Status = NtReleaseSemaphore(SemaphoreHandle1, 1, NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to release semaphore1 at start of test.\n");
goto EndOfTest;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAll,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Failed to wait for threads.\n");
goto EndOfTest;
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of semaphore 2 context switch test.
//
EndOfTest:
NtClose(SemaphoreHandle1);
NtClose(SemaphoreHandle2);
NtClose(Thread1Handle);
NtClose(Thread2Handle);
return;
}
NTSTATUS
Semaphore2Thread1 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for semaphore 1 and then enter signal/wait loop.
//
Status = NtWaitForSingleObject(SemaphoreHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Thread1 initial wait failed, %x\n", Status);
} else {
for (Index = 0; Index < SEMAPHORE2_SWITCHES; Index += 1) {
Status = NtSignalAndWaitForSingleObject(SemaphoreHandle2,
SemaphoreHandle1,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Thread1 signal/wait failed, %x\n", Status);
break;
}
}
}
Status = NtReleaseSemaphore(SemaphoreHandle2, 1, NULL);
NtTerminateThread(Thread1Handle, STATUS_SUCCESS);
}
NTSTATUS
Semaphore2Thread2 (
IN PVOID Context
)
{
ULONG Index;
NTSTATUS Status;
//
// Wait for semaphore 2 and then enter signal/wait loop.
//
Status = NtWaitForSingleObject(SemaphoreHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Thread2 initial wait failed, %x\n", Status);
} else {
for (Index = 0; Index < SEMAPHORE2_SWITCHES; Index += 1) {
Status = NtSignalAndWaitForSingleObject(SemaphoreHandle1,
SemaphoreHandle2,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf("SEMAPHORE2: Thread2 signal/wait failed, %x\n", Status);
break;
}
}
}
NtTerminateThread(Thread2Handle, STATUS_SUCCESS);
}
VOID
SlistTest (
VOID
)
{
SINGLE_LIST_ENTRY Entry;
SLIST_HEADER SListHead;
ULONG Index;
PERFINFO PerfInfo;
LARGE_INTEGER SystemTime;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("S-List Benchmark",
SLIST_ITERATIONS,
&PerfInfo);
//
// Repeatedly call a short system service.
//
InitializeSListHead(&SListHead);
for (Index = 0; Index < SLIST_ITERATIONS; Index += 1) {
InterlockedPushEntrySList(&SListHead, &Entry);
if (InterlockedPopEntrySList(&SListHead) != (PVOID)&Entry) {
printf("SLIST: Entry does match %lx\n", Entry);
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
return;
}
VOID
SystemCallTest (
VOID
)
{
ULONG Index;
PERFINFO PerfInfo;
LARGE_INTEGER SystemTime;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("System Call Benchmark (NtQuerySystemTime)",
SYSCALL_ITERATIONS,
&PerfInfo);
//
// Repeatedly call a short system service.
//
for (Index = 0; Index < SYSCALL_ITERATIONS; Index += 1) {
NtQuerySystemTime(&SystemTime);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
return;
}
VOID
TimerIndexTest (
VOID
)
{
#if defined(_MIPS_)
ULONG Count;
LARGE_INTEGER CurrentTime;
LONG Index1;
LONG Index2;
PERFINFO PerfInfo;
LARGE_INTEGER Interval;
ULONGLONG Result1;
ULONGLONG Result2;
//
// Test if old and new timer index algorithms get the same index and
// due time.
//
printf("*** Start timer index verification\n");
CurrentTime.QuadPart = 0x7fff000;
Interval.QuadPart = -1;
for (Count = 0; Count < 10000000 ; Count += 1) {
Index1 = ComputeTimerTableIndex32(Interval, CurrentTime, &Result1);
Index2 = ComputeTimerTableIndex64(Interval, CurrentTime, &Result2);
if (Result1 != Result2) {
printf(" Timer result mismatch result1 = %lx%0lx result2 = %ls%0lx\n",
(ULONG)Result1,
(ULONG)(Result1 >> 32),
(ULONG)Result2,
(ULONG)(Result2 >> 32));
}
if (Index1 != Index2) {
printf(" Timer index mismatch index1 = %d index2 = %d\n",
Index1,
Index2);
}
Interval.QuadPart -= 100000;
CurrentTime.QuadPart += 10000;
}
printf("*** End timer index verification\n");
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("Old Timer Index Computation Benchmark",
TIMER_INDEX_ITERATIONS,
&PerfInfo);
//
// Repeatedly compute the timer index.
//
for (Count = 0; Count < TIMER_INDEX_ITERATIONS; Count += 1) {
Index1 = ComputeTimerTableIndex32(Interval, CurrentTime, &Result1);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// Announce start of benchmark and capture performance parameters.
//
StartBenchMark("New Timer Index Computation Benchmark",
TIMER_INDEX_ITERATIONS,
&PerfInfo);
//
// Repeatedly compute the timer index.
