|
|
/*++
Copyright (c) 1992-1996 Microsoft Corporation
Module Name:
arps.c
Abstract:
This file contains the code to implement the initialization functions for the atmarp server.
Author:
Jameel Hyder (jameelh@microsoft.com) July 1996
Environment:
Kernel mode
Revision History:
--*/
#include <precomp.h>
#define _FILENUM_ FILENUM_ARPS
ULONG MCastDiscards = 0;
NTSTATUS DriverEntry( IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath ) /*++
Routine Description:
IP/ATM Arp Server driver entry point.
Arguments:
DriverObject - Pointer to the driver object created by the system. RegistryPath - Pointer to the registry section where the parameters reside.
Return Value:
Return value from IoCreateDevice
--*/ { NTSTATUS Status; UNICODE_STRING DeviceName, GlobalPath, SymbolicName; HANDLE ThreadHandle = NULL; INT i;
#if DBG
DbgPrint("AtmArpS: ArpSDebugLevel @ %p, MarsDebugLevel @ %p\n", &ArpSDebugLevel, &MarsDebugLevel); #endif // DBG
InitializeListHead(&ArpSEntryOfDeath); KeInitializeEvent(&ArpSReqThreadEvent, NotificationEvent, FALSE); KeInitializeQueue(&ArpSReqQueue, 0); KeInitializeQueue(&MarsReqQueue, 0); INITIALIZE_SPIN_LOCK(&ArpSIfListLock);
ASSERT (ADDR_TYPE_NSAP == ATM_NSAP); ASSERT (ADDR_TYPE_E164 == ATM_E164); //
// Create an NON-EXCLUSIVE device object
//
RtlInitUnicodeString(&DeviceName, ARP_SERVER_DEVICE_NAME); RtlInitUnicodeString(&SymbolicName, ARP_SERVER_SYMBOLIC_NAME);
Status = IoCreateDevice(DriverObject, 0, &DeviceName, FILE_DEVICE_NETWORK, FILE_DEVICE_SECURE_OPEN, FALSE, &ArpSDeviceObject);
if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_LEVEL_INFO, ("DriverEntry: IoCreateDevice failed %lx\n", Status)); }
else do { IoCreateSymbolicLink(&SymbolicName, &DeviceName); IoRegisterShutdownNotification(ArpSDeviceObject);
ArpSDriverObject = DriverObject;
//
// Initialize the driver object
//
DriverObject->DriverUnload = ArpSUnload; DriverObject->FastIoDispatch = NULL;
for (i=0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) DriverObject->MajorFunction[i] = ArpSDispatch;
RtlInitUnicodeString(&GlobalPath, L"AtmArpS\\Parameters"); Status = ArpSReadGlobalConfiguration(&GlobalPath);
if (!NT_SUCCESS(Status)) { break; }
//
// Now create a thread to handle the Arp requests.
// We do this so that the arp cache can be allocated
// out of paged memory. Do this prior to initializing
// the NDIS interface.
//
Status = PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, NULL, NtCurrentProcess(), NULL, ArpSReqThread, (PVOID)NULL); if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_LEVEL_ERROR, ("DriverEntry: Cannot create request thread %lx\n", Status)); LOG_ERROR(Status); break; } else { //
// Close the handle to the thread so that it goes away when the
// thread terminates
//
NtClose(ThreadHandle);
Status = PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, NULL, NtCurrentProcess(), NULL, MarsReqThread, (PVOID)NULL); if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_LEVEL_ERROR, ("DriverEntry: Cannot create MARS thread %lx\n", Status)); LOG_ERROR(Status); } else { //
// Close the handle to the thread so that it goes away when the
// thread terminates
//
NtClose(ThreadHandle); } }
//
// Finally initialize the NDIS interface
//
if(NT_SUCCESS(Status)) { Status = ArpSInitializeNdis(); }
if(!NT_SUCCESS(Status)) { NTSTATUS Sts;
DBGPRINT(DBG_LEVEL_INFO, ("DriverEntry: Error initializing NDIS\n"));
//
// Ask the request thread to die
//
KeInsertQueue(&ArpSReqQueue, &ArpSEntryOfDeath);
//
// Wait for it to die
//
WAIT_FOR_OBJECT(Sts, &ArpSReqThreadEvent, NULL);
ArpSSleep(500); KeRundownQueue(&ArpSReqQueue);
break; } } while (FALSE);
if (!NT_SUCCESS(Status)) { if (ArpSDeviceObject != NULL) {
IoUnregisterShutdownNotification(ArpSDeviceObject); IoDeleteSymbolicLink(&SymbolicName); IoDeleteDevice(ArpSDeviceObject); }
//
// De-initialize the NDIS interface
//
ArpSDeinitializeNdis();
ArpSFreeGlobalData(); }
return Status; }
VOID ArpSUnload( IN PDRIVER_OBJECT DriverObject ) /*++
Routine Description:
Called by the IO system to unload. This is a synchronous call and we block here till we finish all the cleanup before we unload.
Arguments:
DriverObject - The arp-server's driver object.
Return Value:
None
--*/ { ArpSShutDown();
//
// Finally delete the device
//
{ UNICODE_STRING SymbolicName;
RtlInitUnicodeString(&SymbolicName, ARP_SERVER_SYMBOLIC_NAME); IoUnregisterShutdownNotification(ArpSDeviceObject); IoDeleteSymbolicLink(&SymbolicName); IoDeleteDevice(ArpSDeviceObject); } }
VOID ArpSShutDown( VOID ) /*++
Routine Description:
Called by the IO system when the system is being shutdown.
Arguments:
None
Return Value:
None
--*/ { NTSTATUS Status;
//
// Take care of the NDIS layer. NDIS will tear down any existing
// bindings when we deregister as a protocol.
//
ArpSDeinitializeNdis();
//
// Ask the request thread to quit and wait for its demise.
//
KeInsertQueue(&ArpSReqQueue, &ArpSEntryOfDeath);
WAIT_FOR_OBJECT(Status, &ArpSReqThreadEvent, NULL); ArpSSleep(500); KeRundownQueue(&ArpSReqQueue);
//
// Ask the MARS thread to quit and wait for its demise.
//
KeInsertQueue(&MarsReqQueue, &ArpSEntryOfDeath);
KeInitializeEvent(&ArpSReqThreadEvent, NotificationEvent, FALSE); WAIT_FOR_OBJECT(Status, &ArpSReqThreadEvent, NULL); ArpSSleep(500); KeRundownQueue(&MarsReqQueue);
//
// Now cleanup global data structures
//
ArpSFreeGlobalData(); }
PINTF ArpSCreateIntF( IN PNDIS_STRING DeviceName, IN PNDIS_STRING ConfigString, IN NDIS_HANDLE BindingContext ) /*++
Routine Description:
Arguments:
Return Value:
--*/ { NTSTATUS Status; HANDLE ThreadHandle; PINTF pIntF; UINT Size; UNICODE_STRING DevPrefix; UNICODE_STRING FilePrefix; UNICODE_STRING FileSuffix; UNICODE_STRING BaseName; NDIS_STRING AdapterFriendlyName;
ARPS_PAGED_CODE( );
//
// Get the friendly name of the adapter we are bound to.
//
if (NdisQueryBindInstanceName(&AdapterFriendlyName, BindingContext) != NDIS_STATUS_SUCCESS) { return (NULL); }
//
// Extract the base-name of the device we are bound to
//
RtlInitUnicodeString(&DevPrefix, L"\\Device\\"); RtlInitUnicodeString(&FilePrefix, L"\\SYSTEMROOT\\SYSTEM32\\"); RtlInitUnicodeString(&FileSuffix, L".ARP");
BaseName.Buffer = (PWSTR)((PUCHAR)DeviceName->Buffer + DevPrefix.Length); BaseName.Length = DeviceName->Length - DevPrefix.Length; BaseName.MaximumLength = DeviceName->MaximumLength - DevPrefix.Length;
//
// Start off by allocating an IntF block
//
Size = sizeof(INTF) + FilePrefix.Length + BaseName.Length + FileSuffix.Length + sizeof(WCHAR) + BaseName.Length + sizeof(WCHAR) + AdapterFriendlyName.MaximumLength + sizeof(WCHAR); Size += ConfigString->MaximumLength + sizeof(WCHAR); pIntF = (PINTF)ALLOC_NP_MEM(Size, POOL_TAG_INTF); if (pIntF != NULL) { ZERO_MEM(pIntF, Size);
//
// Fill in some defaults.
//
pIntF->MaxPacketSize = DEFAULT_MAX_PACKET_SIZE; pIntF->LinkSpeed.Inbound = pIntF->LinkSpeed.Outbound = DEFAULT_SEND_BANDWIDTH; pIntF->CCFlowSpec = DefaultCCFlowSpec;
//
// Start off with a refcount of 1 for the interface and one for the timer thread.
// The timer thread derefs when asked to quit and the last reference
// is removed when the interface is closed (ArpSCloseAdapterComplete).
//
pIntF->RefCount = 2; pIntF->LastVcId = 1; // Start off with 1 and wrap-around to 1. 0 and -1 are invalid
pIntF->SupportedMedium = NdisMediumAtm; pIntF->CSN = 1;
INITIALIZE_MUTEX(&pIntF->ArpCacheMutex); KeInitializeEvent(&pIntF->TimerThreadEvent, NotificationEvent, FALSE); InitializeListHead(&pIntF->InactiveVcHead); InitializeListHead(&pIntF->ActiveVcHead); InitializeListHead(&pIntF->CCPacketQueue); ArpSTimerInitialize(&pIntF->FlushTimer, ArpSWriteArpCache, ArpSFlushTime);
ArpSTimerInitialize(&pIntF->MarsRedirectTimer, MarsSendRedirect, REDIRECT_INTERVAL);
pIntF->InterfaceName.Buffer = (PWSTR)((PUCHAR)pIntF + sizeof(INTF)); pIntF->InterfaceName.Length = 0; pIntF->InterfaceName.MaximumLength = BaseName.Length;
pIntF->FileName.Buffer = (PWSTR)((PUCHAR)pIntF->InterfaceName.Buffer + BaseName.Length + sizeof(WCHAR)); pIntF->FileName.Length = 0; pIntF->FileName.MaximumLength = FilePrefix.Length + BaseName.Length + FileSuffix.Length + sizeof(WCHAR);
RtlUpcaseUnicodeString(&pIntF->InterfaceName, &BaseName, FALSE);
RtlCopyUnicodeString(&pIntF->FileName, &FilePrefix); RtlAppendUnicodeStringToString(&pIntF->FileName, &pIntF->InterfaceName); RtlAppendUnicodeStringToString(&pIntF->FileName, &FileSuffix);
//
// Copy in the config string used to access registry for this interface.
