|
|
/******************************Module*Header*******************************\
* Module Name: bitblt.c * * Contains the high-level DrvBitBlt and DrvCopyBits functions. The low- * level stuff lives in the 'blt??.c' files. * * !!! Change note about 'iType' * * Note: Since we've implemented device-bitmaps, any surface that GDI passes * to us can have 3 values for its 'iType': STYPE_BITMAP, STYPE_DEVICE * or STYPE_DEVBITMAP. We filter device-bitmaps that we've stored * as DIBs fairly high in the code, so after we adjust its 'pptlSrc', * we can treat STYPE_DEVBITMAP surfaces the same as STYPE_DEVICE * surfaces (e.g., a blt from an off-screen device bitmap to the screen * gets treated as a normal screen-to-screen blt). So throughout * this code, we will compare a surface's 'iType' to STYPE_BITMAP: * if it's equal, we've got a true DIB, and if it's unequal, we have * a screen-to-screen operation. * * Copyright (c) 1992-1995 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#define gbdPunt FALSE // global boolean define punt all BitBlt calls
/******************************Public*Table********************************\
* BYTE gajLeftMask[] and BYTE gajRightMask[] * * Edge tables for vXferScreenTo1bpp. \**************************************************************************/
BYTE gajLeftMask[] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; BYTE gajRightMask[] = { 0xff, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
/******************************Public*Routine******************************\
* VOID vXferNativeSrccopy * * Does a SRCCOPY transfer of a bitmap to the screen using the frame * buffer, because on the ATI it's faster than using the data transfer * register. * \**************************************************************************/
VOID vXferNativeSrccopy( // Type FNXFER
PDEV* ppdev, LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG rop4, // Not used
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Not used
{ LONG xOffset; LONG yOffset; LONG dx; LONG dy; RECTL rclDst; POINTL ptlSrc;
ASSERTDD((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL), "Can handle trivial xlate only"); ASSERTDD(psoSrc->iBitmapFormat == ppdev->iBitmapFormat, "Source must be same colour depth as screen"); ASSERTDD(c > 0, "Can't handle zero rectangles"); ASSERTDD(rop4 == 0xcccc, "Must be a SRCCOPY rop");
xOffset = ppdev->xOffset; yOffset = ppdev->yOffset;
dx = pptlSrc->x - prclDst->left; dy = pptlSrc->y - prclDst->top; // Add to destination to get source
while (TRUE) { ptlSrc.x = prcl->left + dx; ptlSrc.y = prcl->top + dy;
// 'pfnPutBits' takes only absolute coordinates, so add in the
// off-screen bitmap offset here:
rclDst.left = prcl->left + xOffset; rclDst.right = prcl->right + xOffset; rclDst.top = prcl->top + yOffset; rclDst.bottom = prcl->bottom + yOffset;
ppdev->pfnPutBits(ppdev, psoSrc, &rclDst, &ptlSrc);
if (--c == 0) return;
prcl++; } }
/******************************Public*Routine******************************\
* VOID vXferScreenTo1bpp * * Performs a SRCCOPY transfer from the screen (when it's 8bpp) to a 1bpp * bitmap. * \**************************************************************************/
#if defined(_X86_)
VOID vXferScreenTo1bpp( // Type FNXFER
PDEV* ppdev, LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwMix, // Not used
SURFOBJ* psoDst, // Destination surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Provides colour-compressions information
{ LONG cjPelSize; VOID* pfnCompute; SURFOBJ soTmp; ULONG* pulXlate; ULONG ulForeColor; POINTL ptlSrc; RECTL rclTmp; BYTE* pjDst; BYTE jLeftMask; BYTE jRightMask; BYTE jNotLeftMask; BYTE jNotRightMask; LONG cjMiddle; LONG lDstDelta; LONG lSrcDelta; LONG cyTmpScans; LONG cyThis; LONG cyToGo;
ASSERTDD(c > 0, "Can't handle zero rectangles"); ASSERTDD(psoDst->iBitmapFormat == BMF_1BPP, "Only 1bpp destinations"); ASSERTDD(TMP_BUFFER_SIZE >= (ppdev->cxMemory * ppdev->cjPelSize), "Temp buffer has to be larger than widest possible scan");
// When the destination is a 1bpp bitmap, the foreground colour
// maps to '1', and any other colour maps to '0'.
if (ppdev->iBitmapFormat == BMF_8BPP) { // When the source is 8bpp or less, we find the forground colour
// by searching the translate table for the only '1':
pulXlate = pxlo->pulXlate; while (*pulXlate != 1) pulXlate++;
ulForeColor = pulXlate - pxlo->pulXlate; } else { ASSERTDD((ppdev->iBitmapFormat == BMF_16BPP) || (ppdev->iBitmapFormat == BMF_32BPP), "This routine only supports 8, 16 or 32bpp");
// When the source has a depth greater than 8bpp, the foreground
// colour will be the first entry in the translate table we get
// from calling 'piVector':
pulXlate = XLATEOBJ_piVector(pxlo);
ulForeColor = 0; if (pulXlate != NULL) // This check isn't really needed...
