|
|
/*++
Copyright (c) 1993 Microsoft Corporation
Module Name:
sppartit.h
Abstract:
Public header file for partitioning module in text setup.
Author:
Ted Miller (tedm) 27-Aug-1993
Revision History:
--*/
#ifndef _SPPARTIT_
#define _SPPARTIT_
//
// Number of entries in a partition table.
//
#define NUM_PARTITION_TABLE_ENTRIES_NEC98 16
//#if (NUM_PARTITION_TABLE_ENTRIES < NUM_PARTITION_TABLE_ENTRIES_NEC98)
#if defined(NEC_98) //NEC98
#define PTABLE_DIMENSION NUM_PARTITION_TABLE_ENTRIES_NEC98
# else //NEC98
#define PTABLE_DIMENSION NUM_PARTITION_TABLE_ENTRIES
# endif //NEC98
//
// The following table contains offsets from SP_TEXT_PARTITION_NAME_BASE
// to get the message id of the name of each type of partition.
//
extern UCHAR PartitionNameIds[256];
//
// Original ordinal is the ordinal the partition had when we started.
// OnDisk ordinal is the ordinal the partition will have when the system
// is rebooted.
// Current ordinal is the ordinal the partition has now, if we want to
// address it. This may be different then OnDisk ordinal because of
// how dynamic repartitioning is implemented.
//
typedef enum { PartitionOrdinalOriginal, PartitionOrdinalOnDisk, PartitionOrdinalCurrent } PartitionOrdinalType;
//
// Define structure for an on-disk partition table entry.
//
typedef struct _REAL_DISK_PTE_NEC98 {
UCHAR ActiveFlag; UCHAR SystemId; UCHAR Reserved[2];
UCHAR IPLSector; UCHAR IPLHead; UCHAR IPLCylinderLow; UCHAR IPLCylinderHigh;
UCHAR StartSector; UCHAR StartHead; UCHAR StartCylinderLow; UCHAR StartCylinderHigh;
UCHAR EndSector; UCHAR EndHead; UCHAR EndCylinderLow; UCHAR EndCylinderHigh;
UCHAR SystemName[16]; } REAL_DISK_PTE_NEC98, *PREAL_DISK_PTE_NEC98;
typedef struct _REAL_DISK_PTE {
UCHAR ActiveFlag;
UCHAR StartHead; UCHAR StartSector; UCHAR StartCylinder;
UCHAR SystemId;
UCHAR EndHead; UCHAR EndSector; UCHAR EndCylinder;
UCHAR RelativeSectors[4]; UCHAR SectorCount[4];
} REAL_DISK_PTE, *PREAL_DISK_PTE;
typedef struct _ON_DISK_PTE {
UCHAR ActiveFlag;
UCHAR StartHead; UCHAR StartSector; UCHAR StartCylinder;
UCHAR SystemId;
UCHAR EndHead; UCHAR EndSector; UCHAR EndCylinder;
UCHAR RelativeSectors[4]; UCHAR SectorCount[4];
#if defined(NEC_98) //NEC98
//
// add following entry for NEC98
//
UCHAR StartCylinderLow; // add NEC98 original value
UCHAR StartCylinderHigh; // not convert int13 format
UCHAR EndCylinderLow; // add NEC98 original value
UCHAR EndCylinderHigh; // not convert int13 format
UCHAR IPLSector; // add NEC98 original value
UCHAR IPLHead; //
UCHAR IPLCylinderLow; //
UCHAR IPLCylinderHigh; //
UCHAR IPLSectors[4]; // for PC-PTOS
UCHAR Reserved[2]; //
UCHAR SystemName[16]; //
UCHAR OldSystemId; // reverse conversion for Sleep partition
UCHAR RealDiskPosition; // for Dynamic Partitioning on NEC98
#endif //NEC98
} ON_DISK_PTE, *PON_DISK_PTE;
//
// Define structure for an REAL on-disk master boot record.
//
typedef struct _REAL_DISK_MBR_NEC98 {
UCHAR JumpCode[4];
UCHAR IPLSignature[4];
UCHAR BootCode[502];
UCHAR AA55Signature[2];
//REAL_DISK_PTE_NEC98 PartitionTable[NUM_PARTITION_TABLE_ENTRIES_NEC98];
REAL_DISK_PTE_NEC98 PartitionTable[16];
} REAL_DISK_MBR_NEC98, *PREAL_DISK_MBR_NEC98;
//
// Define structure for an REAL on-disk master boot record.
