|
|
/*--
Copyright (c) 1997 Microsoft Corporation
Module Name:
neckbadd.c
Abstract:
Environment:
Kernel mode only.
Notes:
Revision History:
--*/
#include "neckbadd.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text (INIT, DriverEntry)
#pragma alloc_text (PAGE, NecKbdCreateClose)
#pragma alloc_text (PAGE, NecKbdInternIoCtl)
#pragma alloc_text (PAGE, NecKbdUnload)
#endif
NTSTATUS DriverEntry ( IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath ) /*++
Routine Description:
Initialize the entry points of the driver.
--*/ { NTSTATUS status = STATUS_SUCCESS; ULONG i;
UNREFERENCED_PARAMETER (RegistryPath);
//
// Fill in all the dispatch entry points with the pass through function
// and the explicitly fill in the functions we are going to intercept
//
for (i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i++) { DriverObject->MajorFunction[i] = NecKbdDispatchPassThrough; }
DriverObject->MajorFunction [IRP_MJ_CREATE] = DriverObject->MajorFunction [IRP_MJ_CLOSE] = NecKbdCreateClose; DriverObject->MajorFunction [IRP_MJ_PNP] = NecKbdPnP; DriverObject->MajorFunction [IRP_MJ_POWER] = NecKbdPower; DriverObject->MajorFunction [IRP_MJ_INTERNAL_DEVICE_CONTROL] = NecKbdInternIoCtl;
DriverObject->DriverUnload = NecKbdUnload; DriverObject->DriverExtension->AddDevice = NecKbdAddDevice;
NecKbdServiceParameters(RegistryPath);
return STATUS_SUCCESS; }
NTSTATUS NecKbdAddDevice( IN PDRIVER_OBJECT Driver, IN PDEVICE_OBJECT PDO ) { PDEVICE_EXTENSION devExt; IO_ERROR_LOG_PACKET errorLogEntry; PDEVICE_OBJECT device; NTSTATUS status = STATUS_SUCCESS;
PAGED_CODE();
status = IoCreateDevice(Driver, // driver
sizeof(DEVICE_EXTENSION), // size of extension
NULL, // device name
FILE_DEVICE_8042_PORT, // device type
0, // device characteristics
FALSE, // exclusive
&device // new device
);
if (!NT_SUCCESS(status)) { return (status); }
RtlZeroMemory(device->DeviceExtension, sizeof(DEVICE_EXTENSION));
devExt = (PDEVICE_EXTENSION) device->DeviceExtension; devExt->TopOfStack = IoAttachDeviceToDeviceStack(device, PDO);
if (devExt->TopOfStack == NULL) { IoDeleteDevice(device); return STATUS_DEVICE_NOT_CONNECTED; }
ASSERT(devExt->TopOfStack);
devExt->Self = device; devExt->PDO = PDO; devExt->DeviceState = PowerDeviceD0;
devExt->Removed = FALSE; devExt->Started = FALSE;
device->Flags |= DO_BUFFERED_IO; device->Flags |= DO_POWER_PAGABLE; device->Flags &= ~DO_DEVICE_INITIALIZING;
return status; }
NTSTATUS NecKbdComplete( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PVOID Context ) { PKEVENT event; PIO_STACK_LOCATION irpStack; NTSTATUS status = STATUS_SUCCESS;
event = (PKEVENT) Context;
UNREFERENCED_PARAMETER(DeviceObject);
if (Irp->PendingReturned) { IoMarkIrpPending(Irp); }
//
// We could switch on the major and minor functions of the IRP to perform
// different functions, but we know that Context is an event that needs
// to be set.
//
KeSetEvent(event, 0, FALSE);
//
// Allows the caller to use the IRP after it is completed
//
return STATUS_MORE_PROCESSING_REQUIRED; }
NTSTATUS NecKbdCreateClose ( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
Maintain a simple count of the creates and closes sent against this device
--*/ { PIO_STACK_LOCATION irpStack; NTSTATUS status = STATUS_SUCCESS; PDEVICE_EXTENSION devExt;
PAGED_CODE();
irpStack = IoGetCurrentIrpStackLocation(Irp); devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
switch (irpStack->MajorFunction) { case IRP_MJ_CREATE:
if (NULL == devExt->UpperConnectData.ClassService) { //
// No Connection yet. How can we be enabled?