ulForeColor = pulXlate[0]; }
// We use the temporary buffer to keep a copy of the source
// rectangle:
soTmp.pvScan0 = ppdev->pvTmpBuffer;
do { // ptlSrc points to the upper-left corner of the screen rectangle
// for the current batch:
ptlSrc.x = prcl->left + (pptlSrc->x - prclDst->left); ptlSrc.y = prcl->top + (pptlSrc->y - prclDst->top);
// pfnGetBits takes absolute coordinates for the source point:
ptlSrc.x += ppdev->xOffset; ptlSrc.y += ppdev->yOffset;
pjDst = (BYTE*) psoDst->pvScan0 + (prcl->top * psoDst->lDelta) + (prcl->left >> 3);
cjPelSize = ppdev->cjPelSize;
soTmp.lDelta = (((prcl->right + 7L) & ~7L) - (prcl->left & ~7L)) * cjPelSize;
// Our temporary buffer, into which we read a copy of the source,
// may be smaller than the source rectangle. In that case, we
// process the source rectangle in batches.
//
// cyTmpScans is the number of scans we can do in each batch.
// cyToGo is the total number of scans we have to do for this
// rectangle.
//
// We take the buffer size less four so that the right edge case
// can safely read one dword past the end:
cyTmpScans = (TMP_BUFFER_SIZE - 4) / soTmp.lDelta; cyToGo = prcl->bottom - prcl->top;
ASSERTDD(cyTmpScans > 0, "Buffer too small for largest possible scan");
// Initialize variables that don't change within the batch loop:
rclTmp.top = 0; rclTmp.left = prcl->left & 7L; rclTmp.right = (prcl->right - prcl->left) + rclTmp.left;
// Note that we have to be careful with the right mask so that it
// isn't zero. A right mask of zero would mean that we'd always be
// touching one byte past the end of the scan (even though we
// wouldn't actually be modifying that byte), and we must never
// access memory past the end of the bitmap (because we can access
// violate if the bitmap end is exactly page-aligned).
jLeftMask = gajLeftMask[rclTmp.left & 7]; jRightMask = gajRightMask[rclTmp.right & 7]; cjMiddle = ((rclTmp.right - 1) >> 3) - (rclTmp.left >> 3) - 1;
if (cjMiddle < 0) { // The blt starts and ends in the same byte:
jLeftMask &= jRightMask; jRightMask = 0; cjMiddle = 0; }
jNotLeftMask = ~jLeftMask; jNotRightMask = ~jRightMask; lDstDelta = psoDst->lDelta - cjMiddle - 2; // Delta from the end of the destination
// to the start on the next scan, accounting
// for 'left' and 'right' bytes
lSrcDelta = soTmp.lDelta - ((8 * (cjMiddle + 2)) * cjPelSize); // Compute source delta for special cases
// like when cjMiddle gets bumped up to '0',
// and to correct aligned cases
do { // This is the loop that breaks the source rectangle into
// manageable batches.
cyThis = cyTmpScans; cyToGo -= cyThis; if (cyToGo < 0) cyThis += cyToGo;
rclTmp.bottom = cyThis;
ppdev->pfnGetBits(ppdev, &soTmp, &rclTmp, &ptlSrc);
ptlSrc.y += cyThis; // Get ready for next batch loop
_asm { mov eax,ulForeColor ;eax = foreground colour ;ebx = temporary storage ;ecx = count of middle dst bytes ;dl = destination byte accumulator ;dh = temporary storage mov esi,soTmp.pvScan0 ;esi = source pointer mov edi,pjDst ;edi = destination pointer
; Figure out the appropriate compute routine:
mov ebx,cjPelSize mov pfnCompute,offset Compute_Destination_Byte_From_8bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_16bpp dec ebx jz short Do_Left_Byte mov pfnCompute,offset Compute_Destination_Byte_From_32bpp
Do_Left_Byte: call pfnCompute and dl,jLeftMask mov dh,jNotLeftMask and dh,[edi] or dh,dl mov [edi],dh inc edi mov ecx,cjMiddle dec ecx jl short Do_Right_Byte
Do_Middle_Bytes: call pfnCompute mov [edi],dl inc edi dec ecx jge short Do_Middle_Bytes
Do_Right_Byte: call pfnCompute and dl,jRightMask mov dh,jNotRightMask and dh,[edi] or dh,dl mov [edi],dh inc edi
add edi,lDstDelta add esi,lSrcDelta dec cyThis jnz short Do_Left_Byte