//
typedef struct _REAL_DISK_MBR {
UCHAR BootCode[440];
UCHAR NTFTSignature[4];
UCHAR Filler[2];
REAL_DISK_PTE PartitionTable[NUM_PARTITION_TABLE_ENTRIES];
UCHAR AA55Signature[2];
} REAL_DISK_MBR, *PREAL_DISK_MBR;
//
// Define structure for an DUMMY on-disk master boot record.
//
typedef struct _ON_DISK_MBR {
UCHAR BootCode[440];
UCHAR NTFTSignature[4];
UCHAR Filler[2];
ON_DISK_PTE PartitionTable[PTABLE_DIMENSION];
UCHAR AA55Signature[2];
} ON_DISK_MBR, *PON_DISK_MBR;
typedef struct _MBR_INFO {
struct _MBR_INFO *Next;
ON_DISK_MBR OnDiskMbr;
BOOLEAN Dirty[PTABLE_DIMENSION]; BOOLEAN ZapBootSector[PTABLE_DIMENSION];
USHORT OriginalOrdinals[PTABLE_DIMENSION]; USHORT OnDiskOrdinals[PTABLE_DIMENSION]; USHORT CurrentOrdinals[PTABLE_DIMENSION];
//
// Fields that can be used locally for any purpose.
//
PVOID UserData[PTABLE_DIMENSION];
ULONGLONG OnDiskSector;
} MBR_INFO, *PMBR_INFO;
typedef enum { EPTNone = 0, EPTContainerPartition, EPTLogicalDrive } EXTENDED_PARTITION_TYPE;
//
// Define structure that is used to track partitions and
// free (unpartitioned) spaces.
//
typedef struct _DISK_REGION {
struct _DISK_REGION *Next;
ULONG DiskNumber;
ULONGLONG StartSector; ULONGLONG SectorCount;
BOOLEAN PartitionedSpace;
ULONG PartitionNumber;
//
// The following fields are used only if PartitionedSpace is TRUE.
//
PMBR_INFO MbrInfo; ULONG TablePosition;
BOOLEAN IsSystemPartition; BOOLEAN IsLocalSource;
FilesystemType Filesystem; WCHAR TypeName[128]; // XENIX, FAT, NTFS, etc.
ULONGLONG FreeSpaceKB; // -1 if can't determine.
ULONG BytesPerCluster; // Number of bytes per cluster
// (-1 if can't determine).
ULONGLONG AdjustedFreeSpaceKB; // -1 if can't determine.
// if the region contains the Local Source
// then this field should contain
// FreeSpaceKB + LocalSourceSize
WCHAR VolumeLabel[20]; // First few chars of volume label
WCHAR DriveLetter; // Always uppercase; 0 if none.
BOOLEAN FtPartition; BOOLEAN DynamicVolume; BOOLEAN DynamicVolumeSuitableForOS;
EXTENDED_PARTITION_TYPE ExtendedType; struct _DISK_REGION *Container;
BOOLEAN Dirty; BOOLEAN Delete; PARTITION_INFORMATION_EX PartInfo; BOOLEAN PartInfoDirty; BOOLEAN IsReserved;
//
// The following fields are used to identify double space drives
// They are valid only if the file system type is FilesystemFat
// or FilesystemDoubleSpace
//
// If the file system type is FilesystemFat and NextCompressed is not NULL,
// then the structure describes the host drive for compressed drives.
// In this case, the following fields are valid:
//
// NextCompressed .... Points to a linked list of compressed drives
// HostDrive.......... Contains the drive letter for the drive represented
// by this structure. Note that HostDrive will be
// not necessarily be equal to DriveLetter
//
// If the file system type is FilesystemDoubleSpace, then the structure
// describes a compressed drive.
// In this case the following fields are valid:
//
// NextCompressed ..... Points to the next compressed drive in the
// linked list
// PreviousCompressed.. Points to the previous compressed drive in
// the linked list
// HostRegion ......... Points to the structure that describes the
// host drive for the compressed drive represented
// by this structure
// MountDrive ......... Drive letter of the drive described by this
// structure (should be the same as HostRegion->HostDrive)
// HostDrive .......... Drive where the CVF file that represents the
// this compressed drive is located.
