|
|
/*
** Copyright 1994, Silicon Graphics, Inc. ** All Rights Reserved. ** ** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.; ** the contents of this file may not be disclosed to third parties, copied or ** duplicated in any form, in whole or in part, without the prior written ** permission of Silicon Graphics, Inc. ** ** RESTRICTED RIGHTS LEGEND: ** Use, duplication or disclosure by the Government is subject to restrictions ** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data ** and Computer Software clause at DFARS 252.227-7013, and/or in similar or ** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished - ** rights reserved under the Copyright Laws of the United States. ** ** Author: Eric Veach, July 1994. */
#include <assert.h>
#include "mesh.h"
#include "memalloc.h"
#define TRUE 1
#define FALSE 0
/************************ Utility Routines ************************/
/* Allocate and free half-edges in pairs for efficiency.
* The *only* place that should use this fact is allocation/free. */ typedef struct { GLUhalfEdge e, eSym; } EdgePair;
/* MakeEdge creates a new pair of half-edges which form their own loop.
* No vertex or face structures are allocated, but these must be assigned * before the current edge operation is completed. */ static GLUhalfEdge *MakeEdge( GLUhalfEdge *eNext ) { EdgePair *pair = (EdgePair *)memAlloc( sizeof( EdgePair )); GLUhalfEdge *e = &pair->e; GLUhalfEdge *eSym = &pair->eSym; GLUhalfEdge *ePrev;
/* Make sure eNext points to the first edge of the edge pair */ if( eNext->Sym < eNext ) { eNext = eNext->Sym; }
/* Insert in circular doubly-linked list before eNext.
* Note that the prev pointer is stored in Sym->next. */ ePrev = eNext->Sym->next; eSym->next = ePrev; ePrev->Sym->next = e; e->next = eNext; eNext->Sym->next = eSym;
e->Sym = eSym; e->Onext = e; e->Lnext = eSym; e->Org = NULL; e->Lface = NULL; e->winding = 0; e->activeRegion = NULL;
eSym->Sym = e; eSym->Onext = eSym; eSym->Lnext = e; eSym->Org = NULL; eSym->Lface = NULL; eSym->winding = 0; eSym->activeRegion = NULL;
return e; }
/* Splice( a, b ) is best described by the Guibas/Stolfi paper or the
* CS348a notes (see mesh.h). Basically it modifies the mesh so that * a->Onext and b->Onext are exchanged. This can have various effects * depending on whether a and b belong to different face or vertex rings. * For more explanation see __gl_meshSplice() below. */ static void Splice( GLUhalfEdge *a, GLUhalfEdge *b ) { GLUhalfEdge *aOnext = a->Onext; GLUhalfEdge *bOnext = b->Onext;
aOnext->Sym->Lnext = b; bOnext->Sym->Lnext = a; a->Onext = bOnext; b->Onext = aOnext; }
/* MakeVertex( eOrig, vNext ) creates a new vertex and makes it the origin
* of all edges in the vertex loop to which eOrig belongs. "vNext" gives * a place to insert the new vertex in the global vertex list. We insert * the new vertex *before* vNext so that algorithms which walk the vertex * list will not see the newly created vertices. */ static void MakeVertex( GLUhalfEdge *eOrig, GLUvertex *vNext ) { GLUvertex *vNew = (GLUvertex *)memAlloc( sizeof( GLUvertex )); GLUhalfEdge *e; GLUvertex *vPrev;
/* insert in circular doubly-linked list before vNext */ vPrev = vNext->prev; vNew->prev = vPrev; vPrev->next = vNew; vNew->next = vNext; vNext->prev = vNew;
vNew->anEdge = eOrig; vNew->data = NULL; /* leave coords, s, t undefined */
/* fix other edges on this vertex loop */ e = eOrig; do { e->Org = vNew; e = e->Onext; } while( e != eOrig ); }
/* MakeFace( eOrig, fNext ) creates a new face and makes it the left face
* of all edges in the face loop to which eOrig belongs. "fNext" gives * a place to insert the new face in the global face list. We insert * the new face *before* fNext so that algorithms which walk the face * list will not see the newly created faces. */ static void MakeFace( GLUhalfEdge *eOrig, GLUface *fNext ) { GLUface *fNew = (GLUface *)memAlloc( sizeof( GLUface )); GLUhalfEdge *e; GLUface *fPrev;
/* insert in circular doubly-linked list before fNext */ fPrev = fNext->prev; fNew->prev = fPrev; fPrev->next = fNew; fNew->next = fNext; fNext->prev = fNew;