//
pIntF->ConfigString.Buffer = (PWSTR)((ULONG_PTR)pIntF->FileName.Buffer + pIntF->FileName.MaximumLength); pIntF->ConfigString.Length = 0; pIntF->ConfigString.MaximumLength = ConfigString->MaximumLength; RtlCopyUnicodeString(&pIntF->ConfigString, ConfigString);
//
// Copy in the friendly name.
//
pIntF->FriendlyName.Buffer = (PWSTR)((ULONG_PTR)pIntF->ConfigString.Buffer + pIntF->ConfigString.MaximumLength); pIntF->FriendlyName.Length = 0; pIntF->FriendlyName.MaximumLength = AdapterFriendlyName.MaximumLength + sizeof(WCHAR); RtlCopyUnicodeString(&pIntF->FriendlyName, &AdapterFriendlyName); *(PWCHAR)((ULONG_PTR)pIntF->FriendlyName.Buffer + AdapterFriendlyName.MaximumLength) = L'\0'; pIntF->FriendlyName.Length += sizeof(WCHAR); NdisFreeString(AdapterFriendlyName);
//
// Initialize the start timestamp value -- used for statistics reporting.
//
NdisGetCurrentSystemTime(&(pIntF->StatisticsStartTimeStamp));
//
// Create a timer-thread now.
//
Status = PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, NULL, NtCurrentProcess(), NULL, ArpSTimerThread, (PVOID)pIntF); if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSCreateIntF: Cannot create timer thread %lx for device %Z\n", Status, DeviceName)); LOG_ERROR(Status); FREE_MEM(pIntF); pIntF = NULL; } else { //
// Close the handle to the thread so that it goes away when the
// thread terminates
//
NtClose(ThreadHandle);
DBGPRINT(DBG_LEVEL_INFO, ("ArpSCreateIntF: Device name %Z, InterfaceName %Z, FileName %Z, ConfigString %Z\n", DeviceName, &pIntF->InterfaceName, &pIntF->FileName, &pIntF->ConfigString)); if (ArpSFlushTime != 0) ArpSTimerEnqueue(pIntF, &pIntF->FlushTimer); ArpSTimerEnqueue(pIntF, &pIntF->MarsRedirectTimer); } }
return pIntF; }
VOID ArpSReqThread( IN PVOID Context ) /*++
Routine Description:
Handle all arp requests here.
Arguments:
None
Return Value:
None --*/ { PARPS_HEADER Header; PARP_ENTRY ArpEntry; PNDIS_PACKET Pkt; PPROTOCOL_RESD Resd; PARP_VC Vc; PINTF pIntF; UINT PktLen; PLIST_ENTRY List; IPADDR SrcIpAddr, DstIpAddr; NTSTATUS Status; HW_ADDR SrcHwAddr, DstHwAddr; ATM_ADDRESS SrcSubAddr, DstSubAddr; PUCHAR p; BOOLEAN SendReply; BOOLEAN SendNAK = FALSE;
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_INFO, ("ArpSReqThread: Came to life\n"));
do { List = KeRemoveQueue(&ArpSReqQueue, KernelMode, NULL); if (List == &ArpSEntryOfDeath) { //
// Asked to terminate, do so.
//
break; }
SendReply = FALSE; Resd = CONTAINING_RECORD(List, PROTOCOL_RESD, ReqList); Vc = Resd->Vc;
Pkt = CONTAINING_RECORD(Resd, NDIS_PACKET, ProtocolReserved); pIntF = Vc->IntF; NdisQueryBuffer(Pkt->Private.Head, &Header, &PktLen);
ASSERT (PktLen <= PKT_SPACE); p = (PUCHAR)Header + sizeof(ARPS_HEADER); //
// Process arp request now. Since the Pkt is owned by us, we know that
// the buffer that the packet points is contiguous and the integrity of
// the packet has already been verified. There is also sufficient space
// in the packet for the max. size reply that we can send.
//
// !!!!!!!!!! ALGORITHM FROM RFC 1577 !!!!!!!!!!
//
// Here is the algorithm for handling ARP requests from the RFC
//
// if (SrcIpAddr == DstIpAddr)
// {
// if ((ArpEntry(SrcIpAddr) != NULL) &&
// (SrcAtmAddress != ArpEntry->AtmAddress) &&
// (ArpEnrty->Vc != NULL) && (ArpEntry->Vc != Vc))
// {
// Respond with the information from the ArpEntry;
// }
// else if ((ArpEntry(SrcIpAddr) == NULL) ||
// (ArpEntry->Vc == NULL) ||
// (ArpEntry->Vc == Vc))
// {
// if (ArpEntry(SrcIpAddr) == NULL))
// {
// Create an arp entry for this IpAddr;
// }
// Update the arp entry with info from the request;
//
// Respond with the information from the ArpEntry;
// }
// }
// else // if (SrcIpAddr != DstIpAddr)
// {
// if (ArpEntry(DstIpAddr) != NULL)
// {
// Respond with the information from the ArpEntry;
// }
// else
// {
// Respond with a NAK
// }
//
// if (ArpEntry(SrcIpAddr) == NULL)
// {
// Create a new ArpEntry for the (SrcIpAddr, ArcAtmAddress) pair
// }
// else if ((ArpEntry->AtmAddress == SrcAtmAddress) &&
// (ArpEntry->AtmAddress == Vc->AtmAddress))
// {
// Reset timer on this ArpEntry;
// }
// }
//
// !!!!!!!!!! ALGORITHM FROM RFC 1577 !!!!!!!!!!
//
//
// Start off by extracting fields from the header
// First the source hw address (incl. the sub-addr if any)
//
SrcHwAddr.Address.NumberOfDigits = TL_LEN(Header->SrcAddressTL); if (SrcHwAddr.Address.NumberOfDigits > 0) { SrcHwAddr.Address.AddressType = TL_TYPE(Header->SrcAddressTL); COPY_MEM(SrcHwAddr.Address.Address, p, SrcHwAddr.Address.NumberOfDigits); p += SrcHwAddr.Address.NumberOfDigits; } SrcHwAddr.SubAddress = NULL; if (TL_LEN(Header->SrcSubAddrTL) > 0) { SrcHwAddr.SubAddress = &SrcSubAddr; SrcSubAddr.NumberOfDigits = TL_LEN(Header->SrcSubAddrTL); SrcSubAddr.AddressType = TL_TYPE(Header->SrcSubAddrTL); COPY_MEM(&SrcSubAddr.Address, p, SrcSubAddr.NumberOfDigits); p += SrcSubAddr.NumberOfDigits; }
//
// Next get the source IP address
//
SrcIpAddr = 0; if (Header->SrcProtoAddrLen == IP_ADDR_LEN) { SrcIpAddr = *(UNALIGNED IPADDR *)p; p += IP_ADDR_LEN; } ArpSDumpAddress(SrcIpAddr, &SrcHwAddr, "Source");
//
// Now the destination hw address (incl. the sub-addr if any)
//
DstHwAddr.Address.NumberOfDigits = TL_LEN(Header->DstAddressTL); if (DstHwAddr.Address.NumberOfDigits > 0) { DstHwAddr.Address.AddressType = TL_TYPE(Header->DstAddressTL); COPY_MEM(DstHwAddr.Address.Address, p, DstHwAddr.Address.NumberOfDigits); p += DstHwAddr.Address.NumberOfDigits; } DstHwAddr.SubAddress = NULL; if (TL_LEN(Header->DstSubAddrTL) > 0) { DstHwAddr.SubAddress = &DstSubAddr; DstSubAddr.NumberOfDigits = TL_LEN(Header->DstSubAddrTL); DstSubAddr.AddressType = TL_TYPE(Header->DstSubAddrTL); COPY_MEM(&DstSubAddr.Address, p, DstSubAddr.NumberOfDigits); p += DstSubAddr.NumberOfDigits; }
//
// Finally the destination IP address
//
DstIpAddr = 0; if (Header->DstProtoAddrLen == IP_ADDR_LEN) { DstIpAddr = *(UNALIGNED IPADDR *)p; // p += IP_ADDR_LEN;
} ArpSDumpAddress(DstIpAddr, &DstHwAddr, "Destination");
do { //
// Validate that the source and destination Ip addresses are not 0.0.0.0
// NOTE: We can also check if they are within the same LIS (should we ?).
//
if ((SrcIpAddr == 0) || (DstIpAddr == 0)) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSReqThread: Null IpAddress Src(%lx), Dst(%lx)\n", SrcIpAddr, DstIpAddr)); SendReply = FALSE; break; } //
// Take the lock on the Arp Cache now.
//
WAIT_FOR_OBJECT(Status, &pIntF->ArpCacheMutex, NULL); ASSERT (Status == STATUS_SUCCESS); if (SrcIpAddr == DstIpAddr) { //
// Try to map the address to an arp cache entry
//
ArpEntry = ArpSLookupEntryByIpAddr(pIntF, SrcIpAddr); if ((ArpEntry != NULL) && !COMP_HW_ADDR(&SrcHwAddr, &ArpEntry->HwAddr) && (ArpEntry->Vc != NULL) && (ArpEntry->Vc != Vc)) { //
// Respond with the information from the ArpEntry
// We have encountered a duplicate address.