mov pjDst,edi ;save for next batch
jmp All_Done
Compute_Destination_Byte_From_8bpp: mov bl,[esi] sub bl,al cmp bl,1 adc dl,dl ;bit 0
mov bl,[esi+1] sub bl,al cmp bl,1 adc dl,dl ;bit 1
mov bl,[esi+2] sub bl,al cmp bl,1 adc dl,dl ;bit 2
mov bl,[esi+3] sub bl,al cmp bl,1 adc dl,dl ;bit 3
mov bl,[esi+4] sub bl,al cmp bl,1 adc dl,dl ;bit 4
mov bl,[esi+5] sub bl,al cmp bl,1 adc dl,dl ;bit 5
mov bl,[esi+6] sub bl,al cmp bl,1 adc dl,dl ;bit 6
mov bl,[esi+7] sub bl,al cmp bl,1 adc dl,dl ;bit 7
add esi,8 ;advance the source ret
Compute_Destination_Byte_From_16bpp: mov bx,[esi] sub bx,ax cmp bx,1 adc dl,dl ;bit 0
mov bx,[esi+2] sub bx,ax cmp bx,1 adc dl,dl ;bit 1
mov bx,[esi+4] sub bx,ax cmp bx,1 adc dl,dl ;bit 2
mov bx,[esi+6] sub bx,ax cmp bx,1 adc dl,dl ;bit 3
mov bx,[esi+8] sub bx,ax cmp bx,1 adc dl,dl ;bit 4
mov bx,[esi+10] sub bx,ax cmp bx,1 adc dl,dl ;bit 5
mov bx,[esi+12] sub bx,ax cmp bx,1 adc dl,dl ;bit 6
mov bx,[esi+14] sub bx,ax cmp bx,1 adc dl,dl ;bit 7
add esi,16 ;advance the source ret
Compute_Destination_Byte_From_32bpp: mov ebx,[esi] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 0
mov ebx,[esi+4] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 1
mov ebx,[esi+8] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 2
mov ebx,[esi+12] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 3
mov ebx,[esi+16] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 4
mov ebx,[esi+20] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 5
mov ebx,[esi+24] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 6
mov ebx,[esi+28] sub ebx,eax cmp ebx,1 adc dl,dl ;bit 7
add esi,32 ;advance the source ret
All_Done: } } while (cyToGo > 0);
prcl++; } while (--c != 0); }
#endif // i386
/******************************Public*Routine******************************\
* BOOL bPuntBlt * * Has GDI do any drawing operations that we don't specifically handle * in the driver. * \**************************************************************************/
BOOL bPuntBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { PDEV* ppdev;
if (psoDst->iType != STYPE_BITMAP) ppdev = (PDEV*) psoDst->dhpdev; else ppdev = (PDEV*) psoSrc->dhpdev;
#if DBG
{ //////////////////////////////////////////////////////////////////////
// Diagnostics
//
// Since calling the engine to do any drawing can be rather painful,
// particularly when the source is an off-screen DFB (since GDI will
// have to allocate a DIB and call us to make a temporary copy before
// it can even start drawing), we'll try to avoid it as much as
// possible.
//
// Here we simply spew out information describing the blt whenever
// this routine gets called (checked builds only, of course):
ULONG ulClip; PDEV* dbg_ppdev;
if (psoDst->dhpdev != NULL) dbg_ppdev = (PDEV*) psoDst->dhpdev; else dbg_ppdev = (PDEV*) psoSrc->dhpdev;
ulClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
DISPDBG((15, ">> Punt << Dst format: %li Dst type: %li Clip: %li Rop: %lx", psoDst->iBitmapFormat, psoDst->iType, ulClip, rop4));
if (psoSrc != NULL) { DISPDBG((15, " << Src format: %li Src type: %li", psoSrc->iBitmapFormat, psoSrc->iType));
if (psoSrc->iBitmapFormat == BMF_1BPP) { DISPDBG((15, " << Foreground: %lx Background: %lx", pxlo->pulXlate[1], pxlo->pulXlate[0])); } }
if ((pxlo != NULL) && !(pxlo->flXlate & XO_TRIVIAL) && (psoSrc != NULL)) { if (((psoSrc->dhsurf == NULL) && (psoSrc->iBitmapFormat != dbg_ppdev->iBitmapFormat)) || ((psoDst->dhsurf == NULL) && (psoDst->iBitmapFormat != dbg_ppdev->iBitmapFormat))) { // Don't bother printing the 'xlate' message when the source
// is a different bitmap format from the destination -- in
// those cases we know there always has to be a translate.