fNew->anEdge = eOrig; fNew->data = NULL; fNew->trail = NULL; fNew->marked = FALSE;
/* The new face is marked "inside" if the old one was. This is a
* convenience for the common case where a face has been split in two. */ fNew->inside = fNext->inside;
/* fix other edges on this face loop */ e = eOrig; do { e->Lface = fNew; e = e->Lnext; } while( e != eOrig ); }
/* KillEdge( eDel ) destroys an edge (the half-edges eDel and eDel->Sym),
* and removes from the global edge list. */ static void KillEdge( GLUhalfEdge *eDel ) { GLUhalfEdge *ePrev, *eNext;
/* Half-edges are allocated in pairs, see EdgePair above */ if( eDel->Sym < eDel ) { eDel = eDel->Sym; }
/* delete from circular doubly-linked list */ eNext = eDel->next; ePrev = eDel->Sym->next; eNext->Sym->next = ePrev; ePrev->Sym->next = eNext;
memFree( eDel ); }
/* KillVertex( vDel ) destroys a vertex and removes it from the global
* vertex list. It updates the vertex loop to point to a given new vertex. */ static void KillVertex( GLUvertex *vDel, GLUvertex *newOrg ) { GLUhalfEdge *e, *eStart = vDel->anEdge; GLUvertex *vPrev, *vNext;
/* change the origin of all affected edges */ e = eStart; do { e->Org = newOrg; e = e->Onext; } while( e != eStart );
/* delete from circular doubly-linked list */ vPrev = vDel->prev; vNext = vDel->next; vNext->prev = vPrev; vPrev->next = vNext;
memFree( vDel ); }
/* KillFace( fDel ) destroys a face and removes it from the global face
* list. It updates the face loop to point to a given new face. */ static void KillFace( GLUface *fDel, GLUface *newLface ) { GLUhalfEdge *e, *eStart = fDel->anEdge; GLUface *fPrev, *fNext;
/* change the left face of all affected edges */ e = eStart; do { e->Lface = newLface; e = e->Lnext; } while( e != eStart );
/* delete from circular doubly-linked list */ fPrev = fDel->prev; fNext = fDel->next; fNext->prev = fPrev; fPrev->next = fNext;
memFree( fDel ); }
/****************** Basic Edge Operations **********************/
/* __gl_meshMakeEdge creates one edge, two vertices, and a loop (face).
* The loop consists of the two new half-edges. */ GLUhalfEdge *__gl_meshMakeEdge( GLUmesh *mesh ) { GLUhalfEdge *e = MakeEdge( &mesh->eHead );
MakeVertex( e, &mesh->vHead ); MakeVertex( e->Sym, &mesh->vHead ); MakeFace( e, &mesh->fHead ); return e; }
/* __gl_meshSplice( eOrg, eDst ) is the basic operation for changing the
* mesh connectivity and topology. It changes the mesh so that * eOrg->Onext <- OLD( eDst->Onext ) * eDst->Onext <- OLD( eOrg->Onext ) * where OLD(...) means the value before the meshSplice operation. * * This can have two effects on the vertex structure: * - if eOrg->Org != eDst->Org, the two vertices are merged together * - if eOrg->Org == eDst->Org, the origin is split into two vertices * In both cases, eDst->Org is changed and eOrg->Org is untouched. * * Similarly (and independently) for the face structure, * - if eOrg->Lface == eDst->Lface, one loop is split into two * - if eOrg->Lface != eDst->Lface, two distinct loops are joined into one * In both cases, eDst->Lface is changed and eOrg->Lface is unaffected. * * Some special cases: * If eDst == eOrg, the operation has no effect. * If eDst == eOrg->Lnext, the new face will have a single edge. * If eDst == eOrg->Lprev, the old face will have a single edge. * If eDst == eOrg->Onext, the new vertex will have a single edge. * If eDst == eOrg->Oprev, the old vertex will have a single edge. */ void __gl_meshSplice( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) { int joiningLoops = FALSE; int joiningVertices = FALSE;
if( eOrg == eDst ) return;
if( eDst->Org != eOrg->Org ) { /* We are merging two disjoint vertices -- destroy eDst->Org */ joiningVertices = TRUE; KillVertex( eDst->Org, eOrg->Org ); } if( eDst->Lface != eOrg->Lface ) { /* We are connecting two disjoint loops -- destroy eDst->Lface */ joiningLoops = TRUE; KillFace( eDst->Lface, eOrg->Lface ); }
/* Change the edge structure */ Splice( eDst, eOrg );
if( ! joiningVertices ) { /* We split one vertex into two -- the new vertex is eDst->Org.
