Windows NT 4.0 source code leak
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

415 lines
10 KiB

#include "shellprv.h"
#pragma hdrstop
#ifdef WIN32
#define MoveTo(_hdc,_x,_y) MoveToEx(_hdc, _x, _y, NULL)
#endif // WIN32
#ifdef USE_16BIT_ASM
#pragma optimize("lge",off)
int IntSqrt(unsigned long dwNum)
{
unsigned short wHigh, wLow;
wHigh = (unsigned short)(dwNum >> 16 );
wLow = (unsigned short)(dwNum & 0xffff);
/* Store dwNum in dx:di; we will keep shifting it left and look at the top
* two bits.
*/
_asm {
push si
push di
mov dx,wHigh
mov di,wLow
/* AX stores the sqrt and SI is the "remainder"; initialize to 0.
*/
xor ax,ax
xor si,si
/* We iterate 16 times, once for each pair of bits.
*/
mov cx,16
Next2Bits:
/* Mask off the top two bits, stick them in the top of SI, and then rotate
* left twice to put them at the bottom (along with whatever was already in
* SI).
*/
mov bx,dx
and bx,0xC000
or si,bx
rol si,1
rol si,1
/* Now we shift the sqrt left; next we'll determine whether the new bit is
* a 1 or a 0.
*/
shl ax,1
/* This is where we double what we already have, and try a 1 in the lowest
* bit.
*/
mov bx,ax
shl bx,1
or bx,1
/* Subtract our current remainder from BX and jump if it is greater than 0
* (meaning that the remainder is not big enough to warrant a 1 yet). This
* is kind of backwards, since we would want the negation of this put into SI,
* but we will negate it later.
*/
sub bx,si
jg RemainderTooSmall
/* The remainder was big enough, so stick -BX into SI and tack a 1 onto
* the sqrt.
*/
xor si,si
sub si,bx
or ax,1
RemainderTooSmall:
/* Shift dwNum to the left by 2 so we can work on the next few bits.
*/
shl di,1
rcl dx,1
shl di,1
rcl dx,1
/* Check out the next 2 bits (16 times).
*/
loop Next2Bits
pop di
pop si
}
if (0)
return(0); /* remove warning, gets otimized out */
}
#pragma optimize("",on)
#else // ! USE_16BIT_ASM
#ifdef USE_32BIT_ASM
#pragma optimize("lge",off)
int IntSqrt(unsigned long dwNum)
{
/* Store dwNum in EDI; we will keep shifting it left and look at the top
* two bits.
*/
_asm {
mov edi,dwNum
/* EAX stores the sqrt and ESI is the "remainder"; initialize to 0.
*/
xor eax,eax
xor esi,esi
/* We iterate 16 times, once for each pair of bits.
*/
mov ecx,16
Next2Bits:
/* Mask off the top two bits, stick them in the top of ESI, and then rotate
* left twice to put them at the bottom (along with whatever was already in
* ESI).
*/
mov ebx,edi
and ebx,0xC0000000
or esi,ebx
rol esi,1
rol esi,1
/* Now we shift the sqrt left; next we'll determine whether the new bit is
* a 1 or a 0.
*/
shl eax,1
/* This is where we double what we already have, and try a 1 in the lowest
* bit.
*/
mov ebx,eax
shl ebx,1
or ebx,1
/* Subtract our current remainder from EBX and jump if it is greater than 0
* (meaning that the remainder is not big enough to warrant a 1 yet). This
* is kind of backwards, since we would want the negation of this put into ESI,
* but we will negate it later.
*/
sub ebx,esi
jg RemainderTooSmall
/* The remainder was big enough, so stick -EBX into ESI and tack a 1 onto
* the sqrt.
*/
xor esi,esi
sub esi,ebx
or eax,1
RemainderTooSmall:
/* Shift dwNum to the left by 2 so we can work on the next few bits.
*/
shl edi,1
shl edi,1
/* Check out the next 2 bits (16 times).
*/
loop Next2Bits
}
if (0)
return(0); /* remove warning, gets otimized out */
}
#pragma optimize("",on)
#else // ! USE_32BIT_ASM
// I looked at the ASM this thing generates, and it is actually better than
// what I have above (I did not know about SHL EDI,2 and forgot about the LEA
// ECX,[EAX*2] trick)! It only uses registers, and it probably also takes into
// account little nuances about what kinds of operations should be separated so
// the processor does not get hung up. WOW!
int IntSqrt(unsigned long dwNum)
{
// We will keep shifting dwNum left and look at the top two bits.