// SeqNumber .......... Sequence number of the CVF file that representd
// this compressed drive.
//
struct _DISK_REGION *NextCompressed; struct _DISK_REGION *PreviousCompressed; struct _DISK_REGION *HostRegion; WCHAR MountDrive; WCHAR HostDrive; USHORT SeqNumber;
} DISK_REGION, *PDISK_REGION;
//
// There will be one of these structures per disk.
//
typedef struct _PARTITIONED_DISK {
PHARD_DISK HardDisk;
//
//
//
BOOLEAN MbrWasValid;
//
// We can just store the MBR here since there is only one of them.
//
MBR_INFO MbrInfo;
//
// EBRs are stored in a linked list since there are an arbitrary number
// of them. The one contained within this structure is a dummy and is
// always zeroed out.
//
MBR_INFO FirstEbrInfo;
//
// Lists of regions (partitions and free spaces)
// on the disk and within the extended partition.
//
PDISK_REGION PrimaryDiskRegions; PDISK_REGION ExtendedDiskRegions;
} PARTITIONED_DISK, *PPARTITIONED_DISK;
extern PPARTITIONED_DISK PartitionedDisks;
//
// Disk region containing the local source directory
// in the winnt.exe setup case.
//
// If WinntSetup is TRUE, then this should be non-null.
// If it is not non-null, then we couldn't locate the local source.
//
extern PDISK_REGION LocalSourceRegion;
//
// GPT partition type strings
//
#define PARTITION_MSFT_RESERVED_STR L"Microsoft reserved partition"
#define PARTITION_LDM_METADATA_STR L"LDM metadata partition"
#define PARTITION_LDM_DATA_STR L"LDM data partition"
#define PARTITION_BASIC_DATA_STR L"Basic data partition"
#define PARTITION_SYSTEM_STR L"EFI system partition"
#if defined(REMOTE_BOOT)
//
// For remote boot, we create a fake disk region for the net(0) device.
//
extern PDISK_REGION RemoteBootTargetRegion; #endif // defined(REMOTE_BOOT)
NTSTATUS SpPtInitialize( VOID );
BOOLEAN SpPtDelete( IN ULONG DiskNumber, IN ULONGLONG StartSector );
BOOLEAN SpPtCreate( IN ULONG DiskNumber, IN ULONGLONG StartSector, IN ULONGLONG SizeMB, IN BOOLEAN InExtended, IN PPARTITION_INFORMATION_EX PartInfo, OUT PDISK_REGION *ActualDiskRegion OPTIONAL );
BOOLEAN SpPtExtend( IN PDISK_REGION Region, IN ULONGLONG SizeMB OPTIONAL );
VOID SpPtQueryMinMaxCreationSizeMB( IN ULONG DiskNumber, IN ULONGLONG StartSector, IN BOOLEAN ForExtended, IN BOOLEAN InExtended, OUT PULONGLONG MinSize, OUT PULONGLONG MaxSize, OUT PBOOLEAN ReservedRegion );
VOID SpPtGetSectorLayoutInformation( IN PDISK_REGION Region, OUT PULONGLONG HiddenSectors, OUT PULONGLONG VolumeSectorCount );
NTSTATUS SpPtPrepareDisks( IN PVOID SifHandle, OUT PDISK_REGION *InstallRegion, OUT PDISK_REGION *SystemPartitionRegion, IN PWSTR SetupSourceDevicePath, IN PWSTR DirectoryOnSetupSource, IN BOOLEAN RemoteBootRepartition );
PDISK_REGION SpPtAllocateDiskRegionStructure( IN ULONG DiskNumber, IN ULONGLONG StartSector, IN ULONGLONG SectorCount, IN BOOLEAN PartitionedSpace, IN PMBR_INFO MbrInfo, IN ULONG TablePosition );
