|
|
#include <precomp.h>
//
// misc.c
//
// Author: Tom McGuire (tommcg) 2/97 - 12/97
//
// Copyright (C) Microsoft, 1997-1998.
//
// MICROSOFT CONFIDENTIAL
//
typedef struct _SUBALLOCATOR SUBALLOCATOR, *PSUBALLOCATOR;
struct _SUBALLOCATOR { PVOID VirtualListTerminator; PVOID *VirtualList; PCHAR NextAvailable; PCHAR LastAvailable; ULONG GrowSize; };
const ULONG gCrcTable32[ 256 ] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };
#if defined( DEBUG ) || defined( DBG ) || defined( TESTCODE )
BOOL Assert( LPCSTR szText, LPCSTR szFile, DWORD dwLine ) { CHAR Buffer[ 512 ]; wsprintf( Buffer, "ASSERT( %s ) FAILED, %s (%d)\n", szText, szFile, dwLine ); OutputDebugString( Buffer ); DebugBreak(); return FALSE; }
#endif
#ifdef DONTCOMPILE // Not currently being used
VOID InitializeCrc32Table( VOID ) { ULONG i, j, Value;
for ( i = 0; i < 256; i++ ) { for ( Value = i, j = 8; j > 0; j-- ) { if ( Value & 1 ) { Value = ( Value >> 1 ) ^ 0xEDB88320; } else { Value >>= 1; } } gCrcTable32[ i ] = Value; } }
#endif // DONTCOMPILE
#ifdef _M_IX86
#pragma warning( disable: 4035 ) // no return value
#endif
ULONG Crc32( IN ULONG InitialCrc, IN PVOID Buffer, IN ULONG ByteCount ) {
#ifdef DONTCOMPILE // Not currently being used
//
// First determine if the CRC table has been initialized by checking
// that the last value in it is nonzero. Believe it or not, this is
// thread safe because two threads could initialize the table at the
// same time with no harm, and the last value to be initialized in the
// table is used to determine if the table has been initialized. On
// all hardware platforms (including Alpha) it is safe to assume that
// an aligned DWORD written to memory by one processor will be seen by
// the other processor(s) as either containing the value previously
// contained in that memory location, or the new written value, but not
// some weird unpredictable value.
//
if ( gCrcTable32[ 255 ] == 0 ) { InitializeCrc32Table(); }
#endif // DONTCOMPILE
#ifdef _M_IX86
__asm {
mov ecx, ByteCount ; number of bytes in buffer xor ebx, ebx ; ebx (bl) will be our table index mov esi, Buffer ; buffer pointer test ecx, ecx ; test for zero length buffer mov eax, InitialCrc ; CRC-32 value
jnz short loopentry ; if non-zero buffer, start loop jmp short exitfunc ; else exit (crc already in eax)
looptop: shr eax, 8 ; (crc>>8) (U1) mov edx, gCrcTable32[ebx*4] ; fetch Table[ index ] (V1)
xor eax, edx ; crc=(crc>>8)^Table[index] (U1) loopentry: mov bl, [esi] ; fetch next *buffer (V1)
inc esi ; buffer++ (U1) xor bl, al ; index=(byte)crc^*buffer (V1)
dec ecx ; adjust counter (U1) jnz short looptop ; loop while nBytes (V1)
shr eax, 8 ; remaining math on last byte xor eax, gCrcTable32[ebx*4] ; eax returns new crc value
exitfunc:
}
#else // ! _M_IX86
{ ULONG Value = InitialCrc; ULONG Count = ByteCount; PUCHAR p = Buffer;
while ( Count-- ) { Value = ( Value >> 8 ) ^ gCrcTable32[ (UCHAR)( *p++ ^ Value ) ]; }
return Value; }
#endif // ! _M_IX86
}
#ifdef _M_IX86
#pragma warning( default: 4035 ) // no return value
#endif
BOOL SafeCompleteCrc32( IN PVOID Buffer, IN ULONG ByteCount, OUT PULONG CrcValue ) { BOOL Success = TRUE;
__try { *CrcValue = Crc32( 0xFFFFFFFF, Buffer, ByteCount ) ^ 0xFFFFFFFF; } __except( EXCEPTION_EXECUTE_HANDLER ) { SetLastError( GetExceptionCode() ); Success = FALSE; }
return Success; }
BOOL SafeCompleteMD5( IN PVOID Buffer, IN ULONG ByteCount, OUT PMD5_HASH MD5Value ) { BOOL Success = TRUE;
__try { ComputeCompleteMD5( Buffer, ByteCount, MD5Value ); } __except( EXCEPTION_EXECUTE_HANDLER ) { SetLastError( GetExceptionCode() ); Success = FALSE; }
return Success; }
BOOL MyMapViewOfFileA( IN LPCSTR FileName, OUT ULONG *FileSize, OUT HANDLE *FileHandle, OUT PVOID *MapBase ) { HANDLE InternalFileHandle; BOOL Success;
InternalFileHandle = CreateFileA( FileName, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL );
if ( InternalFileHandle != INVALID_HANDLE_VALUE ) {
Success = MyMapViewOfFileByHandle( InternalFileHandle, FileSize, MapBase );
if ( Success ) {
*FileHandle = InternalFileHandle;
return TRUE; }
CloseHandle( InternalFileHandle ); }
return FALSE; }
BOOL MyMapViewOfFileByHandle( IN HANDLE FileHandle, OUT ULONG *FileSize, OUT PVOID *MapBase ) { ULONG InternalFileSize; ULONG InternalFileSizeHigh; HANDLE InternalMapHandle; PVOID InternalMapBase;
InternalFileSize = GetFileSize( FileHandle, &InternalFileSizeHigh );
if ( InternalFileSizeHigh != 0 ) { SetLastError( ERROR_OUTOFMEMORY ); return FALSE; }
if ( InternalFileSize == 0 ) { *MapBase = NULL; *FileSize = 0; return TRUE; }
if ( InternalFileSize != 0xFFFFFFFF ) {
InternalMapHandle = CreateFileMapping( FileHandle, NULL, PAGE_WRITECOPY, 0, 0, NULL );
if ( InternalMapHandle != NULL ) {
InternalMapBase = MapViewOfFile( InternalMapHandle, FILE_MAP_COPY, 0, 0, 0 );
CloseHandle( InternalMapHandle );
if ( InternalMapBase != NULL ) {
*MapBase = InternalMapBase; *FileSize = InternalFileSize;
return TRUE; } } }
return FALSE; }
BOOL MyCreateMappedFileA( IN LPCSTR FileName, IN ULONG InitialSize, OUT HANDLE *FileHandle, OUT PVOID *MapBase ) { HANDLE InternalFileHandle; BOOL Success;
InternalFileHandle = CreateFileA( FileName, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
if ( InternalFileHandle != INVALID_HANDLE_VALUE ) {
Success = MyCreateMappedFileByHandle( InternalFileHandle, InitialSize, MapBase );
if ( Success ) {
*FileHandle = InternalFileHandle;
return TRUE; }
CloseHandle( InternalFileHandle ); }
return FALSE; }
BOOL MyCreateMappedFileByHandle( IN HANDLE FileHandle, IN ULONG InitialSize, OUT PVOID *MapBase ) { HANDLE InternalMapHandle; PVOID InternalMapBase;
InternalMapHandle = CreateFileMapping( FileHandle, NULL, PAGE_READWRITE, 0, InitialSize, NULL );
if ( InternalMapHandle != NULL ) {
InternalMapBase = MapViewOfFile( InternalMapHandle, FILE_MAP_WRITE, 0, 0, 0 );
CloseHandle( InternalMapHandle );
if ( InternalMapBase != NULL ) {
*MapBase = InternalMapBase;
return TRUE; } }
return FALSE; }
VOID MyUnmapCreatedMappedFile( IN HANDLE FileHandle, IN PVOID MapBase, IN ULONG FileSize, IN PFILETIME FileTime OPTIONAL ) { FlushViewOfFile( MapBase, 0 ); UnmapViewOfFile( MapBase ); SetFilePointer( FileHandle, (LONG) FileSize, NULL, FILE_BEGIN ); SetEndOfFile( FileHandle ); SetFileTime( FileHandle, NULL, NULL, FileTime ); }
PVOID __fastcall MyVirtualAlloc( ULONG Size ) { return VirtualAlloc( NULL, Size, MEM_COMMIT, PAGE_READWRITE ); }
VOID __fastcall MyVirtualFree( PVOID Allocation ) { VirtualFree( Allocation, 0, MEM_RELEASE ); }
HANDLE CreateSubAllocator( IN ULONG InitialCommitSize, IN ULONG GrowthCommitSize ) { PSUBALLOCATOR SubAllocator; ULONG InitialSize; ULONG GrowthSize;
InitialSize = ROUNDUP2( InitialCommitSize, MINIMUM_VM_ALLOCATION ); GrowthSize = ROUNDUP2( GrowthCommitSize, MINIMUM_VM_ALLOCATION );
SubAllocator = MyVirtualAlloc( InitialSize );
//
// If can't allocate entire initial size, back off to minimum size.
// Very large initial requests sometimes cannot be allocated simply
// because there is not enough contiguous address space.
//
if (( SubAllocator == NULL ) && ( InitialSize > GrowthSize )) { InitialSize = GrowthSize; SubAllocator = MyVirtualAlloc( InitialSize ); }
if (( SubAllocator == NULL ) && ( InitialSize > MINIMUM_VM_ALLOCATION )) { InitialSize = MINIMUM_VM_ALLOCATION; SubAllocator = MyVirtualAlloc( InitialSize ); }
if ( SubAllocator != NULL ) { SubAllocator->NextAvailable = (PCHAR)SubAllocator + ROUNDUP2( sizeof( SUBALLOCATOR ), SUBALLOCATOR_ALIGNMENT ); SubAllocator->LastAvailable = (PCHAR)SubAllocator + InitialSize; SubAllocator->VirtualList = (PVOID*)SubAllocator; SubAllocator->GrowSize = GrowthSize; }
return (HANDLE) SubAllocator; }
PVOID __fastcall SubAllocate( IN HANDLE hAllocator, IN ULONG Size ) { PSUBALLOCATOR SubAllocator = (PSUBALLOCATOR) hAllocator; PCHAR NewVirtual; PCHAR Allocation; ULONG AllocSize; ULONG Available; ULONG GrowSize;
ASSERT( Size < (ULONG)( ~(( SUBALLOCATOR_ALIGNMENT * 2 ) - 1 )));
AllocSize = ROUNDUP2( Size, SUBALLOCATOR_ALIGNMENT );
Available = (ULONG)( SubAllocator->LastAvailable - SubAllocator->NextAvailable );
if ( AllocSize <= Available ) {
Allocation = SubAllocator->NextAvailable;
SubAllocator->NextAvailable = Allocation + AllocSize;
return Allocation; }
//
// Insufficient VM, so grow it. Make sure we grow it enough to satisfy
// the allocation request in case the request is larger than the grow
// size specified in CreateSubAllocator.
//
#ifdef TESTCODE
printf( "\nGrowing VM suballocater\n" );
#endif
GrowSize = SubAllocator->GrowSize;
if ( GrowSize < ( AllocSize + SUBALLOCATOR_ALIGNMENT )) { GrowSize = ROUNDUP2(( AllocSize + SUBALLOCATOR_ALIGNMENT ), MINIMUM_VM_ALLOCATION ); }
NewVirtual = MyVirtualAlloc( GrowSize );
//
// If failed to alloc GrowSize VM, and the allocation could be satisfied
// with a minimum VM allocation, try allocating minimum VM to satisfy
// this request.
//
if (( NewVirtual == NULL ) && ( AllocSize <= ( MINIMUM_VM_ALLOCATION - SUBALLOCATOR_ALIGNMENT ))) { GrowSize = MINIMUM_VM_ALLOCATION; NewVirtual = MyVirtualAlloc( GrowSize ); }
if ( NewVirtual != NULL ) {
//
// Set LastAvailable to end of new VM block.
//
SubAllocator->LastAvailable = NewVirtual + GrowSize;
//
// Link new VM into list of VM allocations.
//
*(PVOID*)NewVirtual = SubAllocator->VirtualList; SubAllocator->VirtualList = (PVOID*)NewVirtual;
//
// Requested allocation comes next.
//
Allocation = NewVirtual + SUBALLOCATOR_ALIGNMENT;
//
// Then set the NextAvailable for what's remaining.
//
SubAllocator->NextAvailable = Allocation + AllocSize;
//
// And return the allocation.
//
return Allocation; }
//
// Could not allocate enough VM to satisfy request.
//
return NULL; }
VOID DestroySubAllocator( IN HANDLE hAllocator ) { PSUBALLOCATOR SubAllocator = (PSUBALLOCATOR) hAllocator; PVOID VirtualBlock = SubAllocator->VirtualList; PVOID NextVirtualBlock;
do { NextVirtualBlock = *(PVOID*)VirtualBlock; MyVirtualFree( VirtualBlock ); VirtualBlock = NextVirtualBlock; } while ( VirtualBlock != NULL ); }
LPSTR __fastcall MySubAllocStrDup( IN HANDLE SubAllocator, IN LPCSTR String ) { ULONG Length = (ULONG)strlen( String ); LPSTR Buffer = SubAllocate( SubAllocator, Length + 1 );
if ( Buffer ) { memcpy( Buffer, String, Length ); // no need to copy NULL terminator
}
return Buffer; }
LPSTR MySubAllocStrDupAndCat( IN HANDLE SubAllocator, IN LPCSTR String1, IN LPCSTR String2, IN CHAR Separator ) { ULONG Length1 = (ULONG)strlen( String1 ); ULONG Length2 = (ULONG)strlen( String2 ); LPSTR Buffer = SubAllocate( SubAllocator, Length1 + Length2 + 2 );
if ( Buffer ) {
memcpy( Buffer, String1, Length1 );
if (( Separator != 0 ) && ( Length1 > 0 ) && ( Buffer[ Length1 - 1 ] != Separator )) { Buffer[ Length1++ ] = Separator; }
memcpy( Buffer + Length1, String2, Length2 ); // no need to terminate
}
return Buffer; }
VOID MyLowercase( IN OUT LPSTR String ) { LPSTR p;
for ( p = String; *p; p++ ) { if (( *p >= 'A' ) && ( *p <= 'Z' )) { *p |= 0x20; } } }
#ifdef DONTCOMPILE // not used currently
DWORD MyProcessHeap;
PVOID MyHeapAllocZero( IN ULONG Size ) { PVOID Allocation;
if ( MyProcessHeap == NULL ) { MyProcessHeap = GetProcessHeap(); }
Allocation = HeapAlloc( MyProcessHeap, HEAP_ZERO_MEMORY, Size );
if ( Allocation == NULL ) { SetLastError( ERROR_OUTOFMEMORY ); }
return Allocation; }
VOID MyHeapFree( IN PVOID Allocation ) { HeapFree( MyProcessHeap, 0, Allocation ); }
#endif // DONTCOMPILE
ULONG HashName( IN LPCSTR Name ) { ULONG Length = (ULONG)strlen( Name ); ULONG Hash = ~Length;
while ( Length-- ) { Hash = _rotl( Hash, 3 ) ^ *Name++; }
return Hash; }
ULONG HashNameCaseInsensitive( IN LPCSTR Name ) { ULONG Length = (ULONG)strlen( Name ); ULONG Hash = ~Length;
while ( Length-- ) { Hash = _rotl( Hash, 3 ) ^ ( *Name++ & 0xDF ); // mask case bit
}
return Hash; }
UCHAR __inline LowNibbleToHexChar( ULONG Value ) { return "0123456789abcdef"[ Value & 0x0000000F ]; }
VOID DwordToHexString( IN DWORD Value, OUT LPSTR Buffer // writes exactly 9 bytes including terminator
) { ULONG i;
Buffer[ 8 ] = 0;
i = 8;
do { Buffer[ --i ] = LowNibbleToHexChar( Value ); Value >>= 4; } while ( i != 0 ); }
BOOL HashToHexString( IN PMD5_HASH HashValue, OUT LPSTR Buffer // must be at least 33 bytes
) { ULONG i;
for ( i = 0; i < sizeof( MD5_HASH ); i++ ) {
*Buffer++ = LowNibbleToHexChar( HashValue->Byte[ i ] >> 4 ); *Buffer++ = LowNibbleToHexChar( HashValue->Byte[ i ] ); }
*Buffer = 0;
return TRUE; }
|