// initialize sqrt and remainder to 0.
DWORD dwSqrt = 0, dwRemain = 0, dwTry;
int i;
// We iterate 16 times, once for each pair of bits.
for (i=0; i<16; ++i)
{
// Mask off the top two bits of dwNum and rotate them into the
// bottom of the remainder
dwRemain = (dwRemain<<2) | (dwNum>>30);
// Now we shift the sqrt left; next we'll determine whether the
// new bit is a 1 or a 0.
dwSqrt <<= 1;
// This is where we double what we already have, and try a 1 in
// the lowest bit.
dwTry = dwSqrt*2 + 1;
if (dwRemain >= dwTry)
{
// The remainder was big enough, so subtract dwTry from
// the remainder and tack a 1 onto the sqrt.
dwRemain -= dwTry;
dwSqrt |= 0x01;
}
// Shift dwNum to the left by 2 so we can work on the next few
// bits.
dwNum <<= 2;
}
return(dwSqrt);
}
#endif // ! USE_32BIT_ASM
#endif // ! USE_16BIT_ASM
VOID DrawPie(HDC hDC, LPCRECT lprcItem, UINT uPctX10, BOOL TrueZr100,
UINT uOffset, const COLORREF *lpColors)
{
int cx, cy, rx, ry, x, y;
int uQPctX10;
RECT rcItem;
HRGN hEllRect, hEllipticRgn, hRectRgn;
HBRUSH hBrush, hOldBrush;
HPEN hPen, hOldPen;
rcItem = *lprcItem;
rcItem.left = lprcItem->left;
rcItem.top = lprcItem->top;
rcItem.right = lprcItem->right - rcItem.left;
rcItem.bottom = lprcItem->bottom - rcItem.top - uOffset;
rx = rcItem.right / 2;
cx = rcItem.left + rx - 1;
ry = rcItem.bottom / 2;
cy = rcItem.top + ry - 1;
if (rx<=10 || ry<=10)
{
return;
}
rcItem.right = rcItem.left+2*rx;
rcItem.bottom = rcItem.top+2*ry;
if (uPctX10 > 1000)
{
uPctX10 = 1000;
}
/* Translate to first quadrant of a Cartesian system
*/
uQPctX10 = (uPctX10 % 500) - 250;
if (uQPctX10 < 0)
{
uQPctX10 = -uQPctX10;
}
/* Calc x and y. I am trying to make the area be the right percentage.
** I don't know how to calculate the area of a pie slice exactly, so I
** approximate it by using the triangle area instead.
*/
if (uQPctX10 < 120)
{
x = IntSqrt(((DWORD)rx*(DWORD)rx*(DWORD)uQPctX10*(DWORD)uQPctX10)
/((DWORD)uQPctX10*(DWORD)uQPctX10+(250L-(DWORD)uQPctX10)*(250L-(DWORD)uQPctX10)));
y = IntSqrt(((DWORD)rx*(DWORD)rx-(DWORD)x*(DWORD)x)*(DWORD)ry*(DWORD)ry/((DWORD)rx*(DWORD)rx));
}
else
{
y = IntSqrt((DWORD)ry*(DWORD)ry*(250L-(DWORD)uQPctX10)*(250L-(DWORD)uQPctX10)
/((DWORD)uQPctX10*(DWORD)uQPctX10+(250L-(DWORD)uQPctX10)*(250L-(DWORD)uQPctX10)));
x = IntSqrt(((DWORD)ry*(DWORD)ry-(DWORD)y*(DWORD)y)*(DWORD)rx*(DWORD)rx/((DWORD)ry*(DWORD)ry));
}
/* Switch on the actual quadrant
*/
switch (uPctX10 / 250)
{
case 1:
y = -y;
break;
case 2:
break;
case 3:
x = -x;
break;
default: // case 0 and case 4
x = -x;
y = -y;
break;
}
/* Now adjust for the center.
*/
x += cx;
y += cy;
// BUGBUG
//
// Hack to get around bug in NTGDI
x = x < 0 ? 0 : x;
/* Draw the shadows using regions (to reduce flicker).