ULONG SpPtGetOrdinal( IN PDISK_REGION Region, IN PartitionOrdinalType OrdinalType );
ULONGLONG SpPtSectorCountToMB( IN PHARD_DISK pHardDisk, IN ULONGLONG SectorCount );
typedef BOOL (*PSPENUMERATEDISKREGIONS)( IN PPARTITIONED_DISK Disk, IN PDISK_REGION Region, IN ULONG_PTR Context );
void SpEnumerateDiskRegions( IN PSPENUMERATEDISKREGIONS EnumRoutine, IN ULONG_PTR Context );
BOOLEAN SpPtRegionDescription( IN PPARTITIONED_DISK pDisk, IN PDISK_REGION pRegion, OUT PWCHAR Buffer, IN ULONG BufferSize );
PDISK_REGION SpPtLookupRegionByStart( IN PPARTITIONED_DISK pDisk, IN BOOLEAN ExtendedPartition, IN ULONGLONG StartSector );
ULONG SpPtAlignStart( IN PHARD_DISK pHardDisk, IN ULONGLONG StartSector, IN BOOLEAN ForExtended );
VOID SpPtInitializeCHSFields( IN PHARD_DISK HardDisk, IN ULONGLONG AbsoluteStartSector, IN ULONGLONG AbsoluteSectorCount, OUT PON_DISK_PTE pte );
VOID SpPtAssignOrdinals( IN PPARTITIONED_DISK pDisk, IN BOOLEAN InitCurrentOrdinals, IN BOOLEAN InitOnDiskOrdinals, IN BOOLEAN InitOriginalOrdinals );
ULONG SpGetMaxNtDirLen(VOID);
VOID SpPtLocateSystemPartitions(VOID);
VOID SpPtCountPrimaryPartitions( IN PPARTITIONED_DISK pDisk, OUT PULONG TotalPrimaryPartitionCount, OUT PULONG RecognizedPrimaryPartitionCount, OUT PBOOLEAN ExtendedExists);
PDISK_REGION SpRegionFromNtName( IN PWSTR NtDeviceName, IN PartitionOrdinalType Type);
VOID SppRepairWinntFiles( IN PVOID LogFileHandle, IN PVOID MasterSifHandle, IN PWSTR SourceDevicePath, IN PWSTR DirectoryOnSourceDevice, IN PWSTR SystemPartition, IN PWSTR SystemPartitionDirectory, IN PWSTR WinntPartition, IN PWSTR WinntPartitionDirectory);
VOID SppRepairStartMenuGroupsAndItems( IN PWSTR WinntPartition, IN PWSTR WinntDirectory);
VOID SppRepairHives( PVOID MasterSifHandle, PWSTR WinntPartition, PWSTR WinntPartitionDirectory, PWSTR SourceDevicePath, PWSTR DirectoryOnSourceDevice);
NTSTATUS SpDoFormat( IN PWSTR RegionDescr, IN PDISK_REGION Region, IN ULONG FilesystemType, IN BOOLEAN IsFailureFatal, IN BOOLEAN CheckFatSize, IN BOOLEAN QuickFormat, IN PVOID SifHandle, IN DWORD ClusterSize, IN PWSTR SetupSourceDevicePath, IN PWSTR DirectoryOnSetupSource );
NTSTATUS SpPtPartitionDiskForRemoteBoot( IN ULONG DiskNumber, OUT PDISK_REGION *RemainingRegion );
VOID SpPtDeleteBootSetsForRegion( PDISK_REGION region );
VOID SpPtDeletePartitionsForRemoteBoot( PPARTITIONED_DISK pDisk, PDISK_REGION startRegion, PDISK_REGION endRegion, BOOLEAN Extended );
WCHAR SpGetDriveLetter( IN PWSTR DeviceName, OUT PMOUNTMGR_MOUNT_POINT * MountPoint OPTIONAL );
WCHAR SpDeleteDriveLetter( IN PWSTR DeviceName ); VOID SpPtDeleteDriveLetters( VOID );
BOOL SpPtIsSystemPartitionRecognizable( VOID );
VOID SpPtDetermineRegionSpace( IN PDISK_REGION pRegion );
VOID SpCreateNewGuid( IN GUID *Guid );
UCHAR SpPtGetPartitionType( IN PDISK_REGION Region );