* Make sure the old vertex points to a valid half-edge. */ MakeVertex( eDst, eOrg->Org ); eOrg->Org->anEdge = eOrg; } if( ! joiningLoops ) { /* We split one loop into two -- the new loop is eDst->Lface.
* Make sure the old face points to a valid half-edge. */ MakeFace( eDst, eOrg->Lface ); eOrg->Lface->anEdge = eOrg; } }
/* __gl_meshDelete( eDel ) removes the edge eDel. There are several cases:
* if (eDel->Lface != eDel->Rface), we join two loops into one; the loop * eDel->Lface is deleted. Otherwise, we are splitting one loop into two; * the newly created loop will contain eDel->Dst. If the deletion of eDel * would create isolated vertices, those are deleted as well. * * This function could be implemented as two calls to __gl_meshSplice * plus a few calls to memFree, but this would allocate and delete * unnecessary vertices and faces. */ void __gl_meshDelete( GLUhalfEdge *eDel ) { GLUhalfEdge *eDelSym = eDel->Sym; int joiningLoops = FALSE;
/* First step: disconnect the origin vertex eDel->Org. We make all
* changes to get a consistent mesh in this "intermediate" state. */ if( eDel->Lface != eDel->Rface ) { /* We are joining two loops into one -- remove the left face */ joiningLoops = TRUE; KillFace( eDel->Lface, eDel->Rface ); }
if( eDel->Onext == eDel ) { KillVertex( eDel->Org, NULL ); } else { /* Make sure that eDel->Org and eDel->Rface point to valid half-edges */ eDel->Rface->anEdge = eDel->Oprev; eDel->Org->anEdge = eDel->Onext;
Splice( eDel, eDel->Oprev ); if( ! joiningLoops ) { /* We are splitting one loop into two -- create a new loop for eDel. */ MakeFace( eDel, eDel->Lface ); } }
/* Claim: the mesh is now in a consistent state, except that eDel->Org
* may have been deleted. Now we disconnect eDel->Dst. */ if( eDelSym->Onext == eDelSym ) { KillVertex( eDelSym->Org, NULL ); KillFace( eDelSym->Lface, NULL ); } else { /* Make sure that eDel->Dst and eDel->Lface point to valid half-edges */ eDel->Lface->anEdge = eDelSym->Oprev; eDelSym->Org->anEdge = eDelSym->Onext; Splice( eDelSym, eDelSym->Oprev ); }
/* Any isolated vertices or faces have already been freed. */ KillEdge( eDel ); }
/******************** Other Edge Operations **********************/
/* All these routines can be implemented with the basic edge
* operations above. They are provided for convenience and efficiency. */
/* __gl_meshAddEdgeVertex( eOrg ) creates a new edge eNew such that
* eNew == eOrg->Lnext, and eNew->Dst is a newly created vertex. * eOrg and eNew will have the same left face. */ GLUhalfEdge *__gl_meshAddEdgeVertex( GLUhalfEdge *eOrg ) { GLUhalfEdge *eNew = MakeEdge( eOrg ); GLUhalfEdge *eNewSym = eNew->Sym;
/* Connect the new edge appropriately */ Splice( eNew, eOrg->Lnext );
/* Set the vertex and face information */ eNew->Org = eOrg->Dst; MakeVertex( eNewSym, eNew->Org ); eNew->Lface = eNewSym->Lface = eOrg->Lface;
return eNew; }
/* __gl_meshSplitEdge( eOrg ) splits eOrg into two edges eOrg and eNew,
* such that eNew == eOrg->Lnext. The new vertex is eOrg->Dst == eNew->Org. * eOrg and eNew will have the same left face. */ GLUhalfEdge *__gl_meshSplitEdge( GLUhalfEdge *eOrg ) { GLUhalfEdge *eNew = __gl_meshAddEdgeVertex( eOrg )->Sym;
/* Disconnect eOrg from eOrg->Dst and connect it to eNew->Org */ Splice( eOrg->Sym, eOrg->Sym->Oprev ); Splice( eOrg->Sym, eNew );
