|
|
//+----------------------------------------------------------------------------
//
// Copyright (C) 1992, Microsoft Corporation.
//
// File: dfsinit.c
//
// Contents: This module implements the DRIVER_INITIALIZATION routine
// for the Dfs file system driver.
//
// Functions: DfsDriverEntry - Main entry point for driver initialization
// DfsIoTimerRoutine - Main entry point for scavenger thread
// DfsDeleteDevices - Routine to scavenge deleted net uses
//
//-----------------------------------------------------------------------------
#include "align.h"
#include "dfsprocs.h"
#include "fastio.h"
#include "fcbsup.h"
//
// The following are includes for init modules, which will get discarded when
// the driver has finished loading.
//
#include "provider.h"
//
// The debug trace level
//
#define Dbg (DEBUG_TRACE_INIT)
VOID MupGetDebugFlags(VOID);
VOID DfsGetEventLogValue(VOID);
VOID DfsIoTimerRoutine( IN PDEVICE_OBJECT DeviceObject, IN PVOID Context );
VOID DfsDeleteDevices( PDFS_TIMER_CONTEXT DfsTimerContext);
NTSTATUS DfsShutdown ( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp );
BOOL DfsCheckLUIDDeviceMapsEnabled( VOID );
//
// Globals
//
HANDLE DfsDirHandle = NULL; BOOL DfsLUIDDeviceMapsEnabled = FALSE;
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, DfsDriverEntry)
#pragma alloc_text(PAGE, DfsDeleteDevices)
#pragma alloc_text(PAGE, DfsUnload)
#pragma alloc_text(PAGE, DfsShutdown)
//
// The following routine should not be pageable, because it gets called by
// the NT timer routine frequently. We don't want to thrash.
//
// DfsIoTimerRoutine
//
#endif // ALLOC_PRAGMA
//
// This macro takes a pointer (or ulong) and returns its rounded up quadword
// value
//
#define QuadAlign(Ptr) ( \
((((ULONG)(Ptr)) + 7) & 0xfffffff8) \ )
//+-------------------------------------------------------------------
//
// Function: DfsDriverEntry, main entry point
//
// Synopsis: This is the initialization routine for the Dfs file system
// device driver. This routine creates the device object for
// the FileSystem device and performs all other driver
// initialization.
//
// Arguments: [DriverObject] -- Pointer to driver object created by the
// system.
// [RegistryPath] -- Path to section in registry describing
// this driver's configuration.
//
// Returns: [NTSTATUS] - The function value is the final status from
// the initialization operation.
//
//--------------------------------------------------------------------
NTSTATUS DfsDriverEntry( IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath ) { NTSTATUS Status; UNICODE_STRING UnicodeString; PDEVICE_OBJECT DeviceObject; OBJECT_ATTRIBUTES ObjectAttributes; PWSTR p; int i; IO_STATUS_BLOCK iosb; LUID LogonID = SYSTEM_LUID;
#if DBG
//
// If debug, get debug flags
//
MupGetDebugFlags();
#endif
//
// Get the event logging level
//
DfsGetEventLogValue();
//
// See if someone else has already created a File System Device object
// with the name we intend to use. If so, we bail.
//
RtlInitUnicodeString( &UnicodeString, DFS_DRIVER_NAME );
//
// Create the filesystem device object.
//
Status = IoCreateDevice( DriverObject, 0, &UnicodeString, FILE_DEVICE_DFS_FILE_SYSTEM, FILE_REMOTE_DEVICE | FILE_DEVICE_SECURE_OPEN, FALSE, &DeviceObject ); if ( !NT_SUCCESS( Status ) ) { return Status; }
//
// Create a permanent object directory in which the logical root
// device objects will reside. Make the directory temporary, so
// we can just close the handle to make it go away.