BOOLEAN SpPtnIsRawDiskDriveLayout( IN PDRIVE_LAYOUT_INFORMATION_EX DriveLayout );
BOOLEAN SpPtnIsRegionSpecialMBRPartition( IN PDISK_REGION Region );
extern ULONG RandomSeed; extern BOOLEAN ValidArcSystemPartition;
//
// Only on IA64 by default the RAW disk is marked as GPT disk
//
#if defined(_IA64_)
#define SPPT_DEFAULT_PARTITION_STYLE PARTITION_STYLE_GPT
#define SPPT_DEFAULT_DISK_STYLE DISK_FORMAT_TYPE_GPT
#else
#define SPPT_DEFAULT_PARTITION_STYLE PARTITION_STYLE_MBR
#define SPPT_DEFAULT_DISK_STYLE DISK_FORMAT_TYPE_PCAT
#endif
#define SPPT_MINIMUM_ESP_SIZE_MB 100
#define SPPT_MAXIMUM_ESP_SIZE_MB 1000
//
//
// Various Disk, Partition, Region related Macros
//
// NB. These are used, because it makes code more readable and
// in future these macros can represent potential interface for
// accessing the opaque in memory partition structure
//
//
#define SPPT_GET_NEW_DISK_SIGNATURE() RtlRandom(&RandomSeed)
#define SPPT_DISK_CYLINDER_COUNT(_DiskId) (HardDisks[(_DiskId)].CylinderCount)
#define SPPT_DISK_TRACKS_PER_CYLINDER(_DiskId) (HardDisks[(_DiskId)].Geometry.TracksPerCylinder)
#define SPPT_DISK_CYLINDER_SIZE(_DiskId) (HardDisks[(_DiskId)].SectorsPerCylinder)
#define SPPT_DISK_TRACK_SIZE(_DiskId) (HardDisks[(_DiskId)].Geometry.SectorsPerTrack)
#define SPPT_DISK_SECTOR_SIZE(_DiskId) (HardDisks[(_DiskId)].Geometry.BytesPerSector)
#define SPPT_DISK_IS_REMOVABLE(_DiskId) (HardDisks[(_DiskId)].Characteristics & FILE_REMOVABLE_MEDIA)
#define SPPT_REGION_SECTOR_SIZE(_Region) (SPPT_DISK_SECTOR_SIZE((_Region)->DiskNumber))
#define SPPT_DISK_SIZE(_DiskId) \
(SPPT_DISK_SECTOR_SIZE((_DiskId)) * \ HardDisks[(_DiskId)].DiskSizeSectors)
#define SPPT_DISK_SIZE_KB(_DiskId) (SPPT_DISK_SIZE((_DiskId)) / 1024)
#define SPPT_DISK_SIZE_MB(_DiskId) (SPPT_DISK_SIZE_KB((_DiskId)) / 1024)
#define SPPT_DISK_SIZE_GB(_DiskId) (SPPT_DISK_SIZE_MB((_DiskId)) / 1024)
#define SPPT_REGION_FREESPACE(_Region) \
((_Region)->SectorCount * SPPT_REGION_SECTOR_SIZE((_Region))) #define SPPT_REGION_FREESPACE_KB(_Region) (SPPT_REGION_FREESPACE((_Region)) / 1024)
#define SPPT_REGION_FREESPACE_MB(_Region) (SPPT_REGION_FREESPACE_KB((_Region)) / 1024)
#define SPPT_REGION_FREESPACE_GB(_Region) (SPPT_REGION_FREESPACE_MB((_Region)) / 1024)
#define SPPT_IS_REGION_PARTITIONED(_Region) \
((_Region)->PartitionedSpace)
#define SPPT_IS_REGION_FREESPACE(_Region) \
(((_Region)->PartitionedSpace == FALSE) && \ ((_Region)->ExtendedType == EPTNone)) #define SPPT_SET_REGION_PARTITIONED(_Region, _Type) \
((_Region)->PartitionedSpace = (_Type)) #define SPPT_IS_REGION_DIRTY(_Region) ((_Region)->Dirty)
#define SPPT_SET_REGION_DIRTY(_Region, _Type) ((_Region)->Dirty = (_Type))
#define SPPT_GET_PARTITION_TYPE(_Region) ((_Region)->PartInfo.Mbr.PartitionType)
#define SPPT_SET_PARTITION_TYPE(_Region, _Type) \
((_Region)->PartInfo.Mbr.PartitionType = (_Type))
#define SPPT_IS_VALID_PRIMARY_PARTITION_TYPE(_TypeId) \