} else { DISPDBG((15, " << With xlate")); } }
// If the rop4 requires a pattern, and it's a non-solid brush...
if (((((rop4 >> 4) ^ (rop4)) & 0x0f0f) != 0) && (pbo->iSolidColor == -1)) { if (pbo->pvRbrush == NULL) DISPDBG((15, " << With brush -- Not created")); else DISPDBG((15, " << With brush -- Created Ok")); } } #endif
if (DIRECT_ACCESS(ppdev)) { //////////////////////////////////////////////////////////////////////
// Banked Framebuffer bPuntBlt
//
// This section of code handles a PuntBlt when GDI can directly draw
// on the framebuffer, but the drawing has to be done in banks:
BANK bnk; BOOL b; HSURF hsurfTmp; SURFOBJ* psoTmp; SIZEL sizl; POINTL ptlSrc; RECTL rclTmp; RECTL rclDst;
// We copy the original destination rectangle, and use that in every
// GDI call-back instead of the original because sometimes GDI is
// sneaky and points 'prclDst' to '&pco->rclBounds'. Because we
// modify 'rclBounds', that would affect 'prclDst', which we don't
// want to happen:
rclDst = *prclDst;
if ((psoSrc == NULL) || (psoSrc->iType == STYPE_BITMAP)) { ASSERTDD(psoDst->iType != STYPE_BITMAP, "Dest should be the screen when given a DIB source");
// Do a memory-to-screen blt:
vBankStart(ppdev, &rclDst, pco, &bnk);
b = TRUE; do { b &= EngBitBlt(bnk.pso, psoSrc, psoMsk, bnk.pco, pxlo, &rclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4);
} while (bBankEnum(&bnk)); } else { b = FALSE; // Assume failure
// The screen is the source (it may be the destination too...)
ptlSrc.x = pptlSrc->x + ppdev->xOffset; ptlSrc.y = pptlSrc->y + ppdev->yOffset;
if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL)) { // We have to intersect the destination rectangle with
// the clip bounds if there is one (consider the case
// where the app asked to blt a really, really big
// rectangle from the screen -- prclDst would be really,
// really big but pco->rclBounds would be the actual
// area of interest):
rclDst.left = max(rclDst.left, pco->rclBounds.left); rclDst.top = max(rclDst.top, pco->rclBounds.top); rclDst.right = min(rclDst.right, pco->rclBounds.right); rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom);
// Correspondingly, we have to offset the source point:
ptlSrc.x += (rclDst.left - prclDst->left); ptlSrc.y += (rclDst.top - prclDst->top); }
// We're now either going to do a screen-to-screen or screen-to-DIB
// blt. In either case, we're going to create a temporary copy of
// the source. (Why do we do this when GDI could do it for us?
// GDI would create a temporary copy of the DIB for every bank
// call-back!)
sizl.cx = rclDst.right - rclDst.left; sizl.cy = rclDst.bottom - rclDst.top;
// Don't forget to convert from relative to absolute coordinates
// on the source! (vBankStart takes care of that for the
// destination.)
rclTmp.right = sizl.cx; rclTmp.bottom = sizl.cy; rclTmp.left = 0; rclTmp.top = 0;
// GDI does guarantee us that the blt extents have already been
// clipped to the surface boundaries (we don't have to worry
// here about trying to read where there isn't video memory).
// Let's just assert to make sure:
ASSERTDD((ptlSrc.x >= 0) && (ptlSrc.y >= 0) && (ptlSrc.x + sizl.cx <= ppdev->cxMemory) && (ptlSrc.y + sizl.cy <= ppdev->cyMemory), "Source rectangle out of bounds!");
hsurfTmp = (HSURF) EngCreateBitmap(sizl, 0, // Let GDI choose ulWidth
ppdev->iBitmapFormat, 0, // Don't need any options
NULL);// Let GDI allocate
if (hsurfTmp != 0) { psoTmp = EngLockSurface(hsurfTmp);
if (psoTmp != NULL) { ppdev->pfnGetBits(ppdev, psoTmp, &rclTmp, &ptlSrc);
if (psoDst->iType == STYPE_BITMAP) { // It was a Screen-to-DIB blt; now it's a DIB-to-DIB
// blt. Note that the source point is (0, 0) in our
// temporary surface:
b = EngBitBlt(psoDst, psoTmp, psoMsk, pco, pxlo, &rclDst, (POINTL*) &rclTmp, pptlMsk, pbo, pptlBrush, rop4); } else { // It was a Screen-to-Screen blt; now it's a DIB-to-
// screen blt. Note that the source point is (0, 0)
// in our temporary surface:
vBankStart(ppdev, &rclDst, pco, &bnk);
b = TRUE; do { b &= EngBitBlt(bnk.pso, psoTmp, psoMsk, bnk.pco, pxlo, &rclDst, (POINTL*) &rclTmp, pptlMsk, pbo, pptlBrush, rop4);
} while (bBankEnum(&bnk)); }
EngUnlockSurface(psoTmp); }
EngDeleteSurface(hsurfTmp); } }
return(b); } else { //////////////////////////////////////////////////////////////////////
// Really Slow bPuntBlt
//
// Here we handle a PuntBlt when GDI can't draw directly on the
// framebuffer (as on the Alpha, which can't do it because of its
// 32 bit bus). If you thought the banked version was slow, just
// look at this one. Guaranteed, there will be at least one bitmap
// allocation and extra copy involved; there could be two if it's a
// screen-to-screen operation.