//
UnicodeString.Buffer = p = LogicalRootDevPath; UnicodeString.Length = 0; UnicodeString.MaximumLength = MAX_LOGICAL_ROOT_LEN; while (*p++ != UNICODE_NULL) UnicodeString.Length += sizeof (WCHAR);
InitializeObjectAttributes( &ObjectAttributes, &UnicodeString, 0, NULL, NULL );
Status = ZwCreateDirectoryObject( &DfsDirHandle, DIRECTORY_ALL_ACCESS, &ObjectAttributes);
if ( !NT_SUCCESS( Status ) ) { IoDeleteDevice (DeviceObject); return Status; }
p[-1] = UNICODE_PATH_SEP; UnicodeString.Length += sizeof (WCHAR);
//
// Initialize the driver object with this driver's entry points.
// Most are simply passed through to some other device driver.
//
for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) { DriverObject->MajorFunction[i] = DfsVolumePassThrough; }
DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)DfsFsdCreate; DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)DfsFsdClose; DriverObject->MajorFunction[IRP_MJ_CLEANUP] = (PDRIVER_DISPATCH)DfsFsdCleanup; DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION] = (PDRIVER_DISPATCH)DfsFsdQueryInformation; DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION] = (PDRIVER_DISPATCH)DfsFsdSetInformation; DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL] = (PDRIVER_DISPATCH)DfsFsdFileSystemControl; DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION]= (PDRIVER_DISPATCH)DfsFsdQueryVolumeInformation; DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION]= (PDRIVER_DISPATCH)DfsFsdSetVolumeInformation; DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = DfsShutdown;
DriverObject->FastIoDispatch = &FastIoDispatch;
Status = FsRtlRegisterFileSystemFilterCallbacks( DriverObject, &FsFilterCallbacks );
if (!NT_SUCCESS( Status )) {
ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); goto ErrorOut; }
//
// Initialize the global data structures
//
RtlZeroMemory(&DfsData, sizeof (DFS_DATA));
DfsData.NodeTypeCode = DSFS_NTC_DATA_HEADER; DfsData.NodeByteSize = sizeof( DFS_DATA );
InitializeListHead( &DfsData.VcbQueue ); InitializeListHead( &DfsData.DeletedVcbQueue );
// Initialize the devless root queue: this holds all the device less
// net uses.
InitializeListHead( &DfsData.DrtQueue );
InitializeListHead( &DfsData.Credentials ); InitializeListHead( &DfsData.DeletedCredentials );
InitializeListHead( &DfsData.OfflineRoots );
DfsData.DriverObject = DriverObject; DfsData.FileSysDeviceObject = DeviceObject;
DfsData.LogRootDevName = UnicodeString;
ExInitializeResourceLite( &DfsData.Resource ); KeInitializeEvent( &DfsData.PktWritePending, NotificationEvent, TRUE ); KeInitializeSemaphore( &DfsData.PktReferralRequests, 1, 1 );
DfsData.MachineState = DFS_CLIENT;
//
// Allocate Provider structures.
//
DfsData.pProvider = ExAllocatePoolWithTag( PagedPool, sizeof ( PROVIDER_DEF ) * MAX_PROVIDERS, ' puM');
if (DfsData.pProvider == NULL) { ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); Status = STATUS_INSUFFICIENT_RESOURCES; goto ErrorOut; }
for (i = 0; i < MAX_PROVIDERS; i++) { DfsData.pProvider[i].NodeTypeCode = DSFS_NTC_PROVIDER; DfsData.pProvider[i].NodeByteSize = sizeof ( PROVIDER_DEF ); }
DfsData.cProvider = 0; DfsData.maxProvider = MAX_PROVIDERS;
//
// Initialize the system wide PKT
//
PktInitialize(&DfsData.Pkt);
{ ULONG SystemSizeMultiplier;
switch (MmQuerySystemSize()) { default: case MmSmallSystem: SystemSizeMultiplier = 4; break; case MmMediumSystem: SystemSizeMultiplier = 8; break;
case MmLargeSystem: SystemSizeMultiplier = 16; break; }
//
// Allocate the DFS_FCB hash table structure. The number of
// hash buckets will depend upon the memory size of the system.
//
Status = DfsInitFcbs(SystemSizeMultiplier * 2); if (!NT_SUCCESS (Status)) { PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); goto ErrorOut; }
//
// Create a lookaside for the IRP contexts
//
ExInitializeNPagedLookasideList (&DfsData.IrpContextLookaside, NULL, NULL, 0, sizeof(IRP_CONTEXT), 'IpuM', 10 // unused
);
}
//
// Set up global pointer to the system process.