//
ArpSBuildArpReply(pIntF, ArpEntry, Header, Pkt); SendReply = TRUE; LOG_ERROR(NDIS_STATUS_ALREADY_MAPPED); } else if ((ArpEntry == NULL) || (ArpEntry->Vc == NULL) || (ArpEntry->Vc == Vc)) { if (ArpEntry == NULL) { //
// Create an arp entry for this IpAddr
//
ArpEntry = ArpSAddArpEntry(pIntF, SrcIpAddr, &SrcHwAddr.Address, SrcHwAddr.SubAddress, Vc); } else { //
// Update the arp entry with info from the request;
//
ArpSUpdateArpEntry(pIntF, ArpEntry, SrcIpAddr, &SrcHwAddr, Vc); } if (ArpEntry != NULL) { //
// Respond with the information from the ArpEntry
//
ArpSBuildArpReply(pIntF, ArpEntry, Header, Pkt); SendReply = TRUE; } else { //
// Failed to allocate an ARP entry
//
SendNAK = TRUE; SendReply = TRUE; } } else { DbgPrint("ATMARPS: pkt on wrong VC: ArpEntry %p, ArpEntry->Vc %p, Vc %p\n", ArpEntry, ((ArpEntry)? ArpEntry->Vc: NULL), Vc); } } else // i.e. (SrcIpAddr != DstIpAddr)
{ //
// Try to map the dst address to an arp cache entry
//
ArpEntry = ArpSLookupEntryByIpAddr(pIntF, DstIpAddr); if (ArpEntry != NULL) { //
// Respond with the information from the ArpEntry
// for the destination IP Address
//
ArpSBuildArpReply(pIntF, ArpEntry, Header, Pkt); SendReply = TRUE; } else { //
// Respond with a NAK
//
// ArpSBuildNakReply(pIntF, ArpEntry, Header, Pkt);
DBGPRINT(DBG_LEVEL_INFO, ("ArpSThread: Naking for ")); ArpSDumpIpAddr(DstIpAddr, "\n"); Header->Opcode = ATMARP_Nak; SendReply = TRUE; SendNAK = TRUE; // for stats
} //
// Try to map the src address to an arp cache entry
//
ArpEntry = ArpSLookupEntryByIpAddr(pIntF, SrcIpAddr); if (ArpEntry == NULL) { //
// Create a new ArpEntry for the (SrcIpAddr, ArcAtmAddress) pair
//
ArpEntry = ArpSAddArpEntry(pIntF, SrcIpAddr, &SrcHwAddr.Address, SrcHwAddr.SubAddress, Vc); } else if (COMP_HW_ADDR(&ArpEntry->HwAddr, &SrcHwAddr) && COMP_HW_ADDR(&ArpEntry->HwAddr, &Vc->HwAddr)) { //
// Reset timer on this ArpEntry
//
ArpSTimerCancel(&ArpEntry->Timer); ArpEntry->Age = ARP_AGE; ArpSTimerEnqueue(pIntF, &ArpEntry->Timer); } } RELEASE_MUTEX(&pIntF->ArpCacheMutex); } while (FALSE);
if (SendReply && (Vc->NdisVcHandle != NULL)) { if (SendNAK) { pIntF->ArpStats.Naks++; } else { pIntF->ArpStats.Acks++; } NDIS_SET_PACKET_STATUS(Pkt, NDIS_STATUS_SUCCESS); NdisCoSendPackets(Vc->NdisVcHandle, &Pkt, 1); } else { pIntF->ArpStats.DiscardedRecvPkts++; ExInterlockedPushEntrySList(&ArpSPktList, &Resd->FreeList, &ArpSPktListLock); ArpSDereferenceVc(Vc, FALSE, TRUE); } } while (TRUE);
KeSetEvent(&ArpSReqThreadEvent, 0, FALSE);
DBGPRINT(DBG_LEVEL_WARN, ("ArpSReqThread: Terminating\n")); }
UINT ArpSHandleArpRequest( IN NDIS_HANDLE ProtocolBindingContext, IN NDIS_HANDLE ProtocolVcContext, IN PNDIS_PACKET Packet ) /*++
Routine Description:
Handle an incoming arp request from the network. Do minimal checks, make a copy of the packet and queue it up.
Arguments:
ProtocolBindingContext Pointer to the INTF ProtocolVcContext Pointer to the Vc Packet Pointer to the packet
Return Value:
Ref count on this received packet. This is 0 if we are done with the packet here, and 1 if we hang on to it (as for Multicast data that is forwarded).
--*/ { PARP_VC Vc = (PARP_VC)ProtocolVcContext; PINTF pIntF = (PINTF)ProtocolBindingContext; PARPS_HEADER Header; PMARS_HEADER MHdr; PNDIS_PACKET Pkt; PPROTOCOL_RESD Resd; UINT PktLen, Tmp; BOOLEAN ValidPkt, Mars; PSLIST_ENTRY List; UINT ReturnValue;
DBGPRINT(DBG_LEVEL_INFO, ("ArpSHandleArpRequest: Request on Vc %lx, Id %lx\n", Vc, Vc->VcId));
ReturnValue = 0;
do { //
// Verify minimum packet length
//
NdisQueryPacket(Packet, NULL, NULL, NULL, &PktLen); if (PktLen < sizeof(ARPS_HEADER)) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid PktLen %d for received packet %lx\n", PktLen, Packet));
//
// For statistics purposes, we consider these to be discarded multicast data
// packets.
//
pIntF->MarsStats.TotalMCDataPkts++; pIntF->MarsStats.DiscardedMCDataPkts++; break; }
//
// Check if this is Multicast data. If so, forward it
// and quit.
//
NdisQueryBuffer(Packet->Private.Head, &Header, &Tmp); if (COMP_MEM(&Header->LlcSnapHdr, &MarsData1LlcSnapHdr, sizeof(LLC_SNAP_HDR))) { PNDIS_PACKET pNewPacket; pIntF->MarsStats.TotalMCDataPkts++; //
// Check if the miniport wants this packet back immediately.
// If so, don't reuse it.
//
if (NDIS_GET_PACKET_STATUS(Packet) == NDIS_STATUS_RESOURCES) { ReturnValue = 0;
pIntF->MarsStats.DiscardedMCDataPkts++; break; }
pNewPacket = MarsAllocPacketHdrCopy(Packet); if (pNewPacket != (PNDIS_PACKET)NULL) { pIntF->MarsStats.ReflectedMCDataPkts++; MarsSendOnClusterControlVc(pIntF, pNewPacket); ReturnValue = 1; } break; }
//
// This must be an ARP or MARS control packet. We make a copy and queue
// this to the appropriate thread (ARPS or MARS).
//
pIntF->ArpStats.TotalRecvPkts++; //
// Make sure that a larger packet wil not trash local packet after copy
//
if (PktLen > PKT_SPACE) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Incoming packet too large, truncating - %d, Vc %lx\n", PktLen, Vc)); PktLen = PKT_SPACE; }
//
// Allocate a packet from our free pool. The contents from the packet from the adapter is copied into
// this after verification and queued to the thread. If we fail to allocate, we simply drop the request.
//
List = ExInterlockedPopEntrySList(&ArpSPktList, &ArpSPktListLock); if (List == NULL) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Out of packets - interface %lx, Vc %lx\n", pIntF, Vc)); pIntF->ArpStats.DiscardedRecvPkts++; break; } Resd = CONTAINING_RECORD(List, PROTOCOL_RESD, FreeList); Resd->Flags = 0; Pkt = CONTAINING_RECORD(Resd, NDIS_PACKET, ProtocolReserved);
//
// Adjust Length of packet to reflect the size of the received packet.
// We adjust it again to size when we reply.
//
if (Pkt->Private.Head == NULL) { DbgPrint("ATMARPS: HandleArpReq: Pkt %p has NULL head!\n", Pkt); DbgBreakPoint(); }
if ((Pkt->Private.NdisPacketFlags & fPACKET_ALLOCATED_BY_NDIS) == 0) { DbgPrint("ATMARPS: HandleArpReq: Pkt %p is freed?\n", Pkt); DbgBreakPoint(); }
NdisAdjustBufferLength(Pkt->Private.Head, PktLen); Pkt->Private.ValidCounts = FALSE; NdisCopyFromPacketToPacket(Pkt, 0, PktLen, Packet, 0, &Tmp); ASSERT(Tmp == PktLen); ASSERT( PktLen < 65536); Resd->PktLen = (USHORT) PktLen;
//
// The incoming packet is now copied to our packet.
// Examine and sanity check before queuing it.
//
NdisQueryBuffer(Pkt->Private.Head, &Header, &Tmp); Resd->PacketStart = (PUCHAR)Header; MHdr = (PMARS_HEADER)Header;
do { ValidPkt = FALSE; // Assume the worst
//
// Check for the LLC SNAP Header
//
if (COMP_MEM(&Header->LlcSnapHdr, &ArpSLlcSnapHdr, sizeof(LLC_SNAP_HDR))) { Mars = FALSE; } else if (COMP_MEM(&Header->LlcSnapHdr, &MarsCntrlLlcSnapHdr, sizeof(LLC_SNAP_HDR))) { if ((MHdr->HwType == MARS_HWTYPE) && (MHdr->Protocol == IP_PROTOCOL_TYPE) && ArpSReferenceVc(Vc, TRUE)) { Mars = TRUE; ValidPkt = TRUE; } break; } else { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid Llc Snap Hdr\n")); break; }
Tmp = sizeof(ARPS_HEADER) + Header->SrcProtoAddrLen + TL_LEN(Header->SrcAddressTL) + TL_LEN(Header->SrcSubAddrTL) + Header->DstProtoAddrLen + TL_LEN(Header->DstAddressTL) + TL_LEN(Header->DstSubAddrTL);
//
// Make sure the address and sub-address formats are consistent.
// The valid ones from the RFC:
//
// Adress Sub-Address
// ------ -----------
//
// Structure 1 ATM Forum NSAP Null
// Structure 2 E.164 Null
// Structure 3 E.164 ATM Forum NSAP
//
if (TL_LEN(Header->SrcSubAddrTL) > 0) { //
// Sub-address is present. Make sure that the Address is E.164 and Sub-Address is NSAP
//
if ((TL_TYPE(Header->SrcAddressTL) == ADDR_TYPE_NSAP) || (TL_TYPE(Header->SrcSubAddrTL) == ADDR_TYPE_E164)) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Src Address is NSAP and Src Sub Addr is E164\n")); break; } }
if (TL_LEN(Header->DstSubAddrTL) > 0) { //
// Sub-address is present. Make sure that the Address is E.164 and Sub-Address is NSAP
//
if ((TL_TYPE(Header->DstAddressTL) == ADDR_TYPE_NSAP) || (TL_TYPE(Header->DstSubAddrTL) == ADDR_TYPE_E164)) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Dst Address is NSAP and Dst Sub Addr is E164\n")); break; } }
if ((Header->Opcode == ATMARP_Request) && (Header->HwType == ATM_HWTYPE) && (Header->Protocol == IP_PROTOCOL_TYPE) && (PktLen >= Tmp) && ArpSReferenceVc(Vc, TRUE)) { ValidPkt = TRUE; break; } #if DBG
else { if (Header->Opcode != ATMARP_Request) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid OpCode %x\n", Header->Opcode)); } else if (Header->HwType != ATM_HWTYPE) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid HwType %x\n", Header->HwType)); } else if (Header->Protocol == IP_PROTOCOL_TYPE) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid Protocol %x\n", Header->Protocol)); } else if (PktLen < Tmp) { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Invalid Length %x - %x\n", PktLen, Tmp)); } else { DBGPRINT(DBG_LEVEL_ERROR, ("ArpSHandleArpRequest: Cannot reference Vc\n")); } } #endif
} while (FALSE);
if (ValidPkt) { Resd->Vc = Vc; if (Mars) { Resd->Flags |= RESD_FLAG_MARS; KeInsertQueue(&MarsReqQueue, &Resd->ReqList); } else { Resd->Flags &= ~RESD_FLAG_MARS; KeInsertQueue(&ArpSReqQueue, &Resd->ReqList); } } else { //
// Either a mal-formed packet or the Vc is closing
//
pIntF->ArpStats.DiscardedRecvPkts++; ArpSDumpPacket((PUCHAR)Header, PktLen);
//
// Move the packet back into the free list
//
ExInterlockedPushEntrySList(&ArpSPktList, &Resd->FreeList, &ArpSPktListLock); } } while (FALSE);
return ReturnValue; }
PARP_ENTRY ArpSLookupEntryByIpAddr( IN PINTF pIntF, IN IPADDR IpAddr ) /*++
Routine Description:
Lookup the Arp table for the specified IP address. Called with the ArpCache mutex held.
Arguments:
pIntF Pointer to the IntF structure IpAddr IP address to look for
Return Value:
ArpEntry if found or NULL. --*/ { PARP_ENTRY ArpEntry; UINT Hash = ARP_HASH(IpAddr);
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_INFO, ("ArpSLookupArpEntry: Lookup entry for IpAddr: ")); ArpSDumpIpAddr(IpAddr, " ..... ");
for (ArpEntry = pIntF->ArpCache[Hash]; ArpEntry != NULL; ArpEntry = ArpEntry->Next) { if (ArpEntry->IpAddr == IpAddr) break; if (ArpEntry->IpAddr > IpAddr) { ArpEntry = NULL; break; } }
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%sFound\n", (ArpEntry != NULL) ? "" : "Not"));
if (ArpEntry != NULL) { //
// Cleanup this entry if the Vc is no-longer active
//
CLEANUP_DEAD_VC(ArpEntry); }
return ArpEntry; }
PARP_ENTRY ArpSLookupEntryByAtmAddr( IN PINTF pIntF, IN PATM_ADDRESS Address, IN PATM_ADDRESS SubAddress OPTIONAL ) /*++
Routine Description:
Lookup the Arp table for the specified IP address. Called with the ArpCache mutex held.
Arguments:
pIntF Pointer to the IntF structure IpAddr IP address to look for
Return Value:
ArpEntry if found or NULL. --*/ { PARP_ENTRY ArpEntry; UINT i;
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_INFO, ("ArpSLookupArpEntry: Lookup entry for ")); ArpSDumpAtmAddr(Address, " ..... "); if (SubAddress != NULL) { ArpSDumpAtmAddr(SubAddress, "\t Sub "); } for (i =0; i < ARP_TABLE_SIZE; i++) { for (ArpEntry = pIntF->ArpCache[i]; ArpEntry != NULL; ArpEntry = ArpEntry->Next) { if (COMP_ATM_ADDR(Address, &ArpEntry->HwAddr.Address)) { if (((SubAddress == NULL) && (ArpEntry->HwAddr.SubAddress == NULL)) || (((SubAddress != NULL) && (ArpEntry->HwAddr.SubAddress != NULL)) && COMP_ATM_ADDR(SubAddress, ArpEntry->HwAddr.SubAddress))) { break; } } } if (ArpEntry != NULL) { //
// Cleanup this entry if the Vc is no-longer active
//
CLEANUP_DEAD_VC(ArpEntry); break; } }
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("ArpSLookupArpEntry: %sFound\n", (ArpEntry != NULL) ? "" : "Not"));
return ArpEntry; }
PARP_ENTRY ArpSAddArpEntry( IN PINTF pIntF, IN IPADDR IpAddr, IN PATM_ADDRESS Address, IN PATM_ADDRESS SubAddress OPTIONAL, IN PARP_VC Vc OPTIONAL ) /*++
Routine Description:
Add the Arp table for the specified IP address. Called with the ArpCache mutex held.
Arguments:
pIntF Pointer to the IntF structure IpAddr IP address to add Address & SubAddress Supplies the atm address and the sub-address Vc The Vc associated with this ArpEntry, if any
Return Value:
ArpEntry if added successfully or NULL. --*/ { PARP_ENTRY ArpEntry, *ppEntry; UINT Hash = ARP_HASH(IpAddr); ENTRY_TYPE EntryType;
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_INFO, ("ArpSAddArpEntry: Adding entry for IpAddr: ")); ArpSDumpIpAddr(IpAddr, " ..... ");
//
// Start off by allocating an arp-entry structure
//
EntryType = (SubAddress != NULL) ? ARP_BLOCK_SUBADDR : ARP_BLOCK_VANILA; ArpEntry = (PARP_ENTRY)ArpSAllocBlock(pIntF, EntryType); if (ArpEntry == NULL) { LOG_ERROR(NDIS_STATUS_RESOURCES); } else { if (++(pIntF->ArpStats.CurrentArpEntries) > pIntF->ArpStats.MaxArpEntries) { pIntF->ArpStats.MaxArpEntries = pIntF->ArpStats.CurrentArpEntries; } ArpSTimerInitialize(&ArpEntry->Timer, ArpSAgeEntry, ARP_AGE); ArpEntry->IpAddr = IpAddr; COPY_ATM_ADDR(&ArpEntry->HwAddr.Address, Address); if (SubAddress != NULL) COPY_ATM_ADDR(ArpEntry->HwAddr.SubAddress, SubAddress); if (ARGUMENT_PRESENT(Vc) && ArpSReferenceVc(Vc, FALSE)) { ArpEntry->Vc = Vc; Vc->ArpEntry = ArpEntry; } ArpEntry->Age = ARP_AGE;
//
// Keep the overflow list sorted in ascending order of Ip addresses
//
for (ppEntry = &pIntF->ArpCache[Hash]; *ppEntry != NULL; ppEntry = (PARP_ENTRY *)(&(*ppEntry)->Next)) { ASSERT ((*ppEntry)->IpAddr != IpAddr); if ((*ppEntry)->IpAddr > IpAddr) break; }
ArpEntry->Next = *ppEntry; ArpEntry->Prev = ppEntry; if (*ppEntry != NULL) { (*ppEntry)->Prev = &ArpEntry->Next; } *ppEntry = ArpEntry; pIntF->NumCacheEntries ++;
ArpSTimerEnqueue(pIntF, &ArpEntry->Timer); }
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%lx\n", ArpEntry));
return ArpEntry; }
PARP_ENTRY ArpSAddArpEntryFromDisk( IN PINTF pIntF, IN PDISK_ENTRY pDskEntry ) /*++
Routine Description:
Add the Arp table for the specified IP address. Called during intialization.
Arguments:
pIntF Pointer to the IntF structure DiskEntry
Return Value:
ArpEntry if found or NULL. --*/ { PARP_ENTRY ArpEntry, *ppEntry; UINT Hash = ARP_HASH(pDskEntry->IpAddr); ENTRY_TYPE EntryType;
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_INFO, ("ArpSAddArpEntryFromDisk: Adding entry for IpAddr: ")); ArpSDumpIpAddr(pDskEntry->IpAddr, " ..... ");
//
// Start off by allocating an arp-entry structure
//
EntryType = (pDskEntry->AtmAddr.SubAddrLen != 0) ? ARP_BLOCK_SUBADDR : ARP_BLOCK_VANILA; ArpEntry = (PARP_ENTRY)ArpSAllocBlock(pIntF, EntryType); if (ArpEntry == NULL) { LOG_ERROR(NDIS_STATUS_RESOURCES); } else { ArpSTimerInitialize(&ArpEntry->Timer, ArpSAgeEntry, ARP_AGE); ArpEntry->Age = ARP_AGE; ArpEntry->IpAddr = pDskEntry->IpAddr; ArpEntry->Vc = NULL;
//
// COPY_ATM_ADDR();
//
ArpEntry->HwAddr.Address.AddressType = pDskEntry->AtmAddr.AddrType; ArpEntry->HwAddr.Address.NumberOfDigits = pDskEntry->AtmAddr.AddrLen; COPY_MEM(ArpEntry->HwAddr.Address.Address, pDskEntry->AtmAddr.Address, pDskEntry->AtmAddr.AddrLen);
if (pDskEntry->AtmAddr.SubAddrLen != 0) { //
// COPY_ATM_ADDR();
//
ArpEntry->HwAddr.SubAddress->AddressType = pDskEntry->AtmAddr.SubAddrType; ArpEntry->HwAddr.SubAddress->NumberOfDigits = pDskEntry->AtmAddr.SubAddrLen; COPY_MEM(ArpEntry->HwAddr.SubAddress->Address, (PUCHAR)pDskEntry + sizeof(DISK_ENTRY), pDskEntry->AtmAddr.SubAddrLen); }
//
// Keep the overflow list sorted in ascending order of Ip addresses
//
for (ppEntry = &pIntF->ArpCache[Hash]; *ppEntry != NULL; ppEntry = (PARP_ENTRY *)(&(*ppEntry)->Next)) { ASSERT ((*ppEntry)->IpAddr != pDskEntry->IpAddr); if ((*ppEntry)->IpAddr > pDskEntry->IpAddr) break; }
ArpEntry->Next = *ppEntry; ArpEntry->Prev = ppEntry; if (*ppEntry != NULL) { (*ppEntry)->Prev = &ArpEntry->Next; } *ppEntry = ArpEntry; pIntF->NumCacheEntries ++;
ArpSTimerEnqueue(pIntF, &ArpEntry->Timer); }
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%lx\n", ArpEntry));
return ArpEntry; }
VOID ArpSUpdateArpEntry( IN PINTF pIntF, IN PARP_ENTRY ArpEntry, IN IPADDR IpAddr, IN PHW_ADDR HwAddr, IN PARP_VC Vc ) /*++
Routine Description:
Update the ArpEntry with possibly new values.
Arguments:
ArpEntry ArpEntry to be updated IpAddr IP Address HwAddr Hw address (Atm Address and optionally Atm SubAddress) Vc Vc associated with this entry
Return Value:
None
--*/ { KIRQL OldIrql;
DBGPRINT(DBG_LEVEL_INFO, ("ArpSUpdateArpEntry: Adding entry for IpAddr: ")); ArpSDumpIpAddr(IpAddr, " ..... ");
ASSERT ((ArpEntry->Vc == NULL) || (ArpEntry->Vc == Vc)); ASSERT (ArpEntry->IpAddr == IpAddr);
//
// If the Hw address changed, make sure that there is enough space there to copy the new address
//
if ((HwAddr->SubAddress != NULL) ^ (ArpEntry->HwAddr.SubAddress != NULL)) { PARP_ENTRY *ppEntry, ArpEntryNew;
//
// Need to allocate a new ArpEntry. First de-queue the current
// entry from the list and cancel the timer.