//
status = STATUS_INVALID_DEVICE_STATE; }
break;
case IRP_MJ_CLOSE:
break; }
Irp->IoStatus.Status = status;
//
// Pass on the create and the close
//
return NecKbdDispatchPassThrough(DeviceObject, Irp); }
NTSTATUS NecKbdDispatchPassThrough( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
Passes a request on to the lower driver.
--*/ { PIO_STACK_LOCATION irpStack = IoGetCurrentIrpStackLocation(Irp);
//
// Pass the IRP to the target
//
IoSkipCurrentIrpStackLocation(Irp);
return IoCallDriver( ((PDEVICE_EXTENSION) DeviceObject->DeviceExtension)->TopOfStack, Irp); }
NTSTATUS NecKbdInternIoCtl( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )
/*++
Routine Description:
This routine is the dispatch routine for internal device control requests.
Arguments:
DeviceObject - Pointer to the device object.
Irp - Pointer to the request packet.
Return Value:
Status is returned.
--*/
{ PIO_STACK_LOCATION irpStack; PDEVICE_EXTENSION devExt; KEVENT event; PCONNECT_DATA connectData; PKEYBOARD_TYPEMATIC_PARAMETERS TypematicParameters; NTSTATUS status = STATUS_SUCCESS;
//
// Get a pointer to the device extension.
//
devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
//
// Initialize the returned Information field.
//
Irp->IoStatus.Information = 0;
//
// Get a pointer to the current parameters for this request. The
// information is contained in the current stack location.
//
irpStack = IoGetCurrentIrpStackLocation(Irp);
//
// Case on the device control subfunction that is being performed by the
// requestor.
//
switch (irpStack->Parameters.DeviceIoControl.IoControlCode) {
//
// Connect a keyboard class device driver to the port driver.
//
case IOCTL_INTERNAL_KEYBOARD_CONNECT: //
// Only allow a connection if the keyboard hardware is present.
// Also, only allow one connection.
//
if (devExt->UpperConnectData.ClassService != NULL) { status = STATUS_SHARING_VIOLATION; break; } else if (irpStack->Parameters.DeviceIoControl.InputBufferLength < sizeof(CONNECT_DATA)) { //
// invalid buffer
//
status = STATUS_INVALID_PARAMETER; break; }
//
// Copy the connection parameters to the device extension.
//
connectData = ((PCONNECT_DATA) (irpStack->Parameters.DeviceIoControl.Type3InputBuffer));
devExt->UpperConnectData = *connectData;
connectData->ClassDeviceObject = devExt->Self; connectData->ClassService = NecKbdServiceCallback;
break;
//
// Disconnect a keyboard class device driver from the port driver.
//
case IOCTL_INTERNAL_KEYBOARD_DISCONNECT:
//
// Clear the connection parameters in the device extension.
//
// devExt->UpperConnectData.ClassDeviceObject = NULL;
// devExt->UpperConnectData.ClassService = NULL;
status = STATUS_NOT_IMPLEMENTED; break;
case IOCTL_KEYBOARD_SET_TYPEMATIC: //
// Might want to capture these in the future
//
case IOCTL_KEYBOARD_QUERY_ATTRIBUTES: case IOCTL_KEYBOARD_QUERY_INDICATOR_TRANSLATION: case IOCTL_KEYBOARD_QUERY_INDICATORS: case IOCTL_KEYBOARD_SET_INDICATORS: case IOCTL_KEYBOARD_QUERY_TYPEMATIC: default: break; }
if (!NT_SUCCESS(status)) { return status; }
return NecKbdDispatchPassThrough(DeviceObject, Irp); }
NTSTATUS NecKbdPnP( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine is the dispatch routine for plug and play irps
Arguments:
DeviceObject - Pointer to the device object.
Irp - Pointer to the request packet.
Return Value:
Status is returned.
--*/ { PDEVICE_EXTENSION devExt; PIO_STACK_LOCATION irpStack; NTSTATUS status = STATUS_SUCCESS; KIRQL oldIrql; KEVENT event;
PAGED_CODE();
devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension; irpStack = IoGetCurrentIrpStackLocation(Irp);
switch (irpStack->MinorFunction) { case IRP_MN_START_DEVICE: {
//
// The device is starting.
