|
|
/*++
Copyright (C) 1991-5 Microsoft Corporation
Module Name:
parity.cxx
Abstract:
This module contains code specific to the parity io manager.
The purpose of this module is to help serialize parity updates that overlaps with each other. This class is used by stripes with parity.
Author:
Norbert Kusters 2-Feb-1995
Environment:
kernel mode only
Notes:
Revision History:
--*/
extern "C" { #include <ntddk.h>
}
#include <ftdisk.h>
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGE")
#endif
NTSTATUS PARITY_IO_MANAGER::Initialize( IN ULONG BucketSize, IN ULONG SectorSize )
/*++
Routine Description:
This routine initializes a parity io manager.
Arguments:
BucketSize - Supplies the bucket size. Any I/O to this class may not span more than one bucket. In the case of stripes with parity, the bucket size is the stripe size.
SectorSize - Supplies the sector size.
Return Value:
NTSTATUS
--*/
{ ULONG i;
_numQueues = 256; _bucketSize = BucketSize; _sectorSize = SectorSize; _spinLock = (PKSPIN_LOCK) ExAllocatePool(NonPagedPool, _numQueues*sizeof(KSPIN_LOCK)); if (!_spinLock) { return STATUS_INSUFFICIENT_RESOURCES; } _ioQueue = (PLIST_ENTRY) ExAllocatePool(NonPagedPool, _numQueues*sizeof(LIST_ENTRY)); if (!_ioQueue) { ExFreePool(_spinLock); _spinLock = NULL; return STATUS_INSUFFICIENT_RESOURCES; }
for (i = 0; i < _numQueues; i++) { KeInitializeSpinLock(&_spinLock[i]); InitializeListHead(&_ioQueue[i]); }
_ePacket = new PARITY_TP; if (_ePacket && !_ePacket->AllocateMdl(_bucketSize)) { delete _ePacket; _ePacket = NULL; } if (!_ePacket) { ExFreePool(_spinLock); _spinLock = NULL; ExFreePool(_ioQueue); _ioQueue = NULL; return STATUS_INSUFFICIENT_RESOURCES; }
_ePacketInUse = FALSE; _ePacketQueueBeingServiced = FALSE; InitializeListHead(&_ePacketQueue); KeInitializeSpinLock(&_ePacketSpinLock);
return STATUS_SUCCESS; }
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGELK")
#endif
VOID UpdateParityCompletionRoutine( IN OUT PTRANSFER_PACKET TransferPacket )
/*++
Routine Description:
This routine is the completion routine for the read request associated with an (or many) update parity request. This routine gets the update parity requests in the queue that follow it and smash them into its buffer and then write the parity block out to disk.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{ PPARITY_TP transferPacket = (PPARITY_TP) TransferPacket; PPARITY_IO_MANAGER t = transferPacket->ParityIoManager; NTSTATUS status = transferPacket->IoStatus.Status; ULONG queueNumber; PLIST_ENTRY q, qq; PKSPIN_LOCK spin; KIRQL irql, irql2; PLIST_ENTRY l; PPARITY_TP p, packet, ep; PCHAR target; ULONG bucketOffset; PVOID source; BOOLEAN tpRemoved; BOOLEAN wasIdle, wasReadPacket;
if (!transferPacket->ReadPacket) {
if (!NT_SUCCESS(status) && !transferPacket->OneWriteFailed && !FsRtlIsTotalDeviceFailure(status)) {
transferPacket->OneWriteFailed = TRUE; t->CarefulWrite(transferPacket); return; }
q = &transferPacket->UpdateQueue; while (!IsListEmpty(q)) { l = RemoveHeadList(q); p = CONTAINING_RECORD(l, PARITY_TP, UpdateQueue);
p->IoStatus.Status = status; if (NT_SUCCESS(status)) { p->IoStatus.Information = p->Length; } else { p->IoStatus.Information = 0; p->ReadPacket = FALSE; // Indicate a write failure.