(IsRecognizedPartition((_TypeId)) && !IsFTPartition((_TypeId)))
#define SPPT_IS_REGION_SYSTEMPARTITION(_Region) \
(SPPT_IS_REGION_PARTITIONED(_Region) && ((_Region)->IsSystemPartition))
#define SPPT_GET_PRIMARY_DISK_REGION(_HardDisk) \
(PartitionedDisks[(_HardDisk)].PrimaryDiskRegions)
#define SPPT_GET_EXTENDED_DISK_REGION(_HardDisk) \
(PartitionedDisks[(_HardDisk)].ExtendedDiskRegions)
#define SPPT_GET_HARDDISK(_DiskNumber) (HardDisks + (_DiskNumber))
#define SPPT_GET_PARTITIONED_DISK(_DiskNumber) (PartitionedDisks + (_DiskNumber))
#define SPPT_IS_RAW_DISK(_DiskNumber) \
(HardDisks[(_DiskNumber)].FormatType == DISK_FORMAT_TYPE_RAW)
#define SPPT_IS_GPT_DISK(_DiskNumber) \
(HardDisks[(_DiskNumber)].FormatType == DISK_FORMAT_TYPE_GPT)
#define SPPT_GET_DISK_TYPE(_DiskNumber) (HardDisks[(_DiskNumber)].FormatType)
#define SPPT_IS_MBR_DISK(_DiskNumber) \
(!SPPT_IS_GPT_DISK(_DiskNumber))
#define SPPT_IS_REMOVABLE_DISK(_DiskNumber) \
(SPPT_GET_HARDDISK(_DiskNumber)->Geometry.MediaType == RemovableMedia)
#define SPPT_IS_REGION_EFI_SYSTEM_PARTITION(_Region) \
(SPPT_IS_GPT_DISK((_Region)->DiskNumber) && \ (RtlEqualMemory(&((_Region)->PartInfo.Gpt.PartitionType), \ &PARTITION_SYSTEM_GUID, \ sizeof(GUID))))
#define SPPT_IS_EFI_SYSTEM_PARTITION(_PartInfo) \
(((_PartInfo)->PartitionStyle == PARTITION_STYLE_GPT) && \ (RtlEqualMemory(&((_PartInfo)->Gpt.PartitionType), \ &PARTITION_SYSTEM_GUID, \ sizeof(GUID))))
#define SPPT_IS_REGION_RESERVED_PARTITION(_Region) \
(SPPT_IS_REGION_PARTITIONED(_Region) && ((_Region)->IsReserved)) #define SPPT_IS_REGION_MSFT_RESERVED(_Region) \
(SPPT_IS_GPT_DISK((_Region)->DiskNumber) && \ (RtlEqualMemory(&((_Region)->PartInfo.Gpt.PartitionType), \ &PARTITION_MSFT_RESERVED_GUID, \ sizeof(GUID))))
#define SPPT_IS_PARTITION_MSFT_RESERVED(_PartInfo) \
(((_PartInfo)->PartitionStyle == PARTITION_STYLE_GPT) && \ (RtlEqualMemory(&((_PartInfo)->Gpt.PartitionType), \ &PARTITION_MSFT_RESERVED_GUID, \ sizeof(GUID))))
#define SPPT_PARTITION_NEEDS_NUMBER(_PartInfo) \
((((_PartInfo)->PartitionNumber == 0) && \ ((_PartInfo)->PartitionLength.QuadPart != 0)) && \ (((_PartInfo)->PartitionStyle == PARTITION_STYLE_GPT) ? \ (SPPT_IS_PARTITION_MSFT_RESERVED((_PartInfo))) : \ ((IsContainerPartition((_PartInfo)->Mbr.PartitionType) == FALSE)))) #define SPPT_IS_BLANK_DISK(_DiskId) (SPPT_GET_HARDDISK((_DiskId))->NewDisk)
#define SPPT_SET_DISK_BLANK(_DiskId, _Blank) \
(SPPT_GET_HARDDISK((_DiskId))->NewDisk = (_Blank))
#define SPPT_IS_REGION_LOGICAL_DRIVE(_Region) \
(SPPT_IS_MBR_DISK((_Region)->DiskNumber) && \ ((_Region)->ExtendedType == EPTLogicalDrive))
#define SPPT_IS_REGION_CONTAINER_PARTITION(_Region) \
(SPPT_IS_MBR_DISK((_Region)->DiskNumber) && \ ((_Region)->ExtendedType == EPTContainerPartition) && \ IsContainerPartition((_Region)->PartInfo.Mbr.PartitionType))
#define SPPT_IS_REGION_FIRST_CONTAINER_PARTITION(_Region) \
(SPPT_IS_REGION_CONTAINER_PARTITION((_Region)) && \ ((_Region)->Container == NULL))
#define SPPT_IS_REGION_INSIDE_CONTAINER(_Region) ((_Region)->Container != NULL)
#define SPPT_IS_REGION_INSIDE_FIRST_CONTAINER(_Region) \
(((_Region)->Container != NULL) && ((_Region)->Container->Container == NULL))
#define SPPT_IS_REGION_NEXT_TO_FIRST_CONTAINER(_Region) \
((_Region)->Container && \ SPPT_IS_REGION_FIRST_CONTAINER_PARTITION((_Region)->Container) && \ ((_Region)->Container->Next == (_Region))) #define SPPT_IS_REGION_PRIMARY_PARTITION(_Region) \
(SPPT_IS_MBR_DISK((_Region)->DiskNumber) && \ SPPT_IS_REGION_PARTITIONED((_Region)) && \ ((_Region)->ExtendedType == EPTNone))
#define SPPT_SET_REGION_EPT(_Region, _Type) \
((_Region)->ExtendedType = (_Type))
#define SPPT_IS_REGION_ACTIVE_PARTITION(_Region) \
(SPPT_IS_REGION_PRIMARY_PARTITION((_Region)) && \ ((_Region)->PartInfo.Mbr.BootIndicator))
#define SPPT_GET_REGION_LASTSECTOR(_Region) \
((_Region)->StartSector + (_Region)->SectorCount)
#define SPPT_IS_REGION_DYNAMIC_VOLUME(_Region) \
((_Region)->DynamicVolume)
#define SPPT_IS_REGION_LDM_METADATA(_Region) \
(PARTITION_STYLE_GPT == (_Region)->PartInfo.PartitionStyle && \ IsEqualGUID(&PARTITION_LDM_METADATA_GUID, &(_Region)->PartInfo.Gpt.PartitionType))
#define SPPT_IS_REGION_CONTAINED(_Container, _Contained) \
(((_Container)->StartSector <= (_Contained)->StartSector) && \ ((_Container)->SectorCount >= (_Contained)->SectorCount) && \ (SPPT_GET_REGION_LASTSECTOR((_Container)) > \ (_Contained)->StartSector))
#define SPPT_IS_REGION_MARKED_DELETE(_Region) ((_Region)->Delete)
#define SPPT_SET_REGION_DELETED(_Region, _Type) ((_Region)->Delete = (_Type))
#define SPPT_IS_VALID_SYSPART_FILESYSTEM(_FileSys) \
(((_FileSys) == FilesystemFat) || \ ((_FileSys) == FilesystemFat32))
#define SPPT_IS_RECOGNIZED_FILESYSTEM(_FileSys) \
(((_FileSys) == FilesystemFat) || \ ((_FileSys) == FilesystemFat32) || \ ((_FileSys) == FilesystemNtfs))
#define SPPT_IS_REGION_FORMATTED(_Region) \
(SPPT_IS_REGION_PARTITIONED(_Region) && \ SPPT_IS_RECOGNIZED_FILESYSTEM((_Region)->Filesystem))
#define SPPT_IS_NT_UPGRADE() (IsNTUpgrade == UpgradeFull)
#define SPPT_MARK_REGION_AS_SYSTEMPARTITION(_Region, _Value) \
(_Region)->IsSystemPartition = (_Value)
#define SPPT_MARK_REGION_AS_ACTIVE(_Region, _Value) \
(_Region)->PartInfo.Mbr.BootIndicator = (_Value)
#define SPPT_IS_REGION_RESERVED_GPT_PARTITION(_Region) \
(SPPT_IS_REGION_PARTITIONED(_Region) && \ SPPT_IS_GPT_DISK((_Region)->DiskNumber) && \ SPPT_IS_REGION_RESERVED_PARTITION(_Region)) __inline ULONGLONG SpPtnGetDiskMSRSizeMB( IN ULONG DiskId ) { return (SPPT_DISK_SIZE_GB(DiskId) >= 16) ? 128 : 32; }