//
// We cannot touch the device (send it any non pnp irps) until a
// start device has been passed down to the lower drivers.
//
IoCopyCurrentIrpStackLocationToNext(Irp); KeInitializeEvent(&event, NotificationEvent, FALSE );
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) NecKbdComplete, &event, TRUE, TRUE, TRUE); // No need for Cancel
status = IoCallDriver(devExt->TopOfStack, Irp);
if (STATUS_PENDING == status) { KeWaitForSingleObject( &event, Executive, // Waiting for reason of a driver
KernelMode, // Waiting in kernel mode
FALSE, // No allert
NULL); // No timeout
}
if (NT_SUCCESS(status) && NT_SUCCESS(Irp->IoStatus.Status)) { //
// As we are successfully now back from our start device
// we can do work.
//
devExt->Started = TRUE; devExt->Removed = FALSE; }
//
// We must now complete the IRP, since we stopped it in the
// completetion routine with MORE_PROCESSING_REQUIRED.
//
Irp->IoStatus.Status = status; Irp->IoStatus.Information = 0; IoCompleteRequest(Irp, IO_NO_INCREMENT);
break; }
case IRP_MN_REMOVE_DEVICE:
IoSkipCurrentIrpStackLocation(Irp); IoCallDriver(devExt->TopOfStack, Irp);
devExt->Removed = TRUE;
IoDetachDevice(devExt->TopOfStack); IoDeleteDevice(DeviceObject);
status = STATUS_SUCCESS; break;
case IRP_MN_QUERY_REMOVE_DEVICE: case IRP_MN_QUERY_STOP_DEVICE: case IRP_MN_CANCEL_REMOVE_DEVICE: case IRP_MN_CANCEL_STOP_DEVICE: case IRP_MN_FILTER_RESOURCE_REQUIREMENTS: case IRP_MN_STOP_DEVICE: case IRP_MN_QUERY_DEVICE_RELATIONS: case IRP_MN_QUERY_INTERFACE: case IRP_MN_QUERY_CAPABILITIES: case IRP_MN_QUERY_DEVICE_TEXT: case IRP_MN_QUERY_RESOURCES: case IRP_MN_QUERY_RESOURCE_REQUIREMENTS: case IRP_MN_READ_CONFIG: case IRP_MN_WRITE_CONFIG: case IRP_MN_EJECT: case IRP_MN_SET_LOCK: case IRP_MN_QUERY_ID: case IRP_MN_QUERY_PNP_DEVICE_STATE: default: //
// Here the filter driver might modify the behavior of these IRPS
// Please see PlugPlay documentation for use of these IRPs.
//
IoSkipCurrentIrpStackLocation(Irp); status = IoCallDriver(devExt->TopOfStack, Irp); break; }
return status; }
NTSTATUS NecKbdPower( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++
Routine Description:
This routine is the dispatch routine for power irps Does nothing except record the state of the device.
Arguments:
DeviceObject - Pointer to the device object.
Irp - Pointer to the request packet.
Return Value:
Status is returned.