//
ArpSTimerCancel(&ArpEntry->Timer); *(ArpEntry->Prev) = ArpEntry->Next; if (ArpEntry->Next != NULL) ((PENTRY_HDR)(ArpEntry->Next))->Prev = ArpEntry->Prev; pIntF->NumCacheEntries --;
//
// We create the new ArpEntry with a NULL Vc and then update it. This is to avoid
// de-ref and ref of the Vc again.
//
ArpEntryNew = ArpSAddArpEntry(pIntF, IpAddr, &HwAddr->Address, HwAddr->SubAddress, NULL);
if (ArpEntryNew == NULL) { //
// Allocation failure, link back the old entry and bail out.
//
if (ArpEntry->Next != NULL) { ((PENTRY_HDR)(ArpEntry->Next))->Prev = &ArpEntry; }
*(ArpEntry->Prev) = ArpEntry;
ArpSTimerInitialize(&ArpEntry->Timer, ArpSAgeEntry, ARP_AGE);
pIntF->NumCacheEntries ++;
return; }
//
// Update with the existing Vc for now.
//
ArpEntryNew->Vc = ArpEntry->Vc;
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
ASSERT((Vc->ArpEntry == ArpEntry) || (Vc->ArpEntry == NULL)); if (Vc->Flags & ARPVC_ACTIVE) { Vc->ArpEntry = ArpEntryNew; }
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
ArpSFreeBlock(ArpEntry);
ArpEntry = ArpEntryNew; } else { ArpEntry->Age = ARP_AGE; }
if (ArpEntry->Vc != Vc) { ASSERT(ArpEntry->Vc == NULL); if (ArpSReferenceVc(Vc, FALSE)) { ArpEntry->Vc = Vc; } }
COPY_HW_ADDR(&ArpEntry->HwAddr, HwAddr); }
VOID ArpSBuildArpReply( IN PINTF pIntF, IN PARP_ENTRY ArpEntry, IN PARPS_HEADER Header, IN PNDIS_PACKET Pkt ) /*++
Routine Description:
Arguments:
Return Value:
None
--*/ { PUCHAR pSrc, pDst, pDstOld; UINT Tmp, SrcLenOld, SrcLenNew, DstLenNew;
//
// Most of the fields are already valid (or else we will not be here)
//
Header->Opcode = ATMARP_Reply;
pSrc = (PUCHAR)Header + sizeof(ARPS_HEADER); SrcLenOld = DstLenNew = IP_ADDR_LEN + TL_LEN(Header->SrcAddressTL) + TL_LEN(Header->SrcSubAddrTL);
SrcLenNew = IP_ADDR_LEN + ArpEntry->HwAddr.Address.NumberOfDigits; if (ArpEntry->HwAddr.SubAddress != NULL) SrcLenNew += ArpEntry->HwAddr.SubAddress->NumberOfDigits; pDst = pSrc + SrcLenNew;
//
// Fill in the new destination fields from the source fields of the request
//
Header->DstAddressTL = Header->SrcAddressTL; Header->DstSubAddrTL = Header->SrcSubAddrTL; Header->DstProtoAddrLen = Header->SrcProtoAddrLen; MOVE_MEM(pDst, pSrc, DstLenNew);
//
// Fill in the destination fields
//
Header->DstAddressTL = TL(ArpEntry->HwAddr.Address.AddressType, ArpEntry->HwAddr.Address.NumberOfDigits); Header->DstSubAddrTL = 0; if (ArpEntry->HwAddr.SubAddress != NULL) { Header->DstSubAddrTL = TL(ArpEntry->HwAddr.SubAddress->AddressType, ArpEntry->HwAddr.SubAddress->NumberOfDigits); } Header->DstProtoAddrLen = IP_ADDR_LEN;
Tmp = ArpEntry->HwAddr.Address.NumberOfDigits; COPY_MEM(pSrc, ArpEntry->HwAddr.Address.Address, Tmp); if (ArpEntry->HwAddr.SubAddress != NULL) { COPY_MEM(pSrc + Tmp, ArpEntry->HwAddr.SubAddress->Address, ArpEntry->HwAddr.SubAddress->NumberOfDigits); Tmp += ArpEntry->HwAddr.SubAddress->NumberOfDigits; }
*(UNALIGNED IPADDR *)(pSrc + Tmp) = ArpEntry->IpAddr;
DBGPRINT(DBG_LEVEL_INFO, ("BuildReply: Pkt=0x%lx MDL=0x%lx: sz=%lu bc=%lu bo=%lu new bc=%lu\n", Pkt, Pkt->Private.Head, Pkt->Private.Head->Size, Pkt->Private.Head->ByteCount, Pkt->Private.Head->ByteOffset, SrcLenNew + DstLenNew + sizeof(ARPS_HEADER)));
//
// Finally set the Pkt length correctly
//
NdisAdjustBufferLength(Pkt->Private.Head, SrcLenNew + DstLenNew + sizeof(ARPS_HEADER)); Pkt->Private.ValidCounts = FALSE; }
BOOLEAN ArpSAgeEntry( IN PINTF pIntF, IN PTIMER Timer, IN BOOLEAN TimerShuttingDown ) /*++
Routine Description:
Check this ARP entry and if it ages out, free it.
Arguments:
Return Value:
--*/ { PARP_ENTRY ArpEntry; BOOLEAN rc;
ArpEntry = CONTAINING_RECORD(Timer, ARP_ENTRY, Timer);
ArpEntry->Age --; if (TimerShuttingDown || (ArpEntry->Age == 0)) { DBGPRINT(DBG_LEVEL_INFO, ("ArpSAgeEntry: Aging out entry for IpAddr %lx\n", ArpEntry->IpAddr));
pIntF->ArpStats.CurrentArpEntries--; if (ArpEntry->Next != NULL) { ((PENTRY_HDR)(ArpEntry->Next))->Prev = ArpEntry->Prev; } *(ArpEntry->Prev) = ArpEntry->Next; pIntF->NumCacheEntries --; //
// if there is an open Vc, make sure it is not pointing to this arpentry
//
CLEANUP_DEAD_VC(ArpEntry); ArpSFreeBlock(ArpEntry); rc = FALSE; } else { //
// Cleanup dead vcs
//
CLEANUP_DEAD_VC(ArpEntry); rc = TRUE; DBGPRINT(DBG_LEVEL_INFO, ("ArpSAgeEntry: IpAddr %lx age %02d:%02d\n", ArpEntry->IpAddr, ArpEntry->Age/4, (ArpEntry->Age % 4) * 15)); }
return rc; }
BOOLEAN ArpSDeleteIntFAddresses( IN PINTF pIntF, IN INT NumAddresses, IN PATM_ADDRESS AddrList ) //
// Return TRUE IFF the NdisCoRequest has been called EXACTLY NumAddresses times.
//
{ PNDIS_REQUEST NdisRequest; NDIS_STATUS Status; PCO_ADDRESS pCoAddr;
DBGPRINT(DBG_LEVEL_INFO, ("ArpSDeleteIntFAddresses: pIntF %p: %Z, NumAddr %d\n", pIntF, &pIntF->InterfaceName, NumAddresses));
while (NumAddresses--) { NdisRequest = ALLOC_NP_MEM(sizeof(NDIS_REQUEST) + sizeof(CO_ADDRESS) + sizeof(ATM_ADDRESS), POOL_TAG_REQ); if (NdisRequest == NULL) { LOG_ERROR(NDIS_STATUS_RESOURCES); return FALSE; }
ZERO_MEM(NdisRequest, sizeof(NDIS_REQUEST) + sizeof(CO_ADDRESS) + sizeof(ATM_ADDRESS)); NdisRequest->RequestType = NdisRequestSetInformation; NdisRequest->DATA.SET_INFORMATION.Oid = OID_CO_DELETE_ADDRESS; NdisRequest->DATA.SET_INFORMATION.InformationBuffer = (PUCHAR)NdisRequest + sizeof(NDIS_REQUEST); NdisRequest->DATA.SET_INFORMATION.InformationBufferLength = sizeof(CO_ADDRESS) + sizeof(ATM_ADDRESS);
//
// Copy the address into the request
//
pCoAddr = NdisRequest->DATA.SET_INFORMATION.InformationBuffer; pCoAddr->AddressSize = sizeof(ATM_ADDRESS); *(PATM_ADDRESS)(pCoAddr->Address) = *AddrList++;
if (pIntF->NdisAfHandle == NULL) { //
// Can happen if ATMUNI was unbound and we closed the AF handle
// on receiving an OID_CO_AF_CLOSE.
//
Status = NDIS_STATUS_SUCCESS; } else { Status = NdisCoRequest(pIntF->NdisBindingHandle, pIntF->NdisAfHandle, NULL, NULL, NdisRequest); }
if (Status != NDIS_STATUS_PENDING) { ArpSCoRequestComplete(Status, pIntF, NULL, NULL, NdisRequest); } }
return TRUE; }
VOID ArpSQueryAndSetAddresses( IN PINTF pIntF ) { PNDIS_REQUEST NdisRequest; PCO_ADDRESS pCoAddr; NDIS_STATUS Status; UINT Size;
DBGPRINT(DBG_LEVEL_INFO, ("Querying current address\n"));
//
// Allocate a request to query the configured address
//
Size = sizeof(NDIS_REQUEST) + sizeof(CO_ADDRESS_LIST) + sizeof(CO_ADDRESS) + sizeof(ATM_ADDRESS); NdisRequest = ALLOC_NP_MEM(Size, POOL_TAG_REQ); if (NdisRequest == NULL) { LOG_ERROR(NDIS_STATUS_RESOURCES); return; }
ZERO_MEM(NdisRequest, Size); NdisRequest->RequestType = NdisRequestQueryInformation; NdisRequest->DATA.QUERY_INFORMATION.Oid = OID_CO_GET_ADDRESSES; NdisRequest->DATA.QUERY_INFORMATION.InformationBuffer = ((PUCHAR)NdisRequest + sizeof(NDIS_REQUEST)); NdisRequest->DATA.QUERY_INFORMATION.InformationBufferLength = Size - sizeof(NDIS_REQUEST);
if (pIntF->NdisAfHandle == NULL) { Status = NDIS_STATUS_FAILURE; } else { Status = NdisCoRequest(pIntF->NdisBindingHandle, pIntF->NdisAfHandle, NULL, NULL, NdisRequest); }
if (Status != NDIS_STATUS_PENDING) { ArpSCoRequestComplete(Status, pIntF, NULL, NULL, NdisRequest); } }
VOID ArpSValidateAndSetRegdAddresses( IN PINTF pIntF, // LOCKIN NOLOCKOUT
IN KIRQL OldIrql ) /*++
Initiate the 1st step of the following operations, which complete asynchronously and in order: - Validate 1st address to be registered (by making a call to the dest - if it fails we consider the address validated). - (on successful validation) Register the address with the call manager. - Validate the 2nd address - (on successful validation) Register the 2nd address - etc.. --*/ { PNDIS_REQUEST NdisRequest; PCO_ADDRESS pCoAddr; UINT Size; INT fLockReleased; PREG_ADDR_CTXT pRegAddrCtxt;
DBGPRINT(DBG_LEVEL_INFO, ("Validating and setting regd. addresses\n"));
pRegAddrCtxt = NULL; fLockReleased = FALSE;
do { //
// The state on the ongoing validation and registration process is
// maintained in pIntF->pRegAddrCtxt, which we allocate and initialize
// here.