/* Set the vertex and face information */ eOrg->Dst = eNew->Org; eNew->Dst->anEdge = eNew->Sym; /* may have pointed to eOrg->Sym */ eNew->Rface = eOrg->Rface; eNew->winding = eOrg->winding; /* copy old winding information */ eNew->Sym->winding = eOrg->Sym->winding;
return eNew; }
/* __gl_meshConnect( eOrg, eDst ) creates a new edge from eOrg->Dst
* to eDst->Org, and returns the corresponding half-edge eNew. * If eOrg->Lface == eDst->Lface, this splits one loop into two, * and the newly created loop is eNew->Lface. Otherwise, two disjoint * loops are merged into one, and the loop eDst->Lface is destroyed. * * If (eOrg == eDst), the new face will have only two edges. * If (eOrg->Lnext == eDst), the old face is reduced to a single edge. * If (eOrg->Lnext->Lnext == eDst), the old face is reduced to two edges. */ GLUhalfEdge *__gl_meshConnect( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) { GLUhalfEdge *eNew = MakeEdge( eOrg ); GLUhalfEdge *eNewSym = eNew->Sym; int joiningLoops = FALSE;
if( eDst->Lface != eOrg->Lface ) { /* We are connecting two disjoint loops -- destroy eDst->Lface */ joiningLoops = TRUE; KillFace( eDst->Lface, eOrg->Lface ); }
/* Connect the new edge appropriately */ Splice( eNew, eOrg->Lnext ); Splice( eNewSym, eDst );
/* Set the vertex and face information */ eNew->Org = eOrg->Dst; eNewSym->Org = eDst->Org; eNew->Lface = eNewSym->Lface = eOrg->Lface;
/* Make sure the old face points to a valid half-edge */ eOrg->Lface->anEdge = eNewSym;
if( ! joiningLoops ) { /* We split one loop into two -- the new loop is eNew->Lface */ MakeFace( eNew, eOrg->Lface ); } return eNew; }
/******************** Other Operations **********************/
/* __gl_meshZapFace( fZap ) destroys a face and removes it from the
* global face list. All edges of fZap will have a NULL pointer as their * left face. Any edges which also have a NULL pointer as their right face * are deleted entirely (along with any isolated vertices this produces). * An entire mesh can be deleted by zapping its faces, one at a time, * in any order. Zapped faces cannot be used in further mesh operations! */ void __gl_meshZapFace( GLUface *fZap ) { GLUhalfEdge *eStart = fZap->anEdge; GLUhalfEdge *e, *eNext, *eSym; GLUface *fPrev, *fNext;
/* walk around face, deleting edges whose right face is also NULL */ eNext = eStart->Lnext; do { e = eNext; eNext = e->Lnext;
e->Lface = NULL; if( e->Rface == NULL ) { /* delete the edge -- see __gl_MeshDelete above */
if( e->Onext == e ) { KillVertex( e->Org, NULL ); } else { /* Make sure that e->Org points to a valid half-edge */ e->Org->anEdge = e->Onext; Splice( e, e->Oprev ); } eSym = e->Sym; if( eSym->Onext == eSym ) { KillVertex( eSym->Org, NULL ); } else { /* Make sure that eSym->Org points to a valid half-edge */ eSym->Org->anEdge = eSym->Onext; Splice( eSym, eSym->Oprev ); } KillEdge( e ); } } while( e != eStart );
/* delete from circular doubly-linked list */ fPrev = fZap->prev; fNext = fZap->next; fNext->prev = fPrev; fPrev->next = fNext;
memFree( fZap ); }
/* __gl_meshNewMesh() creates a new mesh with no edges, no vertices,
* and no loops (what we usually call a "face"). */ GLUmesh *__gl_meshNewMesh( void ) { GLUmesh *mesh = (GLUmesh *)memAlloc( sizeof( GLUmesh )); GLUvertex *v = &mesh->vHead; GLUface *f = &mesh->fHead; GLUhalfEdge *e = &mesh->eHead; GLUhalfEdge *eSym = &mesh->eHeadSym;
v->next = v->prev = v; v->anEdge = NULL; v->data = NULL;
f->next = f->prev = f; f->anEdge = NULL; f->data = NULL; f->trail = NULL; f->marked = FALSE; f->inside = FALSE;