--*/ { PIO_STACK_LOCATION irpStack; NTSTATUS status; PDEVICE_EXTENSION devExt; POWER_STATE powerState; POWER_STATE_TYPE powerType;
devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension; irpStack = IoGetCurrentIrpStackLocation(Irp);
powerType = irpStack->Parameters.Power.Type; powerState = irpStack->Parameters.Power.State;
switch (irpStack->MinorFunction) { case IRP_MN_SET_POWER: Print(("NecKbdPower:Power Setting %s state to %d\n", ((powerType == SystemPowerState) ? "System" : "Device"), powerState.SystemState)); if (powerType == DevicePowerState) { devExt->DeviceState = powerState.DeviceState; }
break;
case IRP_MN_QUERY_POWER: Print(("NecKbdPower:Power query %s status to %d\n", ((powerType == SystemPowerState) ? "System" : "Device"), powerState.SystemState)); break;
default: Print(("NecKbdPower:Power minor (0x%x) no known\n", irpStack->MinorFunction)); break; }
PoStartNextPowerIrp(Irp); IoSkipCurrentIrpStackLocation(Irp); PoCallDriver(devExt->TopOfStack, Irp);
return STATUS_SUCCESS; }
VOID NecKbdServiceCallback( IN PDEVICE_OBJECT DeviceObject, IN PKEYBOARD_INPUT_DATA InputDataStart, IN PKEYBOARD_INPUT_DATA InputDataEnd, IN OUT PULONG InputDataConsumed ) {
PDEVICE_EXTENSION devExt; PKEYBOARD_INPUT_DATA CurrentInputData, CurrentInputDataStart; KEYBOARD_INPUT_DATA TempInputData[2];
devExt = (PDEVICE_EXTENSION) DeviceObject->DeviceExtension;
RtlZeroMemory(TempInputData, sizeof(KEYBOARD_INPUT_DATA) * 2);
CurrentInputData = CurrentInputDataStart = InputDataStart;
while (CurrentInputData < InputDataEnd) {
// Print(("NecKbdServiceCallBack: captured scancode: 0x%2x(%2x)\n",
// CurrentInputData->MakeCode,
// CurrentInputData->Flags
// ));
if (devExt->KeyStatusFlags & STOP_PREFIX) {
if (((CurrentInputData->MakeCode != NUMLOCK_KEY) || ((CurrentInputData->Flags & (KEY_E0|KEY_E1)) != 0) || ((CurrentInputData->Flags & KEY_BREAK) != (devExt->CachedInputData.Flags & KEY_BREAK)))) {
Print(("NecKbdServiceCallBack: clearing prefix of STOP(%s)\n", (CurrentInputData->Flags & KEY_BREAK) ? "Break" : "Make" ));
//
// send cached input data
//
CLASSSERVICE_CALLBACK( &(devExt->CachedInputData), &(devExt->CachedInputData) + 1);
devExt->KeyStatusFlags &= ~STOP_PREFIX; } }
switch (CurrentInputData->MakeCode) {
case CAPS_KEY: case KANA_KEY:
if (CurrentInputData->Flags & (KEY_E0|KEY_E1)) { break; }
if (!(CurrentInputData->Flags & KEY_BREAK)) {
Print(("NecKbdServiceCallBack: Captured %s (Make)\n", ((CurrentInputData->MakeCode == CAPS_KEY) ? "CAPS" : "KANA") ));
if (((CurrentInputData->MakeCode == CAPS_KEY)&&(devExt->KeyStatusFlags & CAPS_PRESSING))|| ((CurrentInputData->MakeCode == KANA_KEY)&&(devExt->KeyStatusFlags & KANA_PRESSING))) {
//
// ignore repeated make code
//
Print(("NecKbdServiceCallBack: ignoring repeated %s(Break)\n", ((CurrentInputData->MakeCode == CAPS_KEY) ? "CAPS" : "KANA") ));
} else {
if (CurrentInputDataStart <= CurrentInputData) {
CLASSSERVICE_CALLBACK( CurrentInputDataStart, CurrentInputData + 1); }
//
// Send break code
//
RtlCopyMemory( (PCHAR)&(TempInputData[0]), (PCHAR)CurrentInputData, sizeof(KEYBOARD_INPUT_DATA) ); TempInputData[0].Flags |= KEY_BREAK;
Print(("NecKbdServiceCallBack: Sending %s(Break)\n", ((CurrentInputData->MakeCode == CAPS_KEY) ? "CAPS" : "KANA") ));
CLASSSERVICE_CALLBACK( &(TempInputData[0]), &(TempInputData[1])); }
if (CurrentInputData->MakeCode == CAPS_KEY) { devExt->KeyStatusFlags |= CAPS_PRESSING; } else { devExt->KeyStatusFlags |= KANA_PRESSING; }
} else {
//
// Break generates no scancode.
//
Print(("NecKbdServiceCallBack: ignoring %s(Break)\n", ((CurrentInputData->MakeCode == CAPS_KEY) ? "CAPS" : "KANA") ));
if (CurrentInputDataStart < CurrentInputData) {
CLASSSERVICE_CALLBACK( CurrentInputDataStart, CurrentInputData); }
if (CurrentInputData->MakeCode == CