Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1576 lines
44 KiB

#include "precomp.h"
#pragma hdrstop
#include "asm.h"
#ifdef HOSTDOS
extern int _far _cdecl toupper( int );
extern int _far _cdecl tolower( int );
#else // HOSTDOS
#endif // HOSTDOS
#ifdef WIN32
#define _fstrcmp strcmp
#endif
BYTE PeekAsmChar(void);
ULONG PeekAsmToken(LPDWORD);
void AcceptAsmToken(void);
ULONG GetAsmToken(LPDWORD);
ULONG NextAsmToken(LPDWORD);
ULONG GetAsmReg(LPBYTE, LPDWORD);
ULONG GetSymReg(WORD, LPDWORD);
XOSD GetAsmOperand(PASM_VALUE);
XOSD GetAsmExpr(PASM_VALUE, BYTE);
XOSD GetAsmOrTerm(PASM_VALUE, BYTE);
XOSD GetAsmAndTerm(PASM_VALUE, BYTE);
XOSD GetAsmNotTerm(PASM_VALUE, BYTE);
XOSD GetAsmRelTerm(PASM_VALUE, BYTE);
XOSD GetAsmAddTerm(PASM_VALUE, BYTE);
XOSD GetAsmMulTerm(PASM_VALUE, BYTE);
XOSD GetAsmSignTerm(PASM_VALUE, BYTE);
XOSD GetAsmByteTerm(PASM_VALUE, BYTE);
XOSD GetAsmOffTerm(PASM_VALUE, BYTE);
XOSD GetAsmColnTerm(PASM_VALUE, BYTE);
XOSD GetAsmDotTerm(PASM_VALUE, BYTE);
XOSD GetAsmIndxTerm(PASM_VALUE, BYTE);
XOSD AddAsmValues(PASM_VALUE, PASM_VALUE);
void SwapPavs(PASM_VALUE, PASM_VALUE);
extern ULONG baseDefault;
extern LSZ lszAsmLine;
extern ADDR addrAssem; // assembly address (formal)
extern BYTE fDBit;
struct _AsmRes {
LPBYTE pchRes;
ULONG valueRes;
} AsmReserved[] = {
{ "mod", ASM_MULOP_MOD },
{ "shl", ASM_MULOP_SHL },
{ "shr", ASM_MULOP_SHR },
{ "and", ASM_ANDOP_CLASS },
{ "not", ASM_NOTOP_CLASS },
{ "or", ASM_OROP_OR },
{ "xor", ASM_OROP_XOR },
{ "eq", ASM_RELOP_EQ },
{ "ne", ASM_RELOP_NE },
{ "le", ASM_RELOP_LE },
{ "lt", ASM_RELOP_LT },
{ "ge", ASM_RELOP_GE },
{ "gt", ASM_RELOP_GT },
{ "by", ASM_UNOP_BY },
{ "wo", ASM_UNOP_WO },
{ "dw", ASM_UNOP_DW },
{ "poi", ASM_UNOP_POI },
{ "low", ASM_LOWOP_LOW },
{ "high", ASM_LOWOP_HIGH },
{ "offset", ASM_OFFOP_CLASS },
{ "ptr", ASM_PTROP_CLASS },
{ "byte", ASM_SIZE_BYTE },
{ "word", ASM_SIZE_WORD },
{ "dword", ASM_SIZE_DWORD },
{ "fword", ASM_SIZE_FWORD },
{ "qword", ASM_SIZE_QWORD },
{ "tbyte", ASM_SIZE_TBYTE }
};
#define RESERVESIZE (sizeof(AsmReserved) / sizeof(struct _AsmRes))
BYTE regSize[] = {
sizeB, // byte
sizeW, // word
sizeD, // dword
sizeW, // segment
sizeD, // control
sizeD, // debug
sizeD, // trace
sizeT, // float
sizeT // float with index
};
BYTE regType[] = {
regG, // byte - general
regG, // word - general
regG, // dword - general
regS, // segment
regC, // control
regD, // debug
regT, // trace
regF, // float (st)
regI // float-index (st(n))
};
BYTE tabWordReg[8] = { // rm value
(BYTE) -1, // AX - error
(BYTE) -1, // CX - error
(BYTE) -1, // DX - error
(BYTE) 7, // BX - 111
(BYTE) -1, // SP - error
(BYTE) 6, // BP - 110
(BYTE) 4, // SI - 100
(BYTE) 5, // DI - 101
};
BYTE rm16Table[16] = { // new rm left rm right rm
(BYTE) -1, // error 100 = [SI] 100 = [SI]
(BYTE) -1, // error 100 = [SI] 101 = [DI]
(BYTE) 2, // 010 = [BP+SI] 100 = [SI] 110 = [BP]
(BYTE) 0, // 000 = [BX+SI] 100 = [SI] 111 = [BX]
(BYTE) -1, // error 101 = [DI] 100 = [SI]
(BYTE) -1, // error 101 = [DI] 101 = [DI]
(BYTE) 3, // 011 = [BP+DI] 101 = [DI] 110 = [BP]
(BYTE) 1, // 001 = [BX+DI] 101 = [DI] 111 = [BX]
(BYTE) 2, // 010 = [BP+SI] 110 = [BP] 100 = [SI]
(BYTE) 3, // 011 = [BP+DI] 110 = [BP] 101 = [DI]
(BYTE) -1, // error 110 = [BP] 110 = [BP]
(BYTE) -1, // error 110 = [BP] 111 = [BX]
(BYTE) 0, // 000 = [BX+SI] 111 = [BX] 100 = [SI]
(BYTE) 1, // 001 = [BX+DI] 111 = [BX] 101 = [DI]
(BYTE) -1, // error 111 = [BX] 110 = [BP]
(BYTE) -1 // error 111 = [BX] 111 = [BX]
};
LSZ savedlszAsmLine = (LSZ)0L;
ULONG savedAsmClass = 0L;
ULONG savedAsmValue = 0L;
/*** PeekAsmChar - peek the next non-white-space character
*
* Purpose:
* Return the next non-white-space character and update
* lszAsmLine to point to it.