//
for (Count = 0; Count < TIMER_INDEX_ITERATIONS; Count += 1) {
Index1 = ComputeTimerTableIndex64(Interval, CurrentTime, &Result1);
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
#endif
return;
}
VOID
TimerOperationTest (
VOID
)
{
LARGE_INTEGER DueTime;
HANDLE Handle;
ULONG Index;
PERFINFO PerfInfo;
LARGE_INTEGER SystemTime;
NTSTATUS Status;
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Timer Operation Benchmark (NtSet/CancelTimer)",
TIMER_OPERATION_ITERATIONS,
&PerfInfo);
//
// Create a timer object for use in the test.
//
Status = NtCreateTimer(&Handle,
TIMER_ALL_ACCESS,
NULL,
NotificationTimer);
if (!NT_SUCCESS(Status)) {
printf("Failed to create timer during initialization\n");
goto EndOfTest;
}
//
// Repeatedly set and cancel a timer.
//
DueTime = RtlConvertLongToLargeInteger(- 100 * 1000 * 10);
for (Index = 0; Index < TIMER_OPERATION_ITERATIONS; Index += 1) {
NtSetTimer(Handle, &DueTime, NULL, NULL, FALSE, 0, NULL);
NtCancelTimer(Handle, NULL);
}
//
// Print out performance statistics.
//
EndOfTest:
FinishBenchMark(&PerfInfo);
return;
}
VOID
WaitSingleTest (
VOID
)
{
HANDLE EventHandle;
LONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Create an event for synchronization of wait single operations.
//
Status = NtCreateEvent(&EventHandle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object for wait single test\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Wait Single Benchmark",
WAIT_SINGLE_ITERATIONS,
&PerfInfo);
//
// Repeatedly wait for a single event.
//
for (Index = 0; Index < WAIT_SINGLE_ITERATIONS; Index += 1) {
Status = NtWaitForSingleObject(EventHandle, FALSE, NULL);
if (!NT_SUCCESS(Status)) {
printf(" Wait single bad wait status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of Wait Single Test.
//
EndOfTest:
ZwClose(EventHandle);
return;
}
VOID
WaitMultipleTest (
VOID
)
{
HANDLE Event1Handle;
HANDLE Event2Handle;
HANDLE WaitObjects[2];
LONG Index;
PERFINFO PerfInfo;
NTSTATUS Status;
//
// Create two events for synchronization of wait multiple operations.
//
Status = NtCreateEvent(&Event1Handle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object 1 for wait multiple test\n");
goto EndOfTest;
}
Status = NtCreateEvent(&Event2Handle,
DESIRED_EVENT_ACCESS,
NULL,
NotificationEvent,
TRUE);
if (!NT_SUCCESS(Status)) {
printf("Failed to create event object 2 for wait multiple test\n");
goto EndOfTest;
}
//
// Announce start of benchmark and capture performance parmeters.
//
StartBenchMark("Wait Multiple Benchmark",
WAIT_MULTIPLE_ITERATIONS,
&PerfInfo);
//
// Repeatedly wait for a multiple events.
//
WaitObjects[0] = Event1Handle;
WaitObjects[1] = Event2Handle;
for (Index = 0; Index < WAIT_SINGLE_ITERATIONS; Index += 1) {
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAny,
FALSE,
NULL);
if (!NT_SUCCESS(Status)) {
printf(" Wait multiple bad wait status, %x\n", Status);
goto EndOfTest;
}
}
//
// Print out performance statistics.
//
FinishBenchMark(&PerfInfo);
//
// End of Wait Multiple Test.
//
EndOfTest:
ZwClose(Event1Handle);
ZwClose(Event2Handle);
return;
}
NTSTATUS
TimerThread (
IN PVOID Context
)
{
LARGE_INTEGER DueTime;
NTSTATUS Status;
HANDLE WaitObjects[2];
//
// Initialize variables and loop until the timer event is set.
//
DueTime.LowPart = -(5 * 1000 * 1000);
DueTime.HighPart = -1;
WaitObjects[0] = TimerEventHandle;
WaitObjects[1] = TimerTimerHandle;
do {
Status = NtSetTimer(TimerTimerHandle,
&DueTime,
NULL,
NULL,
FALSE,
0,
NULL);
if (!NT_SUCCESS(Status)) {
break;
}
Status = NtWaitForMultipleObjects(2,
WaitObjects,
WaitAny,
FALSE,
NULL);
} while (Status != STATUS_SUCCESS);
NtTerminateThread(TimerThreadHandle, Status);
}
NTSTATUS
CreateThread (
OUT PHANDLE Handle,
IN PUSER_THREAD_START_ROUTINE StartRoutine,
IN KPRIORITY Priority
)
{
NTSTATUS Status;
//
// Create a thread in the suspended state, sets its priority, and then
// resume the thread.