POINTL ptlSrc; RECTL rclDst; SIZEL sizl; BOOL bSrcIsScreen; HSURF hsurfSrc; RECTL rclTmp; BOOL b; LONG lDelta; BYTE* pjBits; BYTE* pjScan0; HSURF hsurfDst; RECTL rclScreen;
b = FALSE; // For error cases, assume we'll fail
rclDst = *prclDst; if (pptlSrc != NULL) ptlSrc = *pptlSrc;
if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL)) { // We have to intersect the destination rectangle with
// the clip bounds if there is one (consider the case
// where the app asked to blt a really, really big
// rectangle from the screen -- prclDst would be really,
// really big but pco->rclBounds would be the actual
// area of interest):
rclDst.left = max(rclDst.left, pco->rclBounds.left); rclDst.top = max(rclDst.top, pco->rclBounds.top); rclDst.right = min(rclDst.right, pco->rclBounds.right); rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom);
ptlSrc.x += (rclDst.left - prclDst->left); ptlSrc.y += (rclDst.top - prclDst->top); }
sizl.cx = rclDst.right - rclDst.left; sizl.cy = rclDst.bottom - rclDst.top;
// We only need to make a copy from the screen if the source is
// the screen, and the source is involved in the rop. Note that
// we have to check the rop before dereferencing 'psoSrc'
// (because 'psoSrc' may be NULL if the source isn't involved):
bSrcIsScreen = (((((rop4 >> 2) ^ (rop4)) & 0x3333) != 0) && (psoSrc->iType != STYPE_BITMAP));
if (bSrcIsScreen) { // We need to create a copy of the source rectangle:
hsurfSrc = (HSURF) EngCreateBitmap(sizl, 0, ppdev->iBitmapFormat, 0, NULL); if (hsurfSrc == 0) goto Error_0;
psoSrc = EngLockSurface(hsurfSrc); if (psoSrc == NULL) goto Error_1;
rclTmp.left = 0; rclTmp.top = 0; rclTmp.right = sizl.cx; rclTmp.bottom = sizl.cy;
// pfnGetBits takes absolute coordinates for the source point:
ptlSrc.x += ppdev->xOffset; ptlSrc.y += ppdev->yOffset;
ppdev->pfnGetBits(ppdev, psoSrc, &rclTmp, &ptlSrc);
// The source will now come from (0, 0) of our temporary source
// surface:
ptlSrc.x = 0; ptlSrc.y = 0; }
if (psoDst->iType == STYPE_BITMAP) { b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc, pptlMsk, pbo, pptlBrush, rop4); } else { // We need to create a temporary work buffer. We have to do
// some fudging with the offsets so that the upper-left corner
// of the (relative coordinates) clip object bounds passed to
// GDI will be transformed to the upper-left corner of our
// temporary bitmap.
// The alignment doesn't have to be as tight as this at 16bpp
// and 32bpp, but it won't hurt:
lDelta = (((rclDst.right + 3) & ~3L) - (rclDst.left & ~3L)) * ppdev->cjPelSize;
// We're actually only allocating a bitmap that is 'sizl.cx' x
// 'sizl.cy' in size:
pjBits = AtiAllocMem(LMEM_FIXED, 0, lDelta * sizl.cy); if (pjBits == NULL) goto Error_2;
// We now adjust the surface's 'pvScan0' so that when GDI thinks
// it's writing to pixel (rclDst.top, rclDst.left), it will
// actually be writing to the upper-left pixel of our temporary
// bitmap:
pjScan0 = pjBits - (rclDst.top * lDelta) - ((rclDst.left & ~3L) * ppdev->cjPelSize);
ASSERTDD((((ULONG_PTR) pjScan0) & 3) == 0, "pvScan0 must be dword aligned!");
// The checked build of GDI sometimes checks on blts that
// prclDst->right <= pso->sizl.cx, so we lie to it about
// the size of our bitmap:
sizl.cx = rclDst.right; sizl.cy = rclDst.bottom;
hsurfDst = (HSURF) EngCreateBitmap( sizl, // Bitmap covers rectangle
lDelta, // Use this delta
ppdev->iBitmapFormat, // Same colour depth
BMF_TOPDOWN, // Must have a positive delta
pjScan0); // Where (0, 0) would be
if ((hsurfDst == 0) || (!EngAssociateSurface(hsurfDst, ppdev->hdevEng, 0))) goto Error_3;
psoDst = EngLockSurface(hsurfDst); if (psoDst == NULL) goto Error_4;
// Make sure that the rectangle we Get/Put from/to the screen
// is in absolute coordinates:
rclScreen.left = rclDst.left + ppdev->xOffset; rclScreen.right = rclDst.right + ppdev->xOffset; rclScreen.top = rclDst.top + ppdev->yOffset; rclScreen.bottom = rclDst.bottom + ppdev->yOffset;
// It would be nice to get a copy of the destination rectangle
// only when the ROP involves the destination (or when the source
// is an RLE), but we can't do that. If the brush is truly NULL,
// GDI will immediately return TRUE from EngBitBlt, without
// modifying the temporary bitmap -- and we would proceed to
// copy the uninitialized temporary bitmap back to the screen.