//
if (pIntF->pRegAddrCtxt != NULL) { //
// There is ongoing work relating to registering already!
// This could happen if we get an OID_CO_ADDRESS_CHANGE when we are
// either processing an earlier one, or are in the process of
// initializing. We get these cases during pnp stress
// ( 1c_reset script against an Olicom 616X) -- Whistler bug#102805
//
break; }
if (pIntF->NumAddressesRegd >= pIntF->NumAllocedRegdAddresses) { ASSERT(pIntF->NumAddressesRegd == pIntF->NumAllocedRegdAddresses);
//
// No addresses to register.
//
DBGPRINT(DBG_LEVEL_INFO, ("ValAndSet: No addresses to register.\n")); break; } pRegAddrCtxt = ALLOC_NP_MEM(sizeof(*pRegAddrCtxt), POOL_TAG_REQ);
if (pRegAddrCtxt == NULL) { LOG_ERROR(NDIS_STATUS_RESOURCES); break; }
ZERO_MEM(pRegAddrCtxt, sizeof(*pRegAddrCtxt));
//
// Attach the context to the IF and add a reference.
// (Can't have the lock when adding the reference)
//
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); if (!ArpSReferenceIntF(pIntF)) { DBGPRINT(DBG_LEVEL_INFO, ("ValAndSet: ERROR: Couldn't ref IntF. .\n")); // Couldn't reference the IF. Fail.
//
fLockReleased = TRUE; break; } ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if (pIntF->pRegAddrCtxt != NULL) { //
// Someone snuck in while we unlocked the IF above!
// We bail out.
//
ASSERT(FALSE); RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); ArpSDereferenceIntF(pIntF); fLockReleased = TRUE; break; }
pIntF->pRegAddrCtxt = pRegAddrCtxt; pRegAddrCtxt->pIntF = pIntF; pRegAddrCtxt = NULL; // so that it is not deallocated in this function.
// Initiate the validation and registration of the first address.
//
ArpSValidateOneRegdAddress(pIntF, OldIrql); //
// (Lock released by above call.)
fLockReleased = TRUE;
//
// The remainder of the validation and registration process happens
// asynchronously.
//
} while (FALSE);
if (pRegAddrCtxt != NULL) { FREE_MEM(pRegAddrCtxt); }
if (!fLockReleased) { RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); } }
VOID ArpSValidateOneRegdAddress( IN PINTF pIntF, // LOCKIN NOLOCKOUT
IN KIRQL OldIrql ) /*++
Routine Description:
Initiates the validation and registration of a single address. "Initiate" consists of creating a vc and making a call to the address. The next step in the process happens after the make call completes (see 05/14/1999 notes.txt entry ("Rogue ARP server detection contd.")) for more details.
One more thing: If there are no addresses to be validated, then this function will DEREF pIntF and FREE pIntF->pRegAddrCtxt (which MUST be NON-NULL).
Arguments:
pIntF Pointer to the interface block. OldIrql Irql before pIntF was locked.
--*/ { NDIS_STATUS Status; INT fLockReleased = FALSE; INT fFreeContext = TRUE;
DBGPRINT( DBG_LEVEL_INFO, ("==>ValidateOneRegAddress(pIntF=0x%p; pCtxt=0x%p).\n", pIntF, pIntF->pRegAddrCtxt));
do { PREG_ADDR_CTXT pRegAddrCtxt; PATM_ADDRESS pDestAtmAddress; pRegAddrCtxt = pIntF->pRegAddrCtxt;
// We expect to be called only if there is a valid pRegAddrCtxt.
//
if (pRegAddrCtxt == NULL) { ASSERT(FALSE); fFreeContext = FALSE; break; }
if (pIntF->Flags & INTF_STOPPING) { DBGPRINT(DBG_LEVEL_INFO, ("ValOneRA: IF stopping, quitting.\n")); // Nothing left to do.
//
break; }
if (pIntF->NumAddressesRegd >= pIntF->NumAllocedRegdAddresses) { DBGPRINT(DBG_LEVEL_INFO, ("ValOneRA: nothing left to do.\n")); // Nothing left to do.
//
break; }
if (pIntF->NumAddressesRegd > pRegAddrCtxt->RegAddrIndex) { // This should never happen.
//
ASSERT(FALSE); break; }
if (pIntF->NumAllocedRegdAddresses <= pRegAddrCtxt->RegAddrIndex) { ASSERT(pIntF->NumAllocedRegdAddresses == pRegAddrCtxt->RegAddrIndex);
DBGPRINT(DBG_LEVEL_INFO, ("ValOneRA: nothing left to do.\n"));
// Nothing left to do.
//
break; }
if (pRegAddrCtxt->NdisVcHandle != NULL) { // We shouldn't be called with a non-null VcHandle.
//
fFreeContext = FALSE; ASSERT(FALSE); break; }
// TODO: use the Flags field.
//
// There is at least one address to try to validate & register. It
// is pIntF->RegAddresses[pRegAddrCtxt->RegAddrIndex].
//
// Create VC
//
Status = NdisCoCreateVc( pIntF->NdisBindingHandle, pIntF->NdisAfHandle, (NDIS_HANDLE)pRegAddrCtxt, &pRegAddrCtxt->NdisVcHandle );
if (Status != NDIS_STATUS_SUCCESS) { pRegAddrCtxt->NdisVcHandle = NULL; break; }
// Set the VC type.
//
pRegAddrCtxt->VcType = VC_TYPE_CHECK_REGADDR;
// Setup call params
//
pDestAtmAddress = &(pIntF->RegAddresses[pRegAddrCtxt->RegAddrIndex]); ArpSSetupValidationCallParams(pRegAddrCtxt, pDestAtmAddress); RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); fLockReleased = TRUE; fFreeContext = FALSE;
DBGPRINT( DBG_LEVEL_INFO, ("ValOneRA: Going to make call. pCallParams=0x%p\n", &pRegAddrCtxt->CallParams)); //
// Make Call (in call complete handler we move on to the next step --
// see 05/14/1999 notes.txt entry for details.)
//
Status = NdisClMakeCall( pRegAddrCtxt->NdisVcHandle, &pRegAddrCtxt->CallParams, NULL, NULL ); if (Status != NDIS_STATUS_PENDING) { ArpSMakeRegAddrCallComplete( Status, pRegAddrCtxt ); Status = NDIS_STATUS_PENDING; } } while (FALSE); if (fFreeContext) { ASSERT(!fLockReleased);
//
// If there is nothing more to be done, unlink the context.
//
ArpSUnlinkRegAddrCtxt(pIntF, OldIrql); //
// IntF lock released in above call.
fLockReleased = TRUE; }
if (!fLockReleased) { RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); }
DBGPRINT(DBG_LEVEL_INFO, ("<==ValidateOneRegAddress.\n")); }
BOOLEAN ArpSReferenceIntF( IN PINTF pIntF ) /*++
Routine Description:
Reference the Interface object.
Arguments:
pIntF Pointer to the interface block.
Return Value:
TRUE Referenced FALSE Interface is closing, cannot reference.
--*/ { KIRQL OldIrql; BOOLEAN rc = TRUE;
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if (pIntF->Flags & INTF_CLOSING) { rc = FALSE; } else { pIntF->RefCount ++; }
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
return rc; }
PINTF ArpSReferenceIntFByName( IN PINTERFACE_NAME pInterface ) /*++
Routine Description:
Reference the Interface object by base-name.
Arguments:
pIntF Pointer to the interface block.
Return Value:
TRUE Referenced FALSE Interface is closing, cannot reference.
--*/ { PINTF pIntF; KIRQL OldIrql; BOOLEAN Found = FALSE, ref = FALSE; ULONG IfIndex;
ACQUIRE_SPIN_LOCK(&ArpSIfListLock, &OldIrql);
for (pIntF = ArpSIfList, IfIndex = 1; pIntF != NULL; pIntF = pIntF->Next, IfIndex++) { if (IfIndex > ArpSIfListSize) { DbgPrint("ATMARPS: RefIntByName: IF list at %p not consistent with list size %d\n", ArpSIfList, ArpSIfListSize); DbgBreakPoint(); break; }
ACQUIRE_SPIN_LOCK_DPC(&pIntF->Lock);
if ((pIntF->FriendlyName.Length == pInterface->Length) && COMP_MEM(pIntF->FriendlyName.Buffer, pInterface->Buffer, pInterface->Length)) { Found = TRUE; if ((pIntF->Flags & INTF_CLOSING) == 0) { pIntF->RefCount ++; ref = TRUE; } }
RELEASE_SPIN_LOCK_DPC(&pIntF->Lock);
if (Found) break; }
if (!ref) { pIntF = NULL; }
RELEASE_SPIN_LOCK(&ArpSIfListLock, OldIrql);
DBGPRINT(DBG_LEVEL_INFO, ("ATMARPS: RefIntfByName:[%ws]: pIntF %p\n", pInterface->Buffer, pIntF));
return pIntF; }
VOID ArpSDereferenceIntF( IN PINTF pIntF ) { KIRQL OldIrql; PINTF * ppIntF; KIRQL EntryIrql;
ARPS_GET_IRQL(&EntryIrql);
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
ASSERT (pIntF->RefCount > 0); pIntF->RefCount --;
if (pIntF->RefCount == 0) { BOOLEAN bFreeIntF = FALSE; ASSERT (pIntF->Flags & INTF_CLOSING);
//
// We need to release and reacquire the lock to get the locks
// in the right order. In the meantime, we need to keep the
// refcount nonzero.
//
pIntF->RefCount = 1; RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
ACQUIRE_SPIN_LOCK(&ArpSIfListLock, &OldIrql); ACQUIRE_SPIN_LOCK_DPC(&pIntF->Lock);
pIntF->RefCount--; // Remove tmp ref added just before.
if (pIntF->RefCount == 0) { //
// As expected, refcount is now back to zero. Also we have
// both list and IF lock held, so we can complete the deinit safely.