//
DfsData.OurProcess = PsGetCurrentProcess();
//
// Set up the global pointers for the EA buffers to be used to differentiate
// CSC agent opens from non CSC agent opens. This is a read only buffer used
// to distinguish the CSC agent requests
//
//
{ UCHAR EaNameCSCAgentSize = (UCHAR) (ROUND_UP_COUNT( strlen(EA_NAME_CSCAGENT) + sizeof(CHAR), ALIGN_DWORD ) - sizeof(CHAR));
DfsData.CSCEaBufferLength = ROUND_UP_COUNT( FIELD_OFFSET(FILE_FULL_EA_INFORMATION, EaName[0]) + EaNameCSCAgentSize + sizeof(CHAR), ALIGN_DWORD );
DfsData.CSCEaBuffer = ExAllocatePoolWithTag( PagedPool, DfsData.CSCEaBufferLength, ' puM');
if (DfsData.CSCEaBuffer != NULL) {
// clear the buffer, otherwise so we don't get any spurious
// failure due to IO manager checks
memset(DfsData.CSCEaBuffer, 0, DfsData.CSCEaBufferLength);
RtlCopyMemory( (LPSTR)DfsData.CSCEaBuffer->EaName, EA_NAME_CSCAGENT, EaNameCSCAgentSize);
DfsData.CSCEaBuffer->EaNameLength = EaNameCSCAgentSize;
DfsData.CSCEaBuffer->EaValueLength = 0;
DfsData.CSCEaBuffer->NextEntryOffset = 0; } else { ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside); DfsUninitFcbs (); PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); Status = STATUS_INSUFFICIENT_RESOURCES; DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "Failed to allocate CSC ea buffer %08lx\n", ULongToPtr(Status) ); return Status; } }
//
// Register the file system with the I/O system. We don't need to invert this as its never registered.
//
IoRegisterFileSystem( DeviceObject );
Status = IoRegisterShutdownNotification (DeviceObject); // This is automaticaly removed when IoDeleteDevice is called
if (!NT_SUCCESS (Status)) { ExFreePool (DfsData.CSCEaBuffer); ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside); DfsUninitFcbs (); PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); return Status; } //
// Initialize the provider definitions from the registry.
//
if (!NT_SUCCESS( ProviderInit() )) {
DfsDbgTrace(0,DEBUG_TRACE_ERROR, "Could not initialize some or all providers!\n", 0);
}
//
// Check if LUID device maps are enabled
//
DfsLUIDDeviceMapsEnabled = DfsCheckLUIDDeviceMapsEnabled(); //
// Initialize the logical roots device objects. These are what form the
// link between the outside world and the Dfs driver.
//
#ifdef TERMSRV
Status = DfsInitializeLogicalRoot( DD_DFS_DEVICE_NAME, NULL, NULL, 0, INVALID_SESSIONID, &LogonID); #else // TERMSRV
Status = DfsInitializeLogicalRoot( DD_DFS_DEVICE_NAME, NULL, NULL, 0, &LogonID); #endif // TERMSRV
if (!NT_SUCCESS(Status)) { DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "Failed creation of root logical root %08lx\n", ULongToPtr(Status) );
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside); DfsUninitFcbs (); PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); return(Status); }
//
// Let us start off the Timer Routine.
//
RtlZeroMemory(&DfsTimerContext, sizeof(DFS_TIMER_CONTEXT)); DfsTimerContext.InUse = FALSE; DfsTimerContext.TickCount = 0; //
// 375929, io initialize timer, check return status.
//
Status = IoInitializeTimer( DeviceObject, DfsIoTimerRoutine, &DfsTimerContext ); if (Status != STATUS_SUCCESS) { #ifdef TERMSRV
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, INVALID_SESSIONID, &LogonID); #else
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, &LogonID); #endif
ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside); DfsUninitFcbs (); PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ZwClose (DfsDirHandle); IoDeleteDevice (DeviceObject); goto ErrorOut; } DfsDbgTrace(0, Dbg, "Initialized the Timer routine\n", 0);
//
// Let us start the timer now.