ppdev->pfnGetBits(ppdev, psoDst, &rclDst, (POINTL*) &rclScreen);
b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc, pptlMsk, pbo, pptlBrush, rop4);
ppdev->pfnPutBits(ppdev, psoDst, &rclScreen, (POINTL*) &rclDst);
EngUnlockSurface(psoDst);
Error_4:
EngDeleteSurface(hsurfDst);
Error_3:
AtiFreeMem(pjBits); }
Error_2:
if (bSrcIsScreen) { EngUnlockSurface(psoSrc);
Error_1:
EngDeleteSurface(hsurfSrc); }
Error_0:
return(b); } }
/******************************Public*Routine******************************\
* BOOL DrvBitBlt * * Implements the workhorse routine of a display driver. * \**************************************************************************/
BOOL DrvBitBlt( SURFOBJ* psoDst, SURFOBJ* psoSrc, SURFOBJ* psoMsk, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc, POINTL* pptlMsk, BRUSHOBJ* pbo, POINTL* pptlBrush, ROP4 rop4) { PDEV* ppdev; DSURF* pdsurfDst; DSURF* pdsurfSrc; POINTL ptlSrc; BYTE jClip; OH* poh; BOOL bMore; CLIPENUM ce; LONG c; RECTL rcl; BYTE rop3; FNFILL* pfnFill; RBRUSH_COLOR rbc; // Realized brush or solid colour
FNXFER* pfnXfer; ULONG iSrcBitmapFormat; ULONG iDir; BOOL bRet;
bRet = TRUE; // Assume success
pdsurfDst = (DSURF*) psoDst->dhsurf; // May be NULL
if ((psoSrc == NULL) && (gbdPunt == FALSE)) { ///////////////////////////////////////////////////////////////////
// Fills
///////////////////////////////////////////////////////////////////
// Fills are this function's "raison d'etre", so we handle them
// as quickly as possible:
ASSERTDD(pdsurfDst != NULL, "Expect only device destinations when no source");
if (pdsurfDst->dt == DT_SCREEN) { ppdev = (PDEV*) psoDst->dhpdev;
poh = pdsurfDst->poh; ppdev->xOffset = poh->x; ppdev->yOffset = poh->y;
// Make sure it doesn't involve a mask (i.e., it's really a
// Rop3):
rop3 = (BYTE) rop4;
if ((BYTE) (rop4 >> 8) == rop3) { // Since 'psoSrc' is NULL, the rop3 had better not indicate
// that we need a source.
ASSERTDD((((rop4 >> 2) ^ (rop4)) & 0x33) == 0, "Need source but GDI gave us a NULL 'psoSrc'");
Fill_It:
pfnFill = ppdev->pfnFillSolid; // Default to solid fill
if ((((rop3 >> 4) ^ (rop3)) & 0xf) != 0) { // The rop says that a pattern is truly required
// (blackness, for instance, doesn't need one):
rbc.iSolidColor = pbo->iSolidColor; if (rbc.iSolidColor == -1) { // Try and realize the pattern brush; by doing
// this call-back, GDI will eventually call us
// again through DrvRealizeBrush:
rbc.prb = pbo->pvRbrush; if (rbc.prb == NULL) { rbc.prb = BRUSHOBJ_pvGetRbrush(pbo); if (rbc.prb == NULL) { // If we couldn't realize the brush, punt
// the call (it may have been a non 8x8
// brush or something, which we can't be
// bothered to handle, so let GDI do the
// drawing):
goto Punt_It; } } pfnFill = rbc.prb->pfnFillPat;
if ((ppdev->FeatureFlags & EVN_SDRAM_1M) && (pfnFill == vM64FillPatColor || pfnFill == vM64FillPatColor24)) { // The VTA4 can't handle color patterns correctly!!
goto Punt_It; } } }
// Note that these 2 'if's are more efficient than
// a switch statement:
if ((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL)) { pfnFill(ppdev, 1, prclDst, rop4, rbc, pptlBrush); goto All_Done; } else if (pco->iDComplexity == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnFill(ppdev, 1, &rcl, rop4, rbc, pptlBrush); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) pfnFill(ppdev, c, ce.arcl, rop4, rbc, pptlBrush);
} while (bMore); goto All_Done; } } } }
jClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
if ((psoSrc != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; if (pdsurfSrc->dt == DT_DIB) { // Here we consider putting a DIB DFB back into off-screen
// memory. If there's a translate, it's probably not worth
// moving since we won't be able to use the hardware to do
// the blt (a similar argument could be made for weird rops
// and stuff that we'll only end up having GDI simulate, but
// those should happen infrequently enough that I don't care).