}
p->CompletionRoutine(p); } }
wasReadPacket = transferPacket->ReadPacket; transferPacket->ReadPacket = FALSE;
queueNumber = (ULONG) (transferPacket->BucketNumber%t->_numQueues); q = &t->_ioQueue[queueNumber]; spin = &t->_spinLock[queueNumber];
KeAcquireSpinLock(spin, &irql); for (l = transferPacket->OverlapQueue.Flink; l != q; l = l->Flink) {
p = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue);
if (p->BucketNumber == transferPacket->BucketNumber) { RemoveEntryList(&p->OverlapQueue); InsertTailList(&transferPacket->UpdateQueue, &p->UpdateQueue);
if (p->Offset < transferPacket->Offset) { transferPacket->Length += (ULONG) (transferPacket->Offset - p->Offset); transferPacket->Offset = p->Offset; transferPacket->ReadPacket = TRUE; }
if (p->Offset + p->Length > transferPacket->Offset + transferPacket->Length) {
transferPacket->Length += (ULONG) ((p->Offset + p->Length) - (transferPacket->Offset + transferPacket->Length)); transferPacket->ReadPacket = TRUE; } } } if (!NT_SUCCESS(status) || IsListEmpty(&transferPacket->UpdateQueue)) { if (wasReadPacket && IsListEmpty(&transferPacket->UpdateQueue)) { transferPacket->ReadPacket = TRUE; transferPacket->Idle = TRUE; KeReleaseSpinLock(spin, irql); return; }
RemoveEntryList(&transferPacket->OverlapQueue); KeReleaseSpinLock(spin, irql); tpRemoved = TRUE;
} else { KeReleaseSpinLock(spin, irql); tpRemoved = FALSE; }
if (tpRemoved) {
q = &transferPacket->UpdateQueue; while (!IsListEmpty(q)) {
l = RemoveHeadList(q); p = CONTAINING_RECORD(l, PARITY_TP, UpdateQueue);
p->IoStatus.Status = status; p->IoStatus.Information = 0; p->ReadPacket = wasReadPacket; // Indicate whether a read failure.
p->CompletionRoutine(p); }
if (transferPacket != t->_ePacket) { delete transferPacket; }
KeAcquireSpinLock(&t->_ePacketSpinLock, &irql); if (t->_ePacketInUse && !t->_ePacketQueueBeingServiced) { t->_ePacketQueueBeingServiced = TRUE; } else { if (transferPacket == t->_ePacket) { t->_ePacketInUse = FALSE; } KeReleaseSpinLock(&t->_ePacketSpinLock, irql); return; } KeReleaseSpinLock(&t->_ePacketSpinLock, irql);
for (;;) {
KeAcquireSpinLock(&t->_ePacketSpinLock, &irql); if (IsListEmpty(&t->_ePacketQueue)) { if (transferPacket == t->_ePacket) { t->_ePacketInUse = FALSE; } t->_ePacketQueueBeingServiced = FALSE; KeReleaseSpinLock(&t->_ePacketSpinLock, irql); break; } l = RemoveHeadList(&t->_ePacketQueue); KeReleaseSpinLock(&t->_ePacketSpinLock, irql);
ep = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue);
queueNumber = (ULONG) (ep->BucketNumber%t->_numQueues); q = &t->_ioQueue[queueNumber]; spin = &t->_spinLock[queueNumber];
KeAcquireSpinLock(spin, &irql); for (l = q->Blink; l != q; l = l->Blink) {
p = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue);
if (p->BucketNumber == ep->BucketNumber) { break; } } if (l != q) { InsertTailList(q, &ep->OverlapQueue); wasIdle = p->Idle; p->Idle = FALSE; KeReleaseSpinLock(spin, irql); if (wasIdle) { p->CompletionRoutine(p); } continue; }