*
* Input:
* lszAsmLine - present command line position.
*
* Returns:
* next non-white-space character
*
*************************************************************************/
BYTE PeekAsmChar (void)
{
BYTE ch;
do
ch = *lszAsmLine++;
while (ch == ' ' || ch == '\t');
lszAsmLine--;
return ch;
}
/*** PeekAsmToken - peek the next command line token
*
* Purpose:
* Return the next command line token, but do not advance
* the lszAsmLine pointer.
*
* Input:
* lszAsmLine - present command line position.
*
* Output:
* *lpulValue - optional value of token
* Returns:
* class of token
*
* Notes:
* savedAsmClass, savedAsmValue, and savedlszAsmLine saves the
* token getting state for future peeks.
* To get the next token, a GetAsmToken or AcceptAsmToken call
* must first be made.
*
*************************************************************************/
ULONG PeekAsmToken (LPDWORD lpulValue)
{
BYTE *pchTemp;
// Get next class and value, but do not
// move lszAsmLine, but save it in savedlszAsmLine.
// Do not report any error condition.
if (savedAsmClass == -1) {
pchTemp = lszAsmLine;
savedAsmClass = NextAsmToken(&savedAsmValue);
savedlszAsmLine = lszAsmLine;
lszAsmLine = pchTemp;
}
*lpulValue = savedAsmValue;
return savedAsmClass;
}
/*** AcceptAsmToken - accept any peeked token
*
* Purpose:
* To reset the PeekAsmToken saved variables so the next PeekAsmToken
* will get the next token in the command line.
*
* Input:
* None.
*
* Output:
* None.
*
*************************************************************************/
void AcceptAsmToken (void)
{
savedAsmClass = (ULONG)-1;
lszAsmLine = savedlszAsmLine;
}
/*** GetAsmToken - peek and accept the next token
*
* Purpose:
* Combines the functionality of PeekAsmToken and AcceptAsmToken
* to return the class and optional value of the next token
* as well as updating the command pointer lszAsmLine.
*
* Input:
* lszAsmLine - present command string pointer
*
* Output:
* *lpulValue - pointer to the token value optionally set.
* Returns:
* class of the token read.
*
* Notes:
* An illegal token returns the value of ERROR_CLASS with *lpulValue
* being the error number, but produces no actual error.
*
*************************************************************************/
ULONG
GetAsmToken (
LPDWORD lpulValue
)
{
ULONG opclass;
if (savedAsmClass != (ULONG)-1) {
opclass = savedAsmClass;
savedAsmClass = (ULONG)-1;
*lpulValue = savedAsmValue;
lszAsmLine = savedlszAsmLine;
}
else {
opclass = NextAsmToken ( lpulValue );
}
return opclass;
}
/*** NextAsmToken - process the next token
*
* Purpose:
* Parse the next token from the present command string.
* After skipping any leading white space, first check for
* any single character tokens or register variables. If
* no match, then parse for a number or variable. If a
* possible variable, check the reserved word list for operators.
*
* Input:
* lszAsmLine - pointer to present command string
*
* Output:
* *lpulValue - optional value of token returned
* lszAsmLine - updated to point past processed token
* Returns:
* class of token returned
*
* Notes:
* An illegal token returns the value of ERROR_CLASS with *lpulValue
* being the error number, but produces no actual error.
*
*************************************************************************/
#define SYMBOLSIZE 100
ULONG
NextAsmToken (
LPDWORD lpulValue
)
{
ULONG base;
BYTE chSymbol [ SYMBOLSIZE ];
BYTE chPreSym[9];
ULONG cbSymbol = 0;
BYTE fNumber = TRUE;
BYTE fSymbol = TRUE;
BYTE fForceReg = FALSE;
ULONG errNumber = 0;
BYTE ch;
BYTE chlow;
BYTE chtemp;
BYTE limit1 = '9';
BYTE limit2 = '9';
BYTE fDigit = FALSE;
ULONG value = 0;
ULONG tmpvalue;
ULONG index;
static ADDR addrSym = {0};
base = baseDefault;
// skip leading white space
chlow = (BYTE)tolower(ch = PeekAsmChar());
lszAsmLine++;
// test for special character operators and register variable
switch (chlow) {
case '\0':
lszAsmLine--;
return ASM_EOL_CLASS;
case ',':
return ASM_COMMA_CLASS;
case '+':
*lpulValue = ASM_ADDOP_PLUS;
return ASM_ADDOP_CLASS;
case '-':
*lpulValue = ASM_ADDOP_MINUS;
return ASM_ADDOP_CLASS;
case '*':
*lpulValue = ASM_MULOP_MULT;
return ASM_MULOP_CLASS;
case '/':
*lpulValue = ASM_MULOP_DIVIDE;
return ASM_MULOP_CLASS;
case ':':
return ASM_COLNOP_CLASS;
case '(':
return ASM_LPAREN_CLASS;
case ')':
return ASM_RPAREN_CLASS;
case '[':
return ASM_LBRACK_CLASS;
case ']':
return ASM_RBRACK_CLASS;
case '@':
fForceReg = TRUE;
chlow = (BYTE)tolower(*lszAsmLine++);
break;
case '.':
return ASM_DOTOP_CLASS;
case '\'':
for (index = 0; index < 5; index++) {
ch = *lszAsmLine++;
if (ch == '\'' || ch == '\0') {
break;
}
value = (value << 8) + (ULONG)ch;
}
if (ch == '\0' || index == 0 || index == 5) {
lszAsmLine--;
*((XOSD*)lpulValue) = xosdAsmSyntax;
return ASM_ERROR_CLASS;
}
lszAsmLine++;
*lpulValue = value;
return ASM_NUMBER_CLASS;
}
// if first character is a decimal digit, it cannot
// be a symbol. leading '0' implies octal, except
// a leading '0x' implies hexadecimal.