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { ppdev = (PDEV*) psoSrc->dhpdev;
// See 'DrvCopyBits' for some more comments on how this
// moving-it-back-into-off-screen-memory thing works:
if (pdsurfSrc->iUniq == ppdev->iHeapUniq) { if (--pdsurfSrc->cBlt == 0) { if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc)) goto Continue_It; } } else { // Some space was freed up in off-screen memory,
// so reset the counter for this DFB:
pdsurfSrc->iUniq = ppdev->iHeapUniq; pdsurfSrc->cBlt = HEAP_COUNT_DOWN; } }
psoSrc = pdsurfSrc->pso;
// Handle the case where the source is a DIB DFB and the
// destination is a regular bitmap:
if (psoDst->dhsurf == NULL) goto EngBitBlt_It;
} }
Continue_It:
if (pdsurfDst != NULL) { if (pdsurfDst->dt == DT_DIB) { psoDst = pdsurfDst->pso;
// If the destination is a DIB, we can only handle this
// call if the source is not a DIB:
if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL)) goto EngBitBlt_It; } }
// At this point, we know that either the source or the destination is
// not a DIB. Check for a DFB to screen, DFB to DFB, or screen to DFB
// case:
if ((psoSrc != NULL) && (psoDst->dhsurf != NULL) && (psoSrc->dhsurf != NULL)) { pdsurfSrc = (DSURF*) psoSrc->dhsurf; pdsurfDst = (DSURF*) psoDst->dhsurf;
ASSERTDD(pdsurfSrc->dt == DT_SCREEN, "Expected screen source"); ASSERTDD(pdsurfDst->dt == DT_SCREEN, "Expected screen destination");
ptlSrc.x = pptlSrc->x - (pdsurfDst->poh->x - pdsurfSrc->poh->x); ptlSrc.y = pptlSrc->y - (pdsurfDst->poh->y - pdsurfSrc->poh->y);
pptlSrc = &ptlSrc; }
if (psoDst->dhsurf != NULL) { pdsurfDst = (DSURF*) psoDst->dhsurf; ppdev = (PDEV*) psoDst->dhpdev;
ppdev->xOffset = pdsurfDst->poh->x; ppdev->yOffset = pdsurfDst->poh->y; } else { DSURF * pTmpdsurfSrc = (DSURF*) psoSrc->dhsurf; ppdev = (PDEV*) psoSrc->dhpdev;
if (!pTmpdsurfSrc) { DISPDBG((0, "bad surf in psoSrc:%x, from %x\n", psoSrc, pdsurfSrc)); }
ppdev->xOffset = pTmpdsurfSrc->poh->x; ppdev->yOffset = pTmpdsurfSrc->poh->y; }
if (gbdPunt) { goto Punt_It; }
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Since we've already handled the cases where the ROP4 is really
// a ROP3 and no source is required, we can assert...
ASSERTDD((psoSrc != NULL) && (pptlSrc != NULL), "Expected no-source case to already have been handled");
///////////////////////////////////////////////////////////////////
// Bitmap transfers
///////////////////////////////////////////////////////////////////
// Since the foreground and background ROPs are the same, we
// don't have to worry about no stinking masks (it's a simple
// Rop3).
rop3 = (BYTE) rop4; // Make it into a Rop3 (we keep the rop4
// around in case we decide to punt)
if (psoDst->dhsurf != NULL) { // The destination is the screen:
if ((rop3 >> 4) == (rop3 & 0xf)) { // The ROP3 doesn't require a pattern:
if (psoSrc->dhsurf == NULL) { //////////////////////////////////////////////////
// DIB-to-screen blt
iSrcBitmapFormat = psoSrc->iBitmapFormat; if (iSrcBitmapFormat == BMF_1BPP) { //RKE: do this when we have time
if (ppdev->iBitmapFormat == BMF_24BPP) goto Punt_It;
pfnXfer = ppdev->pfnXfer1bpp; goto Xfer_It; } else if ((iSrcBitmapFormat == ppdev->iBitmapFormat) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { if ((rop3 & 0xf) != 0xc) { pfnXfer = ppdev->pfnXferNative; } else { // Plain SRCCOPY blts will be somewhat faster on
// the ATI if we go through the memory aperture:
pfnXfer = vXferNativeSrccopy; } goto Xfer_It; } else if (ppdev->iBitmapFormat != BMF_24BPP) { // I can't be bothered to write 4bpp or 8bpp
// expansion code when running at 24bpp:
if (iSrcBitmapFormat == BMF_4BPP) { pfnXfer = ppdev->pfnXfer4bpp; goto Xfer_It; } else if (iSrcBitmapFormat == BMF_8BPP) { pfnXfer = ppdev->pfnXfer8bpp; goto Xfer_It; } } } else // psoSrc->dhsurf != NULL
{ if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { //////////////////////////////////////////////////
// Screen-to-screen blt with no translate
if (jClip == DC_TRIVIAL) { (ppdev->pfnCopyBlt)(ppdev, 1, prclDst, rop4, pptlSrc, prclDst); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) { (ppdev->pfnCopyBlt)(ppdev, 1, &rcl, rop4, pptlSrc, prclDst); } goto All_Done; } else { // Don't forget that we'll have to draw the
// rectangles in the correct direction:
if (pptlSrc->y >= prclDst->top) { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTDOWN; else iDir = CD_LEFTDOWN; } else { if (pptlSrc->x >= prclDst->left) iDir = CD_RIGHTUP; else iDir = CD_LEFTUP; }