packet = new PARITY_TP; if (packet && !packet->AllocateMdl(t->_bucketSize)) { delete packet; packet = NULL; } if (!packet) { if (transferPacket != t->_ePacket) { KeAcquireSpinLock(&t->_ePacketSpinLock, &irql2); if (t->_ePacketInUse) { InsertHeadList(&t->_ePacketQueue, &ep->OverlapQueue); t->_ePacketQueueBeingServiced = FALSE; KeReleaseSpinLock(&t->_ePacketSpinLock, irql2); KeReleaseSpinLock(spin, irql); break; } t->_ePacketInUse = TRUE; KeReleaseSpinLock(&t->_ePacketSpinLock, irql2); } packet = t->_ePacket; }
packet->Length = t->_bucketSize; packet->Offset = ep->BucketNumber*t->_bucketSize; packet->CompletionRoutine = UpdateParityCompletionRoutine; packet->TargetVolume = ep->TargetVolume; packet->Thread = ep->Thread; packet->IrpFlags = ep->IrpFlags; packet->ReadPacket = TRUE; packet->Idle = FALSE; packet->OneWriteFailed = FALSE; InitializeListHead(&packet->UpdateQueue); packet->ParityIoManager = t; packet->BucketNumber = ep->BucketNumber;
InsertTailList(q, &packet->OverlapQueue); InsertTailList(q, &ep->OverlapQueue);
KeAcquireSpinLock(&t->_ePacketSpinLock, &irql2); qq = &t->_ePacketQueue; for (l = qq->Flink; l != qq; ) { p = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue); l = l->Flink; if (p->BucketNumber == ep->BucketNumber) { RemoveEntryList(&p->OverlapQueue); InsertTailList(q, &p->OverlapQueue); } } KeReleaseSpinLock(&t->_ePacketSpinLock, irql2); KeReleaseSpinLock(spin, irql);
TRANSFER(packet);
if (packet == t->_ePacket) { KeAcquireSpinLock(&t->_ePacketSpinLock, &irql); if (!t->_ePacketInUse) { KeReleaseSpinLock(&t->_ePacketSpinLock, irql); continue; } t->_ePacketQueueBeingServiced = FALSE; KeReleaseSpinLock(&t->_ePacketSpinLock, irql); break; } } return; }
if (!transferPacket->ReadPacket) { target = (PCHAR) MmGetSystemAddressForMdl(transferPacket->Mdl); q = &transferPacket->UpdateQueue; for (l = q->Flink; l != q; l = l->Flink) {
p = CONTAINING_RECORD(l, PARITY_TP, UpdateQueue);
bucketOffset = (ULONG) (p->Offset - transferPacket->Offset); source = MmGetSystemAddressForMdl(p->Mdl); FtpComputeParity(target + bucketOffset, source, p->Length); } }
TRANSFER(transferPacket); }
VOID PARITY_IO_MANAGER::StartReadForUpdateParity( IN LONGLONG Offset, IN ULONG Length, IN PFT_VOLUME TargetVolume, IN PETHREAD Thread, IN UCHAR IrpFlags )
/*++
Routine Description:
This routine lets the parity manager know that an update for the given offset and length will be coming so that the PARITY_IO_MANAGER can start the read ahead of the parity buffer.
Arguments:
Offset - Supplies the request offset.
Length - Supplies the request length.
TargetVolume - Supplies the target volume.
Thread - Supplies the thread context for this request.
IrpFlags - Supplies the irp flags for this request.
Return Value:
None.