if ( chlow >= '0' && chlow <= '9' ) {
if ( fForceReg ) {
*lpulValue = (ULONG) xosdAsmSyntax;
return ASM_ERROR_CLASS;
}
fSymbol = FALSE;
if ( chlow == '0' ) {
ch = *lszAsmLine++;
chlow = (BYTE)tolower ( ch );
if ( chlow == 'x' ) {
base = 16;
ch = *lszAsmLine++;
chlow = (BYTE)tolower(ch);
}
else if (chlow == 'n') {
base = 10;
ch = *lszAsmLine++;
chlow = (BYTE)tolower(ch);
}
else {
base = 8;
fDigit = TRUE;
}
}
}
// a number can start with a letter only if base is
// hexadecimal and it is a hexadecimal digit 'a'-'f'.
else if ( ( chlow < 'a' && chlow > 'f') || base != 16 ) {
fNumber = FALSE;
}
// set limit characters for the appropriate base.
if ( base == 8 ) {
limit1 = '7';
}
if ( base == 16 ) {
limit2 = 'f';
}
// perform processing while character is a letter,
// digit, or underscore.
while (
( chlow >= 'a' && chlow <= 'z' ) ||
( chlow >= '0' && chlow <= '9' ) ||
(chlow == '_')
) {
// if possible number, test if within proper range,
// and if so, accumulate sum.
if ( fNumber ) {
if (
( chlow >= '0' && chlow <= limit1 ) ||
( chlow >= 'a' && chlow <= limit2 )
) {
fDigit = TRUE;
tmpvalue = value * base;
if ( tmpvalue < value ) {
errNumber = (ULONG) xosdAsmOverFlow;
}
chtemp = (BYTE) ( chlow - '0' );
if ( chtemp > 9 ) {
chtemp -= 'a' - '0' - 10;
}
value = tmpvalue + (ULONG) chtemp;
if ( value < tmpvalue ) {
errNumber = (ULONG) xosdAsmOverFlow;
}
}
else {
fNumber = FALSE;
errNumber = (ULONG) xosdAsmSyntax;
}
}
if ( fSymbol ) {
if ( cbSymbol < 9 ) {
chPreSym[cbSymbol] = chlow;
}
if ( cbSymbol < SYMBOLSIZE - 1 ) {
chSymbol[cbSymbol++] = ch;
}
}
ch = *lszAsmLine++;
chlow = (BYTE)tolower ( ch );
}
// back up pointer to first character after token.
lszAsmLine--;
if ( cbSymbol < 9 ) {
chPreSym [ cbSymbol ] = '\0';
}
// if fForceReg, check for register name and return
// success or failure
if ( fForceReg ) {
if ( ( index = GetAsmReg ( chPreSym, lpulValue ) ) != 0) {
if ( index == ASM_REG_SEGMENT ) {
if ( PeekAsmChar() == ':' ) {
lszAsmLine++;
index = ASM_SEGOVR_CLASS;
}
return index; // class type returned by GetAsmReg
}
}
else {
*lpulValue = (ULONG) xosdAsmBadReg;
return ASM_ERROR_CLASS;
}
}
// next test for reserved word and symbol string
if ( fSymbol ) {
ASR asr;
asr.ast = asr.fcd = 0;
// if possible symbol, check lowercase string in chPreSym
// for text operator or register name.
// otherwise, return symbol value from name in chSymbol.
for ( index = 0; index < RESERVESIZE; index++ ) {
if ( !_fstrcmp ( chPreSym, AsmReserved[index].pchRes ) ) {
*lpulValue = AsmReserved[index].valueRes;
return AsmReserved[index].valueRes & ASM_CLASS_MASK;
}
}
// start processing string as symbol
chSymbol [ cbSymbol ] = '\0';
SHFindSymbol ( chSymbol, &addrAssem, &asr );
addrSym = asr.addr;
switch ( asr.ast ) {
case astNone:
break; // Not a symbol, but may be a reg or hex
case astAddress:
switch ( asr.fcd ) {
case fcdUnknown:
*lpulValue = (ULONG) &addrSym;
return ASM_SYMBOL_PTR;
case fcdFar:
*lpulValue = (ULONG) &addrSym;
return ASM_SYMBOL_PTR;
case fcdData:
*lpulValue = offAddr ( asr.addr );
return ASM_SYMBOL_IMM;
case fcdNear:
*lpulValue = offAddr ( asr.addr );
return ASM_SYMBOL_IMM;
}
break;
case astRegister:
return GetSymReg ( asr.ireg, lpulValue );
break;
case astBaseOff:
*lpulValue = (ULONG) asr.off;
return ASM_SYMBOL_BASE;
break;
default:
// assert ( FALSE );
break;
}
// symbol is undefined.