//
bFreeIntF = TRUE;
//
// Remove this Interface from the global list IF it is in the list.
//
for (ppIntF = &ArpSIfList; *ppIntF != NULL; ppIntF = &((*ppIntF)->Next)) { if (*ppIntF == pIntF) { *ppIntF = pIntF->Next; ArpSIfListSize--; break; } } //
// Signal anyone waiting for this to happen
//
if (pIntF->CleanupEvent != NULL) { KeSetEvent(pIntF->CleanupEvent, IO_NETWORK_INCREMENT, FALSE); } } else { //
// Some other thread has snuck in and referenced the IF. We
// don't do anything here.
//
}
RELEASE_SPIN_LOCK_DPC(&pIntF->Lock); RELEASE_SPIN_LOCK(&ArpSIfListLock, OldIrql);
if (bFreeIntF) { FREE_MEM(pIntF); } } else { RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); }
ARPS_CHECK_IRQL(EntryIrql); }
BOOLEAN ArpSReferenceVc( IN PARP_VC Vc, IN BOOLEAN bSendRef ) /*++
Routine Description:
Reference the VC.
Arguments:
Vc Pointer to the VC. bSendRef Is this a "pending send" reference?
Return Value:
TRUE Referenced FALSE Interface or VC is closing, cannot reference.
--*/ { PINTF pIntF = Vc->IntF; KIRQL OldIrql; BOOLEAN rc = TRUE;
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if ((Vc->Flags & (ARPVC_CLOSING | ARPVC_CLOSE_PENDING)) != 0) { rc = FALSE; } else { Vc->RefCount ++; if (bSendRef) { Vc->PendingSends ++; } }
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
return rc; }
VOID ArpSDereferenceVc( IN PARP_VC Vc, IN BOOLEAN KillArpEntry, IN BOOLEAN bSendComplete ) { PINTF pIntF = Vc->IntF; KIRQL OldIrql; BOOLEAN bInitiateClose = FALSE;
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if (bSendComplete) { Vc->PendingSends--; }
ASSERT (Vc->RefCount > 0); Vc->RefCount --;
if (Vc->RefCount == 0) { ASSERT ((Vc->Flags & ARPVC_ACTIVE) == 0); ASSERT (Vc->ArpEntry == NULL);
//
// Do other cleanup here
//
RemoveEntryList(&Vc->List);
FREE_MEM(Vc);
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); ArpSDereferenceIntF(pIntF); } else { if (KillArpEntry) { DBGPRINT(DBG_LEVEL_WARN, ("Cleaning dead vc from vc %lx, arpentry %lx\n", Vc, Vc->ArpEntry)); Vc->ArpEntry = NULL; }
if ((Vc->PendingSends == 0) && (Vc->Flags & ARPVC_CLOSE_PENDING)) { bInitiateClose = TRUE; Vc->Flags |= ARPVC_CLOSING; }
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
if (bInitiateClose) { ArpSInitiateCloseCall(Vc); } } }
VOID ArpSSleep( IN UINT TimeInMs ) { #define NUM_100ns_PER_ms -10000L
KTIMER SleepTimer; LARGE_INTEGER TimerValue; NTSTATUS Status;
ARPS_PAGED_CODE( );
DBGPRINT(DBG_LEVEL_WARN, ("=>ArpSSleep(%d)\n", TimeInMs));
ASSERT (KeGetCurrentIrql() < DISPATCH_LEVEL);
KeInitializeTimer(&SleepTimer);
TimerValue.QuadPart = Int32x32To64(TimeInMs, NUM_100ns_PER_ms); KeSetTimer(&SleepTimer, TimerValue, NULL);
WAIT_FOR_OBJECT(Status, &SleepTimer, NULL);
DBGPRINT(DBG_LEVEL_WARN, ("ArpSSleep: woken up, Status 0x%x\n", Status));
// ASSERT (Status == STATUS_TIMEOUT);
}
VOID ArpSFreeGlobalData( VOID ) { }
#if DBG
VOID ArpSDumpPacket( IN PUCHAR Packet, IN UINT PktLen ) { UINT i;
DBGPRINT(DBG_LEVEL_INFO, (" PacketDump: ")); for (i = 0; i < PktLen; i++) { DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%02x ", Packet[i])); }
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("\n")); }
VOID ArpSDumpAddress( IN IPADDR IpAddr, IN PHW_ADDR HwAddr, IN PCHAR String ) { UINT i;
DBGPRINT(DBG_LEVEL_INFO, (" %s IpAddr: ", String)); ArpSDumpIpAddr(IpAddr, ""); ArpSDumpAtmAddr(&HwAddr->Address, ", ");
if (HwAddr->SubAddress != NULL) { ArpSDumpAtmAddr(HwAddr->SubAddress, "\tSub "); } }
VOID ArpSDumpIpAddr( IN IPADDR IpAddr, IN PCHAR String ) { PUCHAR p = (PUCHAR)&IpAddr;
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%d.%d.%d.%d%s", p[0], p[1], p[2], p[3], String)); }
VOID ArpSDumpAtmAddr( IN PATM_ADDRESS AtmAddr, IN PCHAR String ) { UINT i;
DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%sAtmAddr (%s, %d): ", String, (AtmAddr->AddressType == ATM_E164) ? "E164" : "NSAP", AtmAddr->NumberOfDigits)); for (i = 0; i < AtmAddr->NumberOfDigits; i++) { DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("%02x ", AtmAddr->Address[i])); } DBGPRINT(DBG_LEVEL_INFO+DBG_NO_HDR, ("\n")); }
#endif
VOID ArpSSetupValidationCallParams( PREG_ADDR_CTXT pRegAddrCtxt, // LOCKIN LOCKOUT (pIntF lock)
PATM_ADDRESS pAtmAddr ) /*++
Routine Description:
Sets up the call parameters for a validation call (call to verify that another server with the same address doesn't exist.).
Arguments:
pRegAddrCtxt Pointer to the context used to validate and register the address. pRegAddrCtxt->CallParams is filled with the call params. pAtmAddr Destination address.
--*/ { NDIS_STATUS Status; PINTF pIntF;
//
// Set of parameters for a MakeCall
//
PCO_CALL_PARAMETERS pCallParameters; PCO_CALL_MANAGER_PARAMETERS pCallMgrParameters; PQ2931_CALLMGR_PARAMETERS pAtmCallMgrParameters;
//
// All Info Elements that we need to fill:
//
Q2931_IE UNALIGNED * pIe; AAL_PARAMETERS_IE UNALIGNED * pAalIe; ATM_TRAFFIC_DESCRIPTOR_IE UNALIGNED * pTrafficDescriptor; ATM_BROADBAND_BEARER_CAPABILITY_IE UNALIGNED * pBbc; ATM_BLLI_IE UNALIGNED * pBlli; ATM_QOS_CLASS_IE UNALIGNED * pQos;
//
// Total space requirements for the MakeCall
//
ULONG RequestSize;
pIntF = pRegAddrCtxt->pIntF; ASSERT(pIntF->pRegAddrCtxt == pRegAddrCtxt);
//
// Zero out call params. Don't remove this!
//
ZERO_MEM(&pRegAddrCtxt->CallParams, sizeof(pRegAddrCtxt->CallParams)); ZERO_MEM(&pRegAddrCtxt->Buffer, sizeof(pRegAddrCtxt->Buffer));
//
// Distribute space amongst the various structures
//
pCallParameters = &pRegAddrCtxt->CallParams; pCallMgrParameters = &pRegAddrCtxt->CmParams;
//
// Set pointers to link the above structures together
//
pCallParameters->CallMgrParameters = pCallMgrParameters; pCallParameters->MediaParameters = NULL;
pCallMgrParameters->CallMgrSpecific.ParamType = 0; pCallMgrParameters->CallMgrSpecific.Length = sizeof(Q2931_CALLMGR_PARAMETERS) + REGADDR_MAKE_CALL_IE_SPACE;
pAtmCallMgrParameters = (PQ2931_CALLMGR_PARAMETERS) pCallMgrParameters->CallMgrSpecific.Parameters;
//
// Call Manager generic flow parameters:
//
pCallMgrParameters->Transmit.TokenRate = QOS_NOT_SPECIFIED; pCallMgrParameters->Transmit.TokenBucketSize = 9188; pCallMgrParameters->Transmit.MaxSduSize = 9188; pCallMgrParameters->Transmit.PeakBandwidth = QOS_NOT_SPECIFIED; pCallMgrParameters->Transmit.ServiceType = SERVICETYPE_BESTEFFORT;
pCallMgrParameters->Receive.TokenRate = QOS_NOT_SPECIFIED; pCallMgrParameters->Receive.TokenBucketSize = 9188; pCallMgrParameters->Receive.MaxSduSize = 9188; pCallMgrParameters->Receive.PeakBandwidth = QOS_NOT_SPECIFIED; pCallMgrParameters->Receive.ServiceType = SERVICETYPE_BESTEFFORT;
//
// Q2931 Call Manager Parameters:
//
//
// Called address:
//
COPY_MEM((PUCHAR)&(pAtmCallMgrParameters->CalledParty), (PUCHAR)pAtmAddr, sizeof(ATM_ADDRESS));
//
// Calling address:
//
COPY_MEM((PUCHAR)&(pAtmCallMgrParameters->CallingParty), (PUCHAR)&pIntF->ConfiguredAddress, sizeof(ATM_ADDRESS));
//
// RFC 1755 (Sec 5) says that the following IEs MUST be present in the
// SETUP message, so fill them all.
//
// AAL Parameters
// Traffic Descriptor (only for MakeCall)
// Broadband Bearer Capability (only for MakeCall)
// Broadband Low Layer Info
// QoS (only for MakeCall)
//
//
// Initialize the Info Element list
//
pAtmCallMgrParameters->InfoElementCount = 0; pIe = (PQ2931_IE)(pAtmCallMgrParameters->InfoElements);
//
// AAL Parameters:
//
{ UNALIGNED AAL5_PARAMETERS *pAal5;
pIe->IEType = IE_AALParameters; pIe->IELength = SIZEOF_Q2931_IE + SIZEOF_AAL_PARAMETERS_IE; pAalIe = (PAAL_PARAMETERS_IE)pIe->IE; pAalIe->AALType = AAL_TYPE_AAL5; pAal5 = &(pAalIe->AALSpecificParameters.AAL5Parameters); pAal5->ForwardMaxCPCSSDUSize = 9188; pAal5->BackwardMaxCPCSSDUSize = 9188; }
pAtmCallMgrParameters->InfoElementCount++; pIe = (PQ2931_IE)((PUCHAR)pIe + pIe->IELength);
//
// Broadband Lower Layer Information
//
pIe->IEType = IE_BLLI; pIe->IELength = SIZEOF_Q2931_IE + SIZEOF_ATM_BLLI_IE; pBlli = (PATM_BLLI_IE)pIe->IE; COPY_MEM((PUCHAR)pBlli, (PUCHAR)&ArpSDefaultBlli, sizeof(ATM_BLLI_IE));
pAtmCallMgrParameters->InfoElementCount++; pIe = (PQ2931_IE)((PUCHAR)pIe + pIe->IELength);
}
VOID ArpSMakeRegAddrCallComplete( NDIS_STATUS Status, PREG_ADDR_CTXT pRegAddrCtxt ) /*++
Routine Description:
Completion handler for the validation call. On success we drop the call and and move on to the next address. On failure we go on to register this address with the switch. See 05/14/1999 notes.txt entry for the larger context.