*/
hEllipticRgn = CreateEllipticRgnIndirect(&rcItem);
OffsetRgn(hEllipticRgn, 0, uOffset);
hEllRect = CreateRectRgn(rcItem.left, cy, rcItem.right, cy+uOffset);
hRectRgn = CreateRectRgn(0, 0, 0, 0);
CombineRgn(hRectRgn, hEllipticRgn, hEllRect, RGN_OR);
OffsetRgn(hEllipticRgn, 0, -(int)uOffset);
CombineRgn(hEllRect, hRectRgn, hEllipticRgn, RGN_DIFF);
/* Always draw the whole area in the free shadow/
*/
hBrush = CreateSolidBrush(lpColors[DP_FREESHADOW]);
if (hBrush)
{
FillRgn(hDC, hEllRect, hBrush);
DeleteObject(hBrush);
}
/* Draw the used shadow only if the disk is at least half used.
*/
if (uPctX10>500 && (hBrush=CreateSolidBrush(lpColors[DP_USEDSHADOW]))!=NULL)
{
DeleteObject(hRectRgn);
hRectRgn = CreateRectRgn(x, cy, rcItem.right, lprcItem->bottom);
CombineRgn(hEllipticRgn, hEllRect, hRectRgn, RGN_AND);
FillRgn(hDC, hEllipticRgn, hBrush);
DeleteObject(hBrush);
}
DeleteObject(hRectRgn);
DeleteObject(hEllipticRgn);
DeleteObject(hEllRect);
hPen = CreatePen(PS_SOLID, 1, GetSysColor(COLOR_WINDOWFRAME));
hOldPen = SelectObject(hDC, hPen);
if((uPctX10 < 100) && (cy == y))
{
hBrush = CreateSolidBrush(lpColors[DP_FREECOLOR]);
hOldBrush = SelectObject(hDC, hBrush);
if((TrueZr100 == FALSE) || (uPctX10 != 0))
{
Pie(hDC, rcItem.left, rcItem.top, rcItem.right, rcItem.bottom,
rcItem.left, cy, x, y);
}
else
{
Ellipse(hDC, rcItem.left, rcItem.top, rcItem.right,
rcItem.bottom);
}
}
else if((uPctX10 > (1000 - 100)) && (cy == y))
{
hBrush = CreateSolidBrush(lpColors[DP_USEDCOLOR]);
hOldBrush = SelectObject(hDC, hBrush);
if((TrueZr100 == FALSE) || (uPctX10 != 1000))
{
Pie(hDC, rcItem.left, rcItem.top, rcItem.right, rcItem.bottom,
rcItem.left, cy, x, y);
}
else
{
Ellipse(hDC, rcItem.left, rcItem.top, rcItem.right,
rcItem.bottom);
}
}
else
{
hBrush = CreateSolidBrush(lpColors[DP_USEDCOLOR]);
hOldBrush = SelectObject(hDC, hBrush);
Ellipse(hDC, rcItem.left, rcItem.top, rcItem.right, rcItem.bottom);
SelectObject(hDC, hOldBrush);
DeleteObject(hBrush);
hBrush = CreateSolidBrush(lpColors[DP_FREECOLOR]);
hOldBrush = SelectObject(hDC, hBrush);
Pie(hDC, rcItem.left, rcItem.top, rcItem.right, rcItem.bottom,
rcItem.left, cy, x, y);
}
SelectObject(hDC, hOldBrush);
DeleteObject(hBrush);
/* Do not draw the lines if the %age is truely 0 or 100 (completely
** empty disk or completly full disk)
*/
if((TrueZr100 == FALSE) || ((uPctX10 != 0) && (uPctX10 != 1000)))
{
Arc(hDC, rcItem.left, rcItem.top+uOffset, rcItem.right, rcItem.bottom+uOffset,
rcItem.left, cy+uOffset, rcItem.right, cy+uOffset-1);
MoveTo(hDC, rcItem.left, cy);
LineTo(hDC, rcItem.left, cy+uOffset);
MoveTo(hDC, rcItem.right-1, cy);
LineTo(hDC, rcItem.right-1, cy+uOffset);
if (uPctX10 > 500)
{
MoveTo(hDC, x, y);
LineTo(hDC, x, y+uOffset);
}
}
SelectObject(hDC, hOldPen);
DeleteObject(hPen);
}