// if a possible hex number, do not set the error type
if ( !fNumber ) {
errNumber = (ULONG) xosdAsmSymbol;
}
}
// if possible number and no error, return the number
if ( fNumber && !errNumber ) {
if ( fDigit ) {
// check for possible segment specification
// "<16-bit number>:"
if ( PeekAsmChar() == ':' ) {
lszAsmLine++;
if ( value > 0xffff ) {
*lpulValue = (ULONG) xosdAsmBadSeg;
return ASM_ERROR_CLASS;
}
*lpulValue = value;
return ASM_SEGMENT_CLASS;
}
*lpulValue = value;
return ASM_NUMBER_CLASS;
}
else {
errNumber = (ULONG) xosdAsmSyntax;
}
}
// last chance, undefined symbol and illegal number,
// so test for register, will handle old format
if ( ( index = GetAsmReg ( chPreSym, lpulValue ) ) != 0 ) {
if ( index == ASM_REG_SEGMENT ) {
if ( PeekAsmChar ( ) == ':' ) {
lszAsmLine++;
index = ASM_SEGOVR_CLASS;
}
}
return index; // class type returned by GetAsmReg
}
*lpulValue = (ULONG) errNumber;
return ASM_ERROR_CLASS;
}
ULONG
GetAsmReg (
LPBYTE pSymbol,
LPDWORD lpulValue
)
{
static BYTE vRegList[] = "axcxdxbxspbpsidi";
static BYTE bRegList[] = "alcldlblahchdhbh";
static BYTE sRegList[] = "ecsdfg"; // second char is 's'
// same order as seg enum
ULONG index;
BYTE ch0 = *pSymbol;
BYTE ch1 = *(pSymbol + 1);
BYTE ch2 = *(pSymbol + 2);
BYTE ch3 = *(pSymbol + 3);
// only test strings with two or three characters
if (ch0 && ch1) {
if (ch2 == '\0') {
// symbol has two characters, first test for 16-bit register
for (index = 0; index < 8; index++) {
if (*(LPWORD)pSymbol == *((LPWORD)vRegList + index)) {
*lpulValue = index;
return ASM_REG_WORD;
}
}
// next test for 8-bit register
for (index = 0; index < 8; index++) {
if (*(LPWORD)pSymbol == *((LPWORD)bRegList + index)) {
*lpulValue = index;
return ASM_REG_BYTE;
}
}
// test for segment register
if (ch1 == 's') {
for (index = 0; index < 6; index++) {
if (ch0 == *(sRegList + index)) {
*lpulValue = index + 1; // list offset is 1
return ASM_REG_SEGMENT;
}
}
}
// finally test for floating register "st" or "st(n)"
// parse the arg here as '(', <octal value>, ')'
// return value for "st" is REG_FLOAT,
// for "st(n)" is REG_INDFLT with value 0-7
if (ch0 == 's' && ch1 == 't') {
if (PeekAsmChar() != '(') {
return ASM_REG_FLOAT;
} else {
lszAsmLine++;
index = (ULONG)(PeekAsmChar() - '0');
if (index < 8) {
lszAsmLine++;
if (PeekAsmChar() == ')') {
lszAsmLine++;
*lpulValue = index;
return ASM_REG_INDFLT;
}
}
}
}
}
else if (ch3 == '\0') {
// if three-letter symbol, test for leading 'e' and
// second and third character being in the 16-bit list
if (ch0 == 'e') {
for (index = 0; index < 8; index++) {
if (*(LPWORD)(pSymbol + 1) ==
*((LPWORD)vRegList + index)) {
*lpulValue = index;
return ASM_REG_DWORD;
}
}
}
// test for control, debug, and test registers
else if (ch1 == 'r') {
ch2 -= '0';
*lpulValue = ch2;
// legal control registers are CR0, CR2, CR3
if (ch0 == 'c') {
if (ch2 == 0 || ch2 == 2 || ch2 == 3) {
return ASM_REG_CONTROL;
}
}
// legal debug registers are DR0 - DR3, DR6, DR7
else if (ch0 == 'd') {
if (ch2 <= 3 || ch2 == 6 || ch2 == 7) {
return ASM_REG_DEBUG;
}
}
// legal trace registers are TR3 - TR7
else if (ch0 == 't') {
if (ch2 >= 3 && ch2 <= 7) {
return ASM_REG_TRACE;
}
}
}
}
}
return 0;
}
ULONG GetSymReg ( WORD ireg, LPDWORD lpul ) {
if ( ireg >= CV_REG_AL && ireg <= CV_REG_BH ) {
*lpul = ireg - CV_REG_AL;
return ASM_REG_BYTE;
}
else if ( ireg >= CV_REG_AX && ireg <= CV_REG_DI ) {
*lpul = ireg - CV_REG_AX;
return ASM_REG_WORD;
}
else if ( ireg >= CV_REG_EAX && ireg <= CV_REG_EDI ) {
*lpul = ireg - CV_REG_EAX;
return ASM_REG_DWORD;
}
else if ( ireg >= CV_REG_ES && ireg <= CV_REG_GS ) {
*lpul = ireg - CV_REG_ES;
return ASM_REG_SEGMENT;
}
else if ( ireg >= CV_REG_ST0 && ireg <= CV_REG_ST7 ) {
*lpul = ireg - CV_REG_ST0;
return ASM_REG_INDFLT;
}
else {
*((XOSD*)lpul) = xosdAsmSymbol;
return ASM_ERROR_CLASS;
}
}
// Operand parser - recursive descent
//
// Grammar productions:
//
// <Operand> ::= <register> | <Expr>
// <Expr> ::= <orTerm> [(XOR | OR) <orTerm>]*
// <orTerm> ::= <andTerm> [AND <andTerm>]*
// <andTerm> ::= [NOT]* <notTerm>
// <notTerm> ::= <relTerm> [(EQ | NE | GE | GT | LE | LT) <relTerm>]*
// <relTerm> ::= <addTerm> [(- | +) <addTerm>]*
// <addTerm> ::= <mulTerm> [(* | / | MOD | SHL | SHR) <mulTerm>]*
// <mulTerm> ::= [(- | +)]* <signTerm>
// <signTerm> ::= [(HIGH | LOW)]* <byteTerm>
// <byteTerm> ::= [(OFFSET | <type> PTR)]* <offTerm>