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, iDir, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) { (ppdev->pfnCopyBlt)(ppdev, c, ce.arcl, rop4, pptlSrc, prclDst); }
} while (bMore); goto All_Done; } } } } } else { #if defined(_X86_)
{ // We special case screen to monochrome blts because they
// happen fairly often. We only handle SRCCOPY rops and
// monochrome destinations (to handle a true 1bpp DIB
// destination, we would have to do near-colour searches
// on every colour; as it is, the foreground colour gets
// mapped to '1', and everything else gets mapped to '0'):
if ((psoDst->iBitmapFormat == BMF_1BPP) && (rop3 == 0xcc) && (pxlo->flXlate & XO_TO_MONO) && (ppdev->iBitmapFormat != BMF_24BPP)) { pfnXfer = vXferScreenTo1bpp; psoSrc = psoDst; // A misnomer, I admit
goto Xfer_It; } } #endif // i386
} }
else if ((psoMsk == NULL) && (rop4 == 0xaacc)) { // The only time GDI will ask us to do a true rop4 using the brush
// mask is when the brush is 1bpp, and the background rop is AA
// (meaning it's a NOP):
if (ppdev->flCaps & CAPS_MONOCHROME_PATTERNS) { // We only handle these if our ATI has hardware monochrome
// pattern capabilities:
rop3 = (BYTE) rop4;
goto Fill_It; } }
// Just fall through to Punt_It...
Punt_It:
bRet = bPuntBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4); goto All_Done;
//////////////////////////////////////////////////////////////////////
// Common bitmap transfer
Xfer_It: if (jClip == DC_TRIVIAL) { pfnXfer(ppdev, 1, prclDst, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else if (jClip == DC_RECT) { if (bIntersect(prclDst, &pco->rclBounds, &rcl)) pfnXfer(ppdev, 1, &rcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); goto All_Done; } else { CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do { bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0) { pfnXfer(ppdev, c, ce.arcl, rop4, psoSrc, pptlSrc, prclDst, pxlo); }
} while (bMore); goto All_Done; }
////////////////////////////////////////////////////////////////////////
// Common DIB blt
EngBitBlt_It:
// Our driver doesn't handle any blt's between two DIBs. Normally
// a driver doesn't have to worry about this, but we do because
// we have DFBs that may get moved from off-screen memory to a DIB,
// where we have GDI do all the drawing. GDI does DIB drawing at
// a reasonable speed (unless one of the surfaces is a device-
// managed surface...)
//
// If either the source or destination surface in an EngBitBlt
// call-back is a device-managed surface (meaning it's not a DIB
// that GDI can draw with), GDI will automatically allocate memory
// and call the driver's DrvCopyBits routine to create a DIB copy
// that it can use. So this means that this could handle all 'punts',
// and we could conceivably get rid of bPuntBlt. But this would have
// a bad performance impact because of the extra memory allocations
// and bitmap copies -- you really don't want to do this unless you
// have to (or your surface was created such that GDI can draw
// directly onto it) -- I've been burned by this because it's not
// obvious that the performance impact is so bad.
//
// That being said, we only call EngBitBlt when all the surfaces
// are DIBs:
bRet = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst, pptlSrc, pptlMsk, pbo, pptlBrush, rop4);
All_Done: return(bRet); }
/******************************Public*Routine******************************\
* BOOL DrvCopyBits * * Do fast bitmap copies. * * Note that GDI will (usually) automatically adjust the blt extents to * adjust for any rectangular clipping, so we'll rarely see DC_RECT * clipping in this routine (and as such, we don't bother special casing * it). * * I'm not sure if the performance benefit from this routine is actually * worth the increase in code size, since SRCCOPY BitBlts are hardly the * most common drawing operation we'll get. But what the heck. * * On the ATI it's faster to do straight SRCCOPY bitblt's through the * memory aperture than to use the data transfer register; as such, this * routine is the logical place to put this special case. * \**************************************************************************/
BOOL DrvCopyBits( SURFOBJ* psoDst, SURFOBJ* psoSrc, CLIPOBJ* pco, XLATEOBJ* pxlo, RECTL* prclDst, POINTL* pptlSrc) { return(DrvBitBlt(psoDst, psoSrc, NULL, pco, pxlo, prclDst, pptlSrc, NULL, NULL, NULL, 0xcccc)); }
|