--*/
{ KIRQL irql; LONGLONG bucketNumber; ULONG queueNumber; PLIST_ENTRY q, l; PKSPIN_LOCK spin; PPARITY_TP p;
KeAcquireSpinLock(&_ePacketSpinLock, &irql); if (_ePacketInUse || _ePacketQueueBeingServiced) { KeReleaseSpinLock(&_ePacketSpinLock, irql); return; } KeReleaseSpinLock(&_ePacketSpinLock, irql);
bucketNumber = Offset/_bucketSize; queueNumber = (ULONG) (bucketNumber%_numQueues); q = &_ioQueue[queueNumber]; spin = &_spinLock[queueNumber]; KeAcquireSpinLock(spin, &irql); for (l = q->Blink; l != q; l = l->Blink) {
p = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue);
if (bucketNumber == p->BucketNumber) { KeReleaseSpinLock(spin, irql); return; } } p = new PARITY_TP; if (p && !p->AllocateMdl(_bucketSize)) { delete p; p = NULL; } if (!p) { KeReleaseSpinLock(spin, irql); return; } p->Length = Length; p->Offset = Offset; p->CompletionRoutine = UpdateParityCompletionRoutine; p->TargetVolume = TargetVolume; p->Thread = Thread; p->IrpFlags = IrpFlags; p->ReadPacket = TRUE; p->Idle = FALSE; p->OneWriteFailed = FALSE; InitializeListHead(&p->UpdateQueue); p->ParityIoManager = this; p->BucketNumber = bucketNumber; InsertTailList(q, &p->OverlapQueue); KeReleaseSpinLock(spin, irql);
TRANSFER(p); }
VOID PARITY_IO_MANAGER::UpdateParity( IN OUT PPARITY_TP TransferPacket )
/*++
Routine Description:
This routine xors the given buffer with the corresponding parity on disk and then writes out the result.
Arguments:
TransferPacket - Supplies the transfer packet containing the parity update.
Return Value:
None.
--*/
{ KIRQL irql, irql2; ULONG queueNumber; PLIST_ENTRY q; PKSPIN_LOCK spin; BOOLEAN wasIdle; PLIST_ENTRY l; PPARITY_TP p, packet;
TransferPacket->ReadPacket = FALSE; TransferPacket->Idle = FALSE; TransferPacket->ParityIoManager = this; TransferPacket->BucketNumber = TransferPacket->Offset/_bucketSize;
queueNumber = (ULONG) (TransferPacket->BucketNumber%_numQueues); q = &_ioQueue[queueNumber]; spin = &_spinLock[queueNumber];
//
// First figure out if there's already a read in progress for
// the given parity bucket. If there is then there is no
// reason to queue another. In this way, we can increase the
// throughput on the parity section by collapsing the parity
// updates.
//
KeAcquireSpinLock(spin, &irql); for (l = q->Blink; l != q; l = l->Blink) {
p = CONTAINING_RECORD(l, PARITY_TP, OverlapQueue);
if (p->BucketNumber == TransferPacket->BucketNumber) { break; } } if (l == q) {
KeAcquireSpinLock(&_ePacketSpinLock, &irql2); if (_ePacketInUse || _ePacketQueueBeingServiced) { InsertTailList(&_ePacketQueue, &TransferPacket->OverlapQueue); KeReleaseSpinLock(&_ePacketSpinLock, irql2); KeReleaseSpinLock(spin, irql); return; } KeReleaseSpinLock(&_ePacketSpinLock, irql2);
packet = new PARITY_TP; if (packet && !packet->AllocateMdl(_bucketSize)) { delete packet; packet = NULL; } if (!packet) { KeAcquireSpinLock(&_ePacketSpinLock, &irql2); if (_ePacketInUse || _ePacketQueueBeingServiced) { InsertTailList(&_ePacketQueue, &TransferPacket->OverlapQueue); KeReleaseSpinLock(&_ePacketSpinLock, irql2); KeReleaseSpinLock(spin, irql); return; } _ePacketInUse = TRUE; KeReleaseSpinLock(&_ePacketSpinLock, irql2); packet = _ePacket; }
packet->Length = TransferPacket->Length; packet->Offset = TransferPacket->Offset; packet->CompletionRoutine = UpdateParityCompletionRoutine; packet->TargetVolume = TransferPacket->TargetVolume; packet->Thread = TransferPacket->Thread; packet->IrpFlags = TransferPacket->IrpFlags; packet->ReadPacket = TRUE; packet->Idle = FALSE; packet->OneWriteFailed = FALSE; InitializeListHead(&packet->UpdateQueue); packet->ParityIoManager = this; packet->BucketNumber = TransferPacket->BucketNumber;