// <offTerm> ::= [<segovr>] <colnTerm>
// <colnTerm> ::= <dotTerm> [.<dotTerm>]*
// <dotTerm> ::= <indxTerm> ['['<Expr>']']*
// <indxTerm> ::= <index-reg> | <symbol> | <number> | '('<Expr>')'
// | '['<Expr>']'
// <Operand> ::= <register> | <Expr>
XOSD GetAsmOperand ( PASM_VALUE pavExpr ) {
ULONG tokenvalue;
ULONG classvalue;
classvalue = PeekAsmToken ( &tokenvalue );
if ( ( classvalue & ASM_CLASS_MASK ) == ASM_REG_CLASS ) {
AcceptAsmToken();
classvalue &= ASM_TYPE_MASK;
pavExpr->flags = fREG;
pavExpr->base = (BYTE)tokenvalue; // index within reg group
pavExpr->index = regType[classvalue - 1];
pavExpr->size = regSize[classvalue - 1];
}
else {
XOSD xosd = GetAsmExpr ( pavExpr, FALSE );
if ( xosd != xosdNone ) {
return xosd;
}
if (pavExpr->reloc > 1) { // only 0 and 1 are allowed
return xosdAsmOperand;
}
}
return xosdNone;
}
// <Expr> ::= <orTerm> [(XOR | OR) <orTerm>]*
XOSD GetAsmExpr ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmOrTerm ( pavValue, fBracket ) ) != xosdNone ) {
return xosd;
}
while ( PeekAsmToken ( &tokenvalue ) == ASM_OROP_CLASS ) {
AcceptAsmToken ( );
if ( ( xosd = GetAsmOrTerm ( &avTerm, fBracket ) ) != xosdNone ) {
return xosd;
}
if ( !( pavValue->flags & avTerm.flags & fIMM ) ) {
return xosdAsmOperand;
}
if ( tokenvalue == ASM_OROP_OR ) {
pavValue->value |= avTerm.value;
}
else {
pavValue->value ^= avTerm.value;
}
}
return xosdNone;
}
// <orTerm> ::= <andTerm> [AND <andTerm>]*
XOSD GetAsmOrTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmAndTerm ( pavValue, fBracket ) ) == xosdNone ) {
while ( PeekAsmToken ( &tokenvalue ) == ASM_ANDOP_CLASS ) {
AcceptAsmToken ( );
if ( ( xosd = GetAsmAndTerm ( &avTerm, fBracket ) ) == xosdNone ) {
if ( !( pavValue->flags & avTerm.flags & fIMM ) ) {
xosd = xosdAsmOperand;
}
else {
pavValue->value &= avTerm.value;
}
}
}
}
return xosd;
}
// <andTerm> ::= [NOT]* <notTerm>
XOSD GetAsmAndTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
XOSD xosd = xosdNone;
if ( PeekAsmToken ( &tokenvalue ) == ASM_NOTOP_CLASS ) {
AcceptAsmToken ( );
if ( ( xosd = GetAsmAndTerm ( pavValue, fBracket ) ) == xosdNone ) {
if ( !( pavValue->flags & fIMM ) ) {
xosd = xosdAsmOperand;
}
else {
pavValue->value = ~pavValue->value;
}
}
}
else {
xosd = GetAsmNotTerm ( pavValue, fBracket );
}
return xosd;
}
// <notTerm> ::= <relTerm> [(EQ | NE | GE | GT | LE | LT) <relTerm>]*
XOSD GetAsmNotTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ULONG fTest;
ULONG fAddress;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmRelTerm ( pavValue, fBracket ) ) == xosdNone ) {
while ( PeekAsmToken ( &tokenvalue ) == ASM_RELOP_CLASS ) {
AcceptAsmToken ( );
xosd = GetAsmRelTerm ( &avTerm, fBracket );
if (
xosd == xosdNone &&
( !( pavValue->flags & avTerm.flags & fIMM ) ||
pavValue->reloc > 1 || avTerm.reloc > 1
)
) {
xosd = xosdAsmOperand;
}
else if ( xosd == xosdNone ) {
fAddress = pavValue->reloc | avTerm.reloc;
switch ( tokenvalue ) {
case ASM_RELOP_EQ:
fTest = pavValue->value == avTerm.value;
break;
case ASM_RELOP_NE:
fTest = pavValue->value != avTerm.value;
break;
case ASM_RELOP_GE:
if ( fAddress ) {
fTest = pavValue->value >= avTerm.value;
}
else {
fTest = (LONG)pavValue->value >= (LONG)avTerm.value;
}
break;
case ASM_RELOP_GT:
if ( fAddress ) {
fTest = pavValue->value > avTerm.value;
}
else {
fTest = (LONG)pavValue->value > (LONG)avTerm.value;
}
break;
case ASM_RELOP_LE:
if ( fAddress ) {
fTest = pavValue->value <= avTerm.value;
}
else {
fTest = (LONG)pavValue->value <= (LONG)avTerm.value;
}
break;
case ASM_RELOP_LT:
if ( fAddress ) {
fTest = pavValue->value < avTerm.value;
}
else {
fTest = (LONG)pavValue->value < (LONG)avTerm.value;
}
break;
default:
// printf ( "bad RELOP type\n" );
break;
}
pavValue->value = -((signed)fTest); // FALSE = 0; TRUE = -1
pavValue->reloc = 0;
pavValue->size = sizeB; // immediate value is byte
}
}
}
return xosd;
}
// <relTerm> ::= <addTerm> [(- | +) <addTerm>]*
XOSD GetAsmRelTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmAddTerm ( pavValue, fBracket ) ) == xosdNone ) {
while ( PeekAsmToken ( &tokenvalue ) == ASM_ADDOP_CLASS ) {
AcceptAsmToken ( );
if ( ( xosd = GetAsmAddTerm ( &avTerm, fBracket ) ) == xosdNone ) {
if ( tokenvalue == ASM_ADDOP_MINUS ) {
if ( !( avTerm.flags & (fIMM | fPTR ) ) ) {
xosd = xosdAsmOperand;
}
else {
avTerm.value = -((signed)avTerm.value);