Arguments:
Status MakeCall Completion status. pRegAddrCtxt Pointer to the context used to validate and register the address.
--*/ { PINTF pIntF; KIRQL OldIrql;
pIntF = pRegAddrCtxt->pIntF; ASSERT(pIntF->pRegAddrCtxt == pRegAddrCtxt);
DBGPRINT(DBG_LEVEL_INFO, ("==>ArpSMakeRegAddrCallComplete. Status=0x%lx, pIntF=0x%p, pCtxt=0x%p\n", Status, pRegAddrCtxt->pIntF, pRegAddrCtxt ));
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if (Status == NDIS_STATUS_SUCCESS) { DBGPRINT(DBG_LEVEL_ERROR, ("MakeRegAddrCallComplete: Successful call == failed validation; dropping call.\n"));
if (pIntF->Flags & INTF_STOPPING) { //
// When the IF is stopping, we can't rely on
// pIntF->RegAddresses to be still around...
//
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); } else { ATM_ADDRESS AtmAddress; //
// A successful make call is failed validation!
// We log the event, drop the call. The drop call complete handler will
// do the next thing, which is to move on to validating the next address.
//
AtmAddress = pIntF->RegAddresses[pRegAddrCtxt->RegAddrIndex]; // struct copy
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); ArpSLogFailedRegistration(&AtmAddress); }
Status = NdisClCloseCall(pRegAddrCtxt->NdisVcHandle, NULL, NULL, 0); if (Status != NDIS_STATUS_PENDING) { ArpSCloseRegAddrCallComplete(Status, pRegAddrCtxt); } } else { //
// A failed make call is considered a successful validation!
// Delete VC and initiate registration of the address.
//
PNDIS_REQUEST pNdisRequest; NDIS_HANDLE NdisVcHandle; PATM_ADDRESS pValidatedAddress; PCO_ADDRESS pCoAddr; DBGPRINT(DBG_LEVEL_ERROR, ("MakeRegAddrCallComplete: Failed call == successful validation; Adding address.\n"));
ASSERT(pRegAddrCtxt->NdisVcHandle != NULL); NdisVcHandle = pRegAddrCtxt->NdisVcHandle; pRegAddrCtxt->NdisVcHandle = NULL; if (pIntF->Flags & INTF_STOPPING) { // Oh oh, the IF is stopping -- we clean up the VC and call
// ArpSValidateOneRegdAddress -- it will free pRegAddrCtxt.
//
//
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); if (NdisVcHandle != NULL) { (VOID)NdisCoDeleteVc(NdisVcHandle); }
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql); ArpSValidateOneRegdAddress( pIntF, OldIrql ); } else { ASSERT(pRegAddrCtxt->RegAddrIndex < pIntF->NumAllocedRegdAddresses); pValidatedAddress = &(pIntF->RegAddresses[pRegAddrCtxt->RegAddrIndex]); pRegAddrCtxt->RegAddrIndex++; pNdisRequest = &pRegAddrCtxt->Request.NdisRequest; pNdisRequest->RequestType = NdisRequestSetInformation; pNdisRequest->DATA.SET_INFORMATION.Oid = OID_CO_ADD_ADDRESS; pNdisRequest->DATA.SET_INFORMATION.InformationBuffer = (PUCHAR)pNdisRequest + sizeof(NDIS_REQUEST); pNdisRequest->DATA.SET_INFORMATION.InformationBufferLength = sizeof(CO_ADDRESS) + sizeof(ATM_ADDRESS); //
// Copy the address into the request
//
pCoAddr = pNdisRequest->DATA.SET_INFORMATION.InformationBuffer; pCoAddr->AddressSize = sizeof(ATM_ADDRESS); *(PATM_ADDRESS)(pCoAddr->Address) = *pValidatedAddress; RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); if (NdisVcHandle != NULL) { (VOID)NdisCoDeleteVc(NdisVcHandle); } if (pIntF->NdisAfHandle == NULL) { Status = NDIS_STATUS_FAILURE; } else { Status = NdisCoRequest(pIntF->NdisBindingHandle, pIntF->NdisAfHandle, NULL, NULL, pNdisRequest); }
if (Status != NDIS_STATUS_PENDING) { ArpSCoRequestComplete(Status, pIntF, NULL, NULL, pNdisRequest); } } }
DBGPRINT(DBG_LEVEL_INFO, ("<==ArpSMakeRegAddrCallComplete.\n")); }
VOID ArpSCloseRegAddrCallComplete( IN NDIS_STATUS Status, IN PREG_ADDR_CTXT pRegAddrCtxt ) /*++
Routine Description:
Completion handler for the NdisClCloseCall of validation call. Since this is a failed validation, we move on to validating/registration of the next address. See 05/14/1999 notes.txt entry for the larger context.
Arguments:
Status CloseCall Completion status (ignored). pRegAddrCtxt Pointer to the context used to validate and register the address.
--*/ { KIRQL OldIrql; PINTF pIntF; NDIS_HANDLE NdisVcHandle;
DBGPRINT(DBG_LEVEL_INFO, ("==>ArpSCloseRegAddrCallComplete. pIntF=0x%p, pCtxt=0x%p\n", pRegAddrCtxt->pIntF, pRegAddrCtxt ));
pIntF = pRegAddrCtxt->pIntF; ASSERT(pIntF->pRegAddrCtxt == pRegAddrCtxt);
ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
if (!(pIntF->Flags & INTF_STOPPING)) { ASSERT(pRegAddrCtxt->RegAddrIndex < pIntF->NumAllocedRegdAddresses); pRegAddrCtxt->RegAddrIndex++; }
ASSERT(pRegAddrCtxt->NdisVcHandle != NULL); NdisVcHandle = pRegAddrCtxt->NdisVcHandle; pRegAddrCtxt->NdisVcHandle = NULL; RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql); if (NdisVcHandle != NULL) { (VOID)NdisCoDeleteVc(NdisVcHandle); } ACQUIRE_SPIN_LOCK(&pIntF->Lock, &OldIrql);
ArpSValidateOneRegdAddress( pIntF, OldIrql ); //
// Lock released above.
DBGPRINT(DBG_LEVEL_INFO, ("<==ArpSCloseRegAddrCallComplete\n")); }
VOID ArpSUnlinkRegAddrCtxt( PINTF pIntF, // LOCKIN NOLOCKOUT
KIRQL OldIrql ) /*++
Routine Description:
Deref pIntF, remove reference to pRegAddrCtxt = pIntF->pRegAddrCtxt, and free pIntF->pRegAddrCtxt. See 05/14/1999 notes.txt entry for the larger context. Must only be called AFTER all async activity relating to pRegAddrCtxt is over and pRegAddrCtxt->NdisVcHandle is NULL.
Arguments:
Status CloseCall Completion status (ignored). pRegAddrCtxt Pointer to the context used to validate and register the address.
--*/ { PREG_ADDR_CTXT pRegAddrCtxt; DBGPRINT(DBG_LEVEL_INFO, ("==>ArpSUnlinkRegAddrCtxt\n"));
pRegAddrCtxt = pIntF->pRegAddrCtxt; ASSERT(pRegAddrCtxt != NULL); ASSERT(pRegAddrCtxt->pIntF == pIntF); ASSERT(pRegAddrCtxt->NdisVcHandle == NULL); // TODO: -- flags.
FREE_MEM(pRegAddrCtxt); pIntF->pRegAddrCtxt = NULL;
RELEASE_SPIN_LOCK(&pIntF->Lock, OldIrql);
ArpSDereferenceIntF(pIntF); // pRegAddrCtxt;
DBGPRINT(DBG_LEVEL_INFO, ("<==ArpSUnlinkRegAddrCtxt\n")); }
VOID ArpSIncomingRegAddrCloseCall( IN NDIS_STATUS Status, IN PREG_ADDR_CTXT pRegAddrCtxt ) /*++
Routine Description:
Incoming close call handler for the validation call. Currently we do nothing with this. I don't see the need to do anything, because we don't keep the call up for an arbitrary length of time.
However, if/when we decide to keep the call up so that we can try to re-validate after the call goes away, we'll need to do something here.
Arguments:
Status CloseCall Completion status (ignored). pRegAddrCtxt Pointer to the context used to validate and register the address.
--*/ { DBGPRINT(DBG_LEVEL_INFO, ("<==>ArpSIncomingRegAddrCloseCall\n")); }
VOID ArpSLogFailedRegistration( PATM_ADDRESS pAtmAddress ) { WCHAR TxtAddress[2*ATM_ADDRESS_LENGTH+1]; // 2 chars per address byte plus null
WCHAR *StringList[1]; static ULONG SequenceId;
//
// Convert atm address to unicode...
//
{ static PWSTR WHexChars = L"0123456789ABCDEF"; PWSTR StrBuf; ULONG Index; PWSTR pWStr; PUCHAR pAddr; UINT Max;
Max = pAtmAddress->NumberOfDigits;
if (Max > ATM_ADDRESS_LENGTH) { Max = ATM_ADDRESS_LENGTH; } for (Index = 0, pWStr = TxtAddress, pAddr = pAtmAddress->Address; Index < Max; Index++, pAddr++) { *pWStr++ = WHexChars[(*pAddr)>>4]; *pWStr++ = WHexChars[(*pAddr)&0xf]; }
*pWStr = L'\0'; }
StringList[0] = TxtAddress;
(VOID) NdisWriteEventLogEntry( ArpSDriverObject, EVENT_ATMARPS_ADDRESS_ALREADY_EXISTS, SequenceId, // Sequence
1, // NumStrings
&StringList[0], // String list
0, // DataSize
NULL // Data
);
NdisInterlockedIncrement(&SequenceId); }
|