InsertTailList(q, &packet->OverlapQueue); InsertTailList(q, &TransferPacket->OverlapQueue); KeReleaseSpinLock(spin, irql);
TRANSFER(packet);
} else { wasIdle = p->Idle; p->Idle = FALSE; InsertTailList(q, &TransferPacket->OverlapQueue); KeReleaseSpinLock(spin, irql); if (wasIdle) { p->CompletionRoutine(p); } } }
PARITY_IO_MANAGER::~PARITY_IO_MANAGER( )
{ if (_spinLock) { ExFreePool(_spinLock); _spinLock = NULL; } if (_ioQueue) { ExFreePool(_ioQueue); _ioQueue = NULL; } if (_ePacket) { delete _ePacket; _ePacket = NULL; } }
VOID ParityCarefulWritePhase2( IN OUT PTRANSFER_PACKET TransferPacket )
/*++
Routine Description:
This is the completion routine a sector replacement for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{ PPARITY_RECOVER_TP subPacket = (PPARITY_RECOVER_TP) TransferPacket;
subPacket->CompletionRoutine = ParityCarefulWritePhase1; TRANSFER(subPacket); }
VOID ParityCarefulWritePhase1( IN OUT PTRANSFER_PACKET TransferPacket )
/*++
Routine Description:
This is the completion routine a first attempt of a single sector write for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{ PPARITY_RECOVER_TP subPacket = (PPARITY_RECOVER_TP) TransferPacket; NTSTATUS status = subPacket->IoStatus.Status; PPARITY_TP masterPacket = (PPARITY_TP) subPacket->MasterPacket; PPARITY_IO_MANAGER t = masterPacket->ParityIoManager;
if (FsRtlIsTotalDeviceFailure(status)) { masterPacket->IoStatus = subPacket->IoStatus; masterPacket->CompletionRoutine(masterPacket); delete subPacket; return; }
if (!NT_SUCCESS(status)) { if (!subPacket->OneWriteFailed) { subPacket->CompletionRoutine = ParityCarefulWritePhase2; subPacket->OneWriteFailed = TRUE; subPacket->TargetVolume->ReplaceBadSector(subPacket); return; }
masterPacket->IoStatus = subPacket->IoStatus; }
if (masterPacket->Offset + masterPacket->Length == subPacket->Offset + subPacket->Length) {
masterPacket->CompletionRoutine(masterPacket); delete subPacket; return; }
subPacket->Offset += subPacket->Length; MmPrepareMdlForReuse(subPacket->Mdl); IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl, (PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) + (ULONG) (subPacket->Offset - masterPacket->Offset), subPacket->Length); subPacket->OneWriteFailed = FALSE;
TRANSFER(subPacket); }
VOID PARITY_IO_MANAGER::CarefulWrite( IN OUT PPARITY_TP TransferPacket )
/*++
Routine Description:
This routine writes out the given transfer packet one sector at a time.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{ PPARITY_RECOVER_TP subPacket; KIRQL irql;
ASSERT(!TransferPacket->ReadPacket);
TransferPacket->IoStatus.Status = STATUS_SUCCESS; TransferPacket->IoStatus.Information = TransferPacket->Length;
subPacket = new PARITY_RECOVER_TP; if (subPacket && !subPacket->AllocateMdl((PVOID) (PAGE_SIZE - 1), _sectorSize)) {
delete subPacket; subPacket = NULL; } if (!subPacket) { TransferPacket->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES; TransferPacket->IoStatus.Information = 0; TransferPacket->CompletionRoutine(TransferPacket); return; }
IoBuildPartialMdl(TransferPacket->Mdl, subPacket->Mdl, MmGetMdlVirtualAddress(TransferPacket->Mdl), _sectorSize);
subPacket->Length = _sectorSize; subPacket->Offset = TransferPacket->Offset; subPacket->CompletionRoutine = ParityCarefulWritePhase1; subPacket->TargetVolume = TransferPacket->TargetVolume; subPacket->Thread = TransferPacket->Thread; subPacket->IrpFlags = TransferPacket->IrpFlags; subPacket->ReadPacket = FALSE; subPacket->OneWriteFailed = FALSE; subPacket->MasterPacket = TransferPacket;
TRANSFER(subPacket); }
|