avTerm.reloc = (BYTE)(-avTerm.reloc);
}
}
if ( xosd == xosdNone ) {
xosd = AddAsmValues ( pavValue, &avTerm );
}
}
}
}
return xosd;
}
// <addTerm> ::= <mulTerm> [(* | / | MOD | SHL | SHR) <mulTerm>]*
XOSD GetAsmAddTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmMulTerm ( pavValue, fBracket ) ) == xosdNone ) {
while ( PeekAsmToken ( &tokenvalue ) == ASM_MULOP_CLASS ) {
AcceptAsmToken ( );
xosd = GetAsmMulTerm ( &avTerm, fBracket );
if ( xosd != xosdNone ) {
break;
}
else if ( tokenvalue == ASM_MULOP_MULT ) {
if (pavValue->flags & fIMM) {
SwapPavs(pavValue, &avTerm);
}
if (!(avTerm.flags & fIMM)) {
xosd = xosdAsmOperand;
break;
}
if (pavValue->flags & fIMM) {
pavValue->value *= avTerm.value;
}
else if (
( pavValue->flags & fPTR32 ) &&
pavValue->value == 0 &&
pavValue->base != indSP &&
pavValue->index == 0xff
) {
pavValue->index = pavValue->base;
pavValue->base = 0xff;
pavValue->scale = 0xff;
if (avTerm.value == 1) {
pavValue->scale = 0;
}
if (avTerm.value == 2) {
pavValue->scale = 1;
}
if (avTerm.value == 4) {
pavValue->scale = 2;
}
if (avTerm.value == 8) {
pavValue->scale = 3;
}
if (pavValue->scale == 0xff) {
xosd = xosdAsmOperand;
break;
}
}
else {
xosd = xosdAsmOperand;
break;
}
}
else if ( !( pavValue->flags & avTerm.flags & fIMM ) ) {
xosd = xosdAsmOperand;
break;
}
else if (
tokenvalue == ASM_MULOP_DIVIDE || tokenvalue == ASM_MULOP_MOD
) {
if ( avTerm.value == 0 ) {
xosd = xosdAsmDivide;
break;
}
if ( tokenvalue == ASM_MULOP_DIVIDE ) {
pavValue->value /= avTerm.value;
}
else {
pavValue->value %= avTerm.value;
}
}
else if ( tokenvalue == ASM_MULOP_SHL ) {
pavValue->value <<= avTerm.value;
}
else {
pavValue->value >>= avTerm.value;
}
}
}
return xosd;
}
// <mulTerm> ::= [(- | +)]* <signTerm>
// C-6 ICEs when this is optimized
#pragma optimize ( "", off )
XOSD GetAsmMulTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
XOSD xosd = xosdNone;
if ( PeekAsmToken ( &tokenvalue ) == ASM_ADDOP_CLASS ) { // BY WO DW POI UNDN
AcceptAsmToken();
if ( ( xosd = GetAsmMulTerm ( pavValue, fBracket ) ) == xosdNone ) {
if ( tokenvalue == ASM_ADDOP_MINUS ) {
if ( !( pavValue->flags & ( fIMM | fPTR ) ) ) {
xosd = xosdAsmOperand;
}
else {
pavValue->value = -((signed)pavValue->value);
pavValue->reloc = (BYTE)(-pavValue->reloc);
}
}
}
}
else {
xosd = GetAsmSignTerm ( pavValue, fBracket );
}
return xosd;
}
#pragma optimize ( "", on )
// <signTerm> ::= [(HIGH | LOW)]* <byteTerm>
XOSD GetAsmSignTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
XOSD xosd = xosdNone;
if ( PeekAsmToken ( &tokenvalue ) == ASM_LOWOP_CLASS ) {
AcceptAsmToken();
if ( ( xosd = GetAsmSignTerm ( pavValue, fBracket ) ) == xosdNone ) {
if ( !( pavValue->flags & ( fIMM | fPTR ) ) ) {
xosd = xosdAsmOperand;
}
else if ( tokenvalue == ASM_LOWOP_LOW ) {
pavValue->value = pavValue->value & 0xff;
}
else {
pavValue->value = (pavValue->value & ~0xff) >> 8;
}
if ( xosd == xosdNone ) {
pavValue->flags = fIMM; // make an immediate value
pavValue->reloc = 0;
pavValue->segment = segX;
pavValue->size = sizeB; // byte value
}
}
}
else {
xosd = GetAsmByteTerm ( pavValue, fBracket );
}
return xosd;
}
// <byteTerm> ::= [(OFFSET | <size> PTR)]* <offTerm>
XOSD GetAsmByteTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ULONG classvalue;
XOSD xosd = xosdNone;
classvalue = PeekAsmToken ( &tokenvalue );
if ( classvalue == ASM_OFFOP_CLASS ) {
AcceptAsmToken();
if ( ( xosd = GetAsmByteTerm ( pavValue, fBracket ) ) == xosdNone ) {
if ( !(pavValue->flags & (fIMM | fPTR)) || pavValue->reloc > 1 ) {
xosd = xosdAsmOperand;
}
pavValue->flags = fIMM; // make offset an immediate value
pavValue->reloc = 0;
pavValue->size = sizeX;
pavValue->segment = segX;
}
}
else if ( classvalue == ASM_SIZE_CLASS ) {
ULONG ulAsmClass;
AcceptAsmToken();
ulAsmClass = GetAsmToken ( &classvalue );
if ( ulAsmClass == ASM_ERROR_CLASS ) {
xosd = (XOSD) classvalue;
}
else if ( ulAsmClass != ASM_PTROP_CLASS ) { // dummy token
xosd = xosdAsmSyntax;
}
else if ( ( xosd = GetAsmByteTerm ( pavValue, fBracket ) ) != xosdNone ) {
if (
!(pavValue->flags & (fIMM | fPTR | fPTR16 | fPTR32))
|| pavValue->reloc > 1
|| pavValue->size != sizeX
) {
xosd = xosdAsmOperand;
}
else {
pavValue->reloc = 1; // make ptr a relocatable value
if ( pavValue->flags & fIMM ) {
pavValue->flags = fPTR;
}
pavValue->size = (BYTE)(tokenvalue & ASM_TYPE_MASK);
// value has "size?"