e->next = e; e->Sym = eSym; e->Onext = NULL; e->Lnext = NULL; e->Org = NULL; e->Lface = NULL; e->winding = 0; e->activeRegion = NULL;
eSym->next = eSym; eSym->Sym = e; eSym->Onext = NULL; eSym->Lnext = NULL; eSym->Org = NULL; eSym->Lface = NULL; eSym->winding = 0; eSym->activeRegion = NULL;
return mesh; }
/* __gl_meshUnion( mesh1, mesh2 ) forms the union of all structures in
* both meshes, and returns the new mesh (the old meshes are destroyed). */ GLUmesh *__gl_meshUnion( GLUmesh *mesh1, GLUmesh *mesh2 ) { GLUface *f1 = &mesh1->fHead; GLUvertex *v1 = &mesh1->vHead; GLUhalfEdge *e1 = &mesh1->eHead; GLUface *f2 = &mesh2->fHead; GLUvertex *v2 = &mesh2->vHead; GLUhalfEdge *e2 = &mesh2->eHead;
/* Add the faces, vertices, and edges of mesh2 to those of mesh1 */ if( f2->next != f2 ) { f1->prev->next = f2->next; f2->next->prev = f1->prev; f2->prev->next = f1; f1->prev = f2->prev; }
if( v2->next != v2 ) { v1->prev->next = v2->next; v2->next->prev = v1->prev; v2->prev->next = v1; v1->prev = v2->prev; }
if( e2->next != e2 ) { e1->Sym->next->Sym->next = e2->next; e2->next->Sym->next = e1->Sym->next; e2->Sym->next->Sym->next = e1; e1->Sym->next = e2->Sym->next; }
memFree( mesh2 ); return mesh1; }
#ifdef DELETE_BY_ZAPPING
/* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh.
*/ void __gl_meshDeleteMesh( GLUmesh *mesh ) { GLUface *fHead = &mesh->fHead;
while( fHead->next != fHead ) { __gl_meshZapFace( fHead->next ); } assert( mesh->vHead.next == &mesh->vHead );
memFree( mesh ); }
#else
/* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh.
*/ void __gl_meshDeleteMesh( GLUmesh *mesh ) { GLUface *f, *fNext; GLUvertex *v, *vNext; GLUhalfEdge *e, *eNext;
for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) { fNext = f->next; memFree( f ); }
for( v = mesh->vHead.next; v != &mesh->vHead; v = vNext ) { vNext = v->next; memFree( v ); }
for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) { /* One call frees both e and e->Sym (see EdgePair above) */ eNext = e->next; memFree( e ); }
memFree( mesh ); }
#endif
#ifndef NDEBUG
/* __gl_meshCheckMesh( mesh ) checks a mesh for self-consistency.
*/ void __gl_meshCheckMesh( GLUmesh *mesh ) { GLUface *fHead = &mesh->fHead; GLUvertex *vHead = &mesh->vHead; GLUhalfEdge *eHead = &mesh->eHead; GLUface *f, *fPrev; GLUvertex *v, *vPrev; GLUhalfEdge *e, *ePrev;
fPrev = fHead; for( fPrev = fHead ; (f = fPrev->next) != fHead; fPrev = f) { assert( f->prev == fPrev ); e = f->anEdge; do { assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); assert( e->Lface == f ); e = e->Lnext; } while( e != f->anEdge ); } assert( f->prev == fPrev && f->anEdge == NULL && f->data == NULL );
vPrev = vHead; for( vPrev = vHead ; (v = vPrev->next) != vHead; vPrev = v) { assert( v->prev == vPrev ); e = v->anEdge; do { assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); assert( e->Org == v ); e = e->Onext; } while( e != v->anEdge ); } assert( v->prev == vPrev && v->anEdge == NULL && v->data == NULL );
ePrev = eHead; for( ePrev = eHead ; (e = ePrev->next) != eHead; ePrev = e) { assert( e->Sym->next == ePrev->Sym ); assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Org != NULL ); assert( e->Dst != NULL ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); } assert( e->Sym->next == ePrev->Sym && e->Sym == &mesh->eHeadSym && e->Sym->Sym == e && e->Org == NULL && e->Dst == NULL && e->Lface == NULL && e->Rface == NULL ); }
#endif
|