__inline BOOLEAN SpPtnIsValidMSRRegion( IN PDISK_REGION Region ) { return (Region && SPPT_IS_REGION_FREESPACE(Region) && (SpPtnGetDiskMSRSizeMB(Region->DiskNumber) <= SPPT_REGION_FREESPACE_MB(Region))); }
__inline ULONGLONG SpPtnGetDiskESPSizeMB( IN ULONG DiskId ) { return (max(SPPT_MINIMUM_ESP_SIZE_MB, min(SPPT_MAXIMUM_ESP_SIZE_MB, SPPT_DISK_SIZE_MB(DiskId) / 100))); }
__inline BOOLEAN SpPtnIsValidESPRegionSize( IN PDISK_REGION Region ) { BOOLEAN Result = FALSE;
if (Region) { ULONGLONG EspSizeMB = SpPtnGetDiskESPSizeMB(Region->DiskNumber); ULONGLONG EspSizeSectors = (EspSizeMB * 1024 * 1024) / SPPT_DISK_SECTOR_SIZE(Region->DiskNumber);
//
// Align down required ESP size if possible
//
if (EspSizeSectors > SPPT_DISK_CYLINDER_SIZE(Region->DiskNumber)) { EspSizeSectors -= (EspSizeSectors % SPPT_DISK_CYLINDER_SIZE(Region->DiskNumber)); } //
// Take into account that the partition may start on the second track of the disk
//
if(EspSizeSectors > SPPT_DISK_TRACK_SIZE(Region->DiskNumber)) { EspSizeSectors -= SPPT_DISK_TRACK_SIZE(Region->DiskNumber); }
Result = (EspSizeSectors <= Region->SectorCount); }
return Result; }
__inline BOOLEAN SpPtnIsValidESPRegion( IN PDISK_REGION Region ) { return (Region && SPPT_IS_GPT_DISK(Region->DiskNumber) && SPPT_IS_REGION_FREESPACE(Region) && (Region == SPPT_GET_PRIMARY_DISK_REGION(Region->DiskNumber)) && SpPtnIsValidESPRegionSize(Region)); }
__inline BOOLEAN SpPtnIsValidESPPartition( IN PDISK_REGION Region ) { return (Region && SPPT_IS_GPT_DISK(Region->DiskNumber) && SPPT_IS_REGION_PARTITIONED(Region) && (Region == SPPT_GET_PRIMARY_DISK_REGION(Region->DiskNumber)) && SpPtnIsValidESPRegionSize(Region)); }
__inline VOID SpPtnSetRegionPartitionInfo( IN PDISK_REGION Region, IN PPARTITION_INFORMATION_EX PartInfo ) { if (Region && PartInfo) { if (SPPT_IS_MBR_DISK(Region->DiskNumber)) { Region->PartInfo.Mbr.PartitionType = PartInfo->Mbr.PartitionType; Region->PartInfo.Mbr.BootIndicator = PartInfo->Mbr.BootIndicator; Region->PartInfoDirty = TRUE; } else if (SPPT_IS_GPT_DISK(Region->DiskNumber)) { Region->PartInfo.Gpt = PartInfo->Gpt; Region->PartInfoDirty = TRUE; } } }
__inline PWSTR SpPtnGetPartitionNameFromGUID( IN GUID *Guid, OUT PWSTR NameBuffer ) { PWSTR Name = NULL; if (Guid && NameBuffer) { PWSTR PartitionName = NULL; if (IsEqualGUID(Guid, &PARTITION_MSFT_RESERVED_GUID)) { PartitionName = PARTITION_MSFT_RESERVED_STR; } else if (IsEqualGUID(Guid, &PARTITION_LDM_METADATA_GUID)) { PartitionName = PARTITION_LDM_METADATA_STR; } else if (IsEqualGUID(Guid, &PARTITION_LDM_DATA_GUID)) { PartitionName = PARTITION_LDM_DATA_STR; } else if (IsEqualGUID(Guid, &PARTITION_BASIC_DATA_GUID)) { PartitionName = PARTITION_BASIC_DATA_STR; } else if (IsEqualGUID(Guid, &PARTITION_SYSTEM_GUID)) { PartitionName = PARTITION_SYSTEM_STR; }
if (PartitionName) { PARTITION_INFORMATION_GPT GptPart; Name = NameBuffer; wcsncpy(NameBuffer, PartitionName, sizeof(GptPart.Name)/sizeof(WCHAR)); } else { *NameBuffer = UNICODE_NULL; } }
return Name; }
#endif // ndef _SPPARTIT_
|