}
}
}
else {
xosd = GetAsmOffTerm ( pavValue, fBracket );
}
return xosd;
}
// <offTerm> ::= [<segovr>] <colnTerm>
XOSD GetAsmOffTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG classvalue;
ULONG tokenvalue;
XOSD xosd = xosdNone;
classvalue = PeekAsmToken(&tokenvalue);
if ( classvalue == ASM_SEGOVR_CLASS || classvalue == ASM_SEGMENT_CLASS ) {
if ( fBracket ) {
return xosdAsmSyntax;
}
else {
AcceptAsmToken ( );
}
}
if ( ( xosd = GetAsmColnTerm ( pavValue, fBracket ) ) != xosdNone ) {
return xosd;
}
if ( classvalue == ASM_SEGOVR_CLASS ) {
if ( pavValue->reloc > 1 || pavValue->segovr != segX ) {
return xosdAsmOperand;
}
pavValue->reloc = 1; // make ptr a relocatable value
if ( pavValue->flags & fIMM ) {
pavValue->flags = fPTR;
}
pavValue->segovr = (BYTE)tokenvalue; // has segment override
}
else if (classvalue == ASM_SEGMENT_CLASS) {
if (!(pavValue->flags & fIMM) || pavValue->reloc > 1) {
return xosdAsmOperand;
}
pavValue->segment = (USHORT)tokenvalue; // segment has segment value
pavValue->flags = fFPTR; // set flag for far pointer
}
return xosd;
}
// <colnTerm> ::= <dotTerm> [.<dotTerm>]*
XOSD GetAsmColnTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avTerm;
XOSD xosd = xosdNone;
xosd = GetAsmDotTerm ( pavValue, fBracket );
while (
xosd == xosdNone &&
PeekAsmToken(&tokenvalue) == ASM_DOTOP_CLASS
) {
AcceptAsmToken ( );
if ( ( xosd = GetAsmDotTerm ( &avTerm, fBracket ) ) == xosdNone ) {
xosd = AddAsmValues ( pavValue, &avTerm );
}
}
return xosd;
}
// <dotTerm> ::= <indxTerm> ['['<Expr>']']*
XOSD GetAsmDotTerm ( PASM_VALUE pavValue, BYTE fBracket ) {
ULONG tokenvalue;
ASM_VALUE avExpr;
XOSD xosd = xosdNone;
if ( ( xosd = GetAsmIndxTerm ( pavValue, fBracket ) ) == xosdNone ) {
if ( pavValue->reloc > 1 ) {
xosd = xosdAsmOperand;
}
else {
while ( PeekAsmToken ( &tokenvalue ) == ASM_LBRACK_CLASS ) {
AcceptAsmToken();
if ( fBracket ) {
xosd = xosdAsmSyntax;
break;
}
if (
( xosd = GetAsmExpr ( &avExpr, TRUE ) ) != xosdNone ||
( xosd = AddAsmValues ( pavValue, &avExpr ) ) != xosdNone
) {
break;
}
if ( GetAsmToken ( &tokenvalue ) != ASM_RBRACK_CLASS ) {
xosd = xosdAsmSyntax;
break;
}
if ( pavValue->flags & fIMM ) {
pavValue->flags = fPTR;
}
}
}
}
return xosd;
}
// <indxTerm> ::= <index-reg> | <symbol> | <number> | '('<Expr>')'
// | '['<Expr>']'
XOSD GetAsmIndxTerm (PASM_VALUE pavValue, BYTE fBracket) {
ULONG tokenvalue;
ULONG classvalue;
XOSD xosd = xosdNone;
classvalue = GetAsmToken ( &tokenvalue );
pavValue->segovr = segX;
pavValue->size = sizeX;
pavValue->reloc = 0;
pavValue->value = 0;
if ( classvalue == ASM_ERROR_CLASS ) {
xosd = (XOSD) classvalue;
}
if ( classvalue == ASM_LPAREN_CLASS ) {
if ( ( xosd = GetAsmExpr ( pavValue, fBracket ) ) == xosdNone ) {
if ( GetAsmToken ( &tokenvalue ) != ASM_RPAREN_CLASS ) {
xosd = xosdAsmSyntax;
}
}
}
else if (classvalue == ASM_LBRACK_CLASS) {
if ( fBracket ) {
xosd = xosdAsmSyntax;
}
else if ( ( xosd = GetAsmExpr ( pavValue, TRUE ) ) == xosdNone ) {
if ( GetAsmToken ( &tokenvalue ) != ASM_RBRACK_CLASS ) {
xosd = xosdAsmSyntax;
}
else if ( pavValue->flags == fIMM ) {
pavValue->flags = fPTR;
}
}
}
else if ( classvalue == ASM_SYMBOL_IMM ) {
pavValue->value = tokenvalue;
pavValue->flags = fIMM;
pavValue->reloc = 1;
}
else if ( classvalue == ASM_SYMBOL_PTR ) {
pavValue->value = offAddr ( *( (LPADDR) tokenvalue ) );
pavValue->segment = segAddr ( *( (LPADDR) tokenvalue ) );
pavValue->flags = fFPTR;
pavValue->size = (BYTE)( ADDR_IS_FLAT(*((LPADDR)tokenvalue)) ? 4: 2);
}
else if ( classvalue == ASM_SYMBOL_BASE ) {
if ( !fBracket ) {
xosd = xosdAsmSyntax;