//
Status = RtlCreateUserThread(NtCurrentProcess(),
NULL,
TRUE,
0,
0,
0,
StartRoutine,
NULL,
Handle,
NULL);
if (!NT_SUCCESS(Status)) {
return Status;
}
Status = NtSetInformationThread(*Handle,
ThreadPriority,
&Priority,
sizeof(KPRIORITY));
if (!NT_SUCCESS(Status)) {
NtClose(*Handle);
return Status;
}
Status = NtResumeThread(*Handle,
NULL);
if (!NT_SUCCESS(Status)) {
NtClose(*Handle);
}
return Status;
}
VOID
FinishBenchMark (
IN PPERFINFO PerfInfo
)
{
ULONG ContextSwitches;
LARGE_INTEGER Duration;
ULONG FirstLevelFills;
ULONG InterruptCount;
ULONG Length;
ULONG Performance;
ULONG Remainder;
ULONG SecondLevelFills;
NTSTATUS Status;
ULONG SystemCalls;
SYSTEM_PERFORMANCE_INFORMATION SystemInfo;
LARGE_INTEGER TotalCycles;
//
// Print results and announce end of test.
//
NtQuerySystemTime((PLARGE_INTEGER)&PerfInfo->StopTime);
Status = NtQueryInformationThread(NtCurrentThread(),
ThreadPerformanceCount,
&PerfInfo->StopCycles,
sizeof(LARGE_INTEGER),
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to query performance count, status = %lx\n", Status);
return;
}
Status = NtQuerySystemInformation(SystemPerformanceInformation,
(PVOID)&SystemInfo,
sizeof(SYSTEM_PERFORMANCE_INFORMATION),
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to query performance information, status = %lx\n", Status);
return;
}
Duration.QuadPart = PerfInfo->StopTime.QuadPart - PerfInfo->StartTime.QuadPart;
Length = Duration.LowPart / 10000;
TotalCycles.QuadPart = PerfInfo->StopCycles.QuadPart - PerfInfo->StartCycles.QuadPart;
TotalCycles = RtlExtendedLargeIntegerDivide(TotalCycles,
PerfInfo->Iterations,
&Remainder);
printf(" Test time in milliseconds %d\n", Length);
printf(" Number of iterations %d\n", PerfInfo->Iterations);
printf(" Cycles per iteration %d\n", TotalCycles.LowPart);
Performance = PerfInfo->Iterations * 1000 / Length;
printf(" Iterations per second %d\n", Performance);
ContextSwitches = SystemInfo.ContextSwitches - PerfInfo->ContextSwitches;
FirstLevelFills = SystemInfo.FirstLevelTbFills - PerfInfo->FirstLevelFills;
// InterruptCount = SystemInfo.InterruptCount - PerfInfo->InterruptCount;
SecondLevelFills = SystemInfo.SecondLevelTbFills - PerfInfo->SecondLevelFills;
SystemCalls = SystemInfo.SystemCalls - PerfInfo->SystemCalls;
printf(" First Level TB Fills %d\n", FirstLevelFills);
printf(" Second Level TB Fills %d\n", SecondLevelFills);
// printf(" Number of Interrupts %d\n", InterruptCount);
printf(" Total Context Switches %d\n", ContextSwitches);
printf(" Number of System Calls %d\n", SystemCalls);
printf("*** End of Test ***\n\n");
return;
}
VOID
StartBenchMark (
IN PCHAR Title,
IN ULONG Iterations,
IN PPERFINFO PerfInfo
)
{
NTSTATUS Status;
SYSTEM_PERFORMANCE_INFORMATION SystemInfo;
//
// Announce start of test and the number of iterations.
//
printf("*** Start of test ***\n %s\n", Title);
PerfInfo->Title = Title;
PerfInfo->Iterations = Iterations;
NtQuerySystemTime((PLARGE_INTEGER)&PerfInfo->StartTime);
Status = NtQueryInformationThread(NtCurrentThread(),
ThreadPerformanceCount,
&PerfInfo->StartCycles,
sizeof(LARGE_INTEGER),
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to query performance count, status = %lx\n", Status);
return;
}
Status = NtQuerySystemInformation(SystemPerformanceInformation,
(PVOID)&SystemInfo,
sizeof(SYSTEM_PERFORMANCE_INFORMATION),
NULL);
if (!NT_SUCCESS(Status)) {
printf("Failed to query performance information, status = %lx\n", Status);
return;
}
PerfInfo->ContextSwitches = SystemInfo.ContextSwitches;
PerfInfo->FirstLevelFills = SystemInfo.FirstLevelTbFills;
// PerfInfo->InterruptCount = SystemInfo.InterruptCount;
PerfInfo->SecondLevelFills = SystemInfo.SecondLevelTbFills;
PerfInfo->SystemCalls = SystemInfo.SystemCalls;
return;
}