//
IoStartTimer(DeviceObject);
DfsDbgTrace(-1, Dbg, "DfsDriverEntry exit STATUS_SUCCESS\n", 0);
return STATUS_SUCCESS;
ErrorOut:
DfsDbgTrace(-1, DEBUG_TRACE_ERROR, "DfsDriverEntry exit %08lx\n", ULongToPtr(Status) );
return Status;
}
NTSTATUS DfsShutdown ( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) { //
// Unregister the file system object so we can unload
//
IoUnregisterFileSystem (DeviceObject);
DfsCompleteRequest( NULL, Irp, STATUS_SUCCESS ); return STATUS_SUCCESS; }
//+----------------------------------------------------------------------------
//
// Function: DfsUnload
//
// Synopsis: Routine called at unload time to free resources
//
// Arguments: [DriverObject] -- Driver object of MUP
//
// Returns: Nothing
//
//-----------------------------------------------------------------------------
VOID DfsUnload( IN PDRIVER_OBJECT DriverObject ) { LUID LogonID = SYSTEM_LUID;
IoStopTimer(DfsData.FileSysDeviceObject); #ifdef TERMSRV
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, INVALID_SESSIONID, &LogonID); #else
DfsDeleteLogicalRoot (DD_DFS_DEVICE_NAME, FALSE, &LogonID); #endif
ExFreePool (DfsData.CSCEaBuffer); ExDeleteNPagedLookasideList (&DfsData.IrpContextLookaside); DfsUninitFcbs (); PktUninitialize(&DfsData.Pkt); ExFreePool (DfsData.pProvider); ExDeleteResourceLite( &DfsData.Resource ); ZwClose (DfsDirHandle); IoDeleteDevice (DfsData.FileSysDeviceObject); }
//+----------------------------------------------------------------------------
//
// Function: DfsDeleteDevices
//
// Synopsis: Routine to scavenge deleted devices (net uses).
//
// Arguments: [pDfsTimerContext] -- Timer Context
//
// Returns: Nothing - this routine is meant to be queued to a worker
// thread.
//
//-----------------------------------------------------------------------------
VOID DfsDeleteDevices( PDFS_TIMER_CONTEXT DfsTimerContext) { PLIST_ENTRY plink; PDFS_VCB Vcb; PLOGICAL_ROOT_DEVICE_OBJECT DeletedObject;
if (DfsData.DeletedVcbQueue.Flink != &DfsData.DeletedVcbQueue) {
DfsDbgTrace(0, Dbg, "Examining Deleted Vcbs...\n", 0);
ExAcquireResourceExclusiveLite(&DfsData.Resource, TRUE);
for (plink = DfsData.DeletedVcbQueue.Flink; plink != &DfsData.DeletedVcbQueue; NOTHING) {
Vcb = CONTAINING_RECORD( plink, DFS_VCB, VcbLinks);
plink = plink->Flink;
DeletedObject = CONTAINING_RECORD( Vcb, LOGICAL_ROOT_DEVICE_OBJECT, Vcb);
if (Vcb->OpenFileCount == 0 && Vcb->DirectAccessOpenCount == 0 && DeletedObject->DeviceObject.ReferenceCount == 0) {
DfsDbgTrace(0, Dbg, "Deleting Vcb@%08lx\n", Vcb);
if (Vcb->LogRootPrefix.Buffer != NULL) ExFreePool(Vcb->LogRootPrefix.Buffer);
if (Vcb->LogicalRoot.Buffer != NULL) ExFreePool(Vcb->LogicalRoot.Buffer);
RemoveEntryList(&Vcb->VcbLinks);
ObDereferenceObject((PVOID) DeletedObject);
IoDeleteDevice( &DeletedObject->DeviceObject );
} else {
DfsDbgTrace(0, Dbg, "Not deleting Vcb@%08lx\n", Vcb);
DfsDbgTrace(0, Dbg, "OpenFileCount = %d\n", ULongToPtr(Vcb->OpenFileCount) );
DfsDbgTrace(0, Dbg, "DirectAccessOpens = %d\n", ULongToPtr(Vcb->DirectAccessOpenCount) );
DfsDbgTrace(0, Dbg, "DeviceObject Reference count = %d\n", ULongToPtr(DeletedObject->DeviceObject.ReferenceCount) );
}
}
ExReleaseResourceLite(&DfsData.Resource);
}
DfsTimerContext->InUse = FALSE;
}
//+-------------------------------------------------------------------------
//
// Function: DfsIoTimerRoutine
//
// Synopsis: This function gets called by IO Subsystem once every second.