}
else {
pavValue->value = tokenvalue;
if ( fDBit ) {
pavValue->base = 5;
pavValue->flags = fPTR32;
}
else {
pavValue->base = 6;
pavValue->flags = fPTR16;
}
}
}
else if (classvalue == ASM_NUMBER_CLASS) {
pavValue->value = tokenvalue;
pavValue->flags = fIMM;
}
else if (classvalue == ASM_REG_WORD) {
if ( !fBracket ) {
xosd = xosdAsmSyntax;
}
else {
pavValue->flags = fPTR16;
pavValue->base = tabWordReg [ tokenvalue ];
if ( pavValue->base == 0xff ) {
xosd = xosdAsmOperand;
}
}
}
else if ( classvalue == ASM_REG_DWORD ) {
if ( !fBracket ) {
xosd = xosdAsmSyntax;
}
else {
pavValue->flags = fPTR32;
pavValue->base = (BYTE)tokenvalue;
pavValue->index = 0xff;
}
}
else {
xosd = xosdAsmSyntax;
}
return xosd;
}
XOSD AddAsmValues ( PASM_VALUE pavLeft, PASM_VALUE pavRight ) {
// swap values if left one is a pointer
if ( pavLeft->flags & fPTR ) {
SwapPavs ( pavLeft, pavRight );
}
// swap values if left one is an immediate
if ( pavLeft->flags & fIMM ) {
SwapPavs ( pavLeft, pavRight );
}
// the above swaps reduce the cases to test.
// pairs with an immediate will have it on the right
// pairs with a pointer will have it on the right,
// except for a pointer-immediate pair
// if both values are 16-bit pointers, combine them
if ( pavLeft->flags & pavRight->flags & fPTR16 ) {
// if either side has both registers (rm < 4), error
if ( !(pavLeft->base & pavRight->base & 4) ) {
return xosdAsmOperand;
}
// use lookup table to compute new rm value
pavLeft->base = rm16Table[((pavLeft->base & 3) << 2) +
(pavRight->base & 3)];
if ( pavLeft->base == 0xff ) {
return xosdAsmOperand;
}
pavRight->flags = fPTR;
}
// if both values are 32-bit pointers, combine them
if ( pavLeft->flags & pavRight->flags & fPTR32 ) {
// error if either side has both base and index,
// or if both have index
if (
((pavLeft->base | pavLeft->index) != 0xff) ||
((pavRight->base | pavRight->index) != 0xff) ||
((pavLeft->index | pavRight->index) != 0xff)
) {
return xosdAsmOperand;
}
// if left side has base, swap sides
if ( pavLeft->base != 0xff ) {
SwapPavs(pavLeft, pavRight);
}
// two cases remaining, index-base and base-base
if ( pavLeft->base != 0xff ) {
// left side has base, promote to index but swap if left
// base is ESP since it cannot be an index register
if ( pavLeft->base == indSP ) {
SwapPavs(pavLeft, pavRight);
}
if ( pavLeft->base == indSP ) {
return xosdAsmOperand;
}
else {
pavLeft->index = pavLeft->base;
pavLeft->scale = 0;
}
}
// finish by setting left side base to right side value
pavLeft->base = pavRight->base;
pavRight->flags = fPTR;
}
// if left side is any pointer and right is nonindex pointer,
// combine them. (above cases set right side to use this code)
if (
( pavLeft->flags & ( fPTR | fPTR16 | fPTR32 ) ) &&
( pavRight->flags & fPTR)
) {
if (
pavLeft->segovr + pavRight->segovr != segX &&
pavLeft->segovr != pavRight->segovr
) {
return xosdAsmOperand;
}
if (
pavLeft->size + pavRight->size != sizeX &&
pavLeft->size != pavRight->size
) {
return xosdAsmOperand;
}
pavRight->flags = fIMM;
}
// if right side is immediate, add values and relocs
// (above case sets right side to use this code)
// illegal value types do not have right side set to fIMM
if ( pavRight->flags & fIMM ) {
pavLeft->value += pavRight->value;
pavLeft->reloc += pavRight->reloc;
}
else {
return xosdAsmOperand;
}
return xosdNone;
}
void SwapPavs (PASM_VALUE pavFirst, PASM_VALUE pavSecond)
{
ASM_VALUE temp;
_fmemcpy ( &temp, pavFirst, sizeof ( ASM_VALUE ) );
_fmemcpy ( pavFirst, pavSecond, sizeof ( ASM_VALUE ) );
_fmemcpy ( pavSecond, &temp, sizeof ( ASM_VALUE ) );
}