// This can be used for various purposes in the driver. For now,
// it periodically posts a request to a system thread to age Pkt
// Entries.
//
// Arguments: [Context] -- This is the context information. It is actually
// a pointer to a DFS_TIMER_CONTEXT.
// [DeviceObject] -- Pointer to the Device object for DFS. We dont
// really use this here.
//
// Returns: Nothing
//
// Notes: The Context which we get here is assumed to have all the
// required fields setup properly.
//
// History: 04/24/93 SudK Created.
//
//--------------------------------------------------------------------------
VOID DfsIoTimerRoutine( IN PDEVICE_OBJECT DeviceObject, IN PVOID Context ) { PDFS_TIMER_CONTEXT pDfsTimerContext = (PDFS_TIMER_CONTEXT) Context;
DfsDbgTrace(+1, Dbg, "DfsIoTimerRoutine: Entered\n", 0);
//
// If the DfsTimerContext is in USE then we just return blindly. Due to
// this action we might actually lose some ticks. But then we really are
// not very particular about this and hence dont care.
//
if (pDfsTimerContext->InUse == TRUE) {
DfsDbgTrace(-1, Dbg, "DfsIoTimerRoutine: TimerContext in use\n", 0);
return;
}
//
// First let us increment the count in the DFS_TIMER_CONTEXT. If it has
// reached a bound value then we have to go ahead and schedule the
// necessary work items.
//
pDfsTimerContext->TickCount++;
if (pDfsTimerContext->TickCount == DFS_MAX_TICKS) {
DfsDbgTrace(0, Dbg, "Queuing Pkt Entry Scavenger\n", 0);
pDfsTimerContext->InUse = TRUE;
ExInitializeWorkItem( &pDfsTimerContext->WorkQueueItem, DfsAgePktEntries, pDfsTimerContext);
ExQueueWorkItem( &pDfsTimerContext->WorkQueueItem, DelayedWorkQueue);
} else if (DfsData.DeletedVcbQueue.Flink != &DfsData.DeletedVcbQueue) {
DfsDbgTrace(0, Dbg, "Queueing Deleted Vcb Scavenger\n", 0);
pDfsTimerContext->InUse = TRUE;
ExInitializeWorkItem( &pDfsTimerContext->DeleteQueueItem, DfsDeleteDevices, pDfsTimerContext);
ExQueueWorkItem(&pDfsTimerContext->DeleteQueueItem, DelayedWorkQueue);
}
DfsDbgTrace(-1, Dbg, "DfsIoTimerRoutine: Exiting\n", 0);
}
//+-------------------------------------------------------------------------
//
// Function: DfsCheckLUIDDeviceMapsEnabled
//
// Synopsis: This function calls ZwQueryInformationProcess to determine if
// LUID device maps are enabled/disabled
//
// Arguments: NONE
//
// Returns:
// TRUE - LUID device maps are enabled
//
// FALSE - LUID device maps are disabled
//
//--------------------------------------------------------------------------
BOOL DfsCheckLUIDDeviceMapsEnabled( VOID ) { NTSTATUS Status; ULONG LUIDDeviceMapsEnabled; BOOL Result;
Status = ZwQueryInformationProcess( NtCurrentProcess(), ProcessLUIDDeviceMapsEnabled, &LUIDDeviceMapsEnabled, sizeof(LUIDDeviceMapsEnabled), NULL );
if (!NT_SUCCESS(Status)) { DfsDbgTrace( -1, DEBUG_TRACE_ERROR, "DfsCheckLUIDDeviceMapsEnabled to failed to check if LUID device maps enabled, status = %08lx\n", ULongToPtr(Status)); Result = FALSE; } else { Result = (LUIDDeviceMapsEnabled != 0); }
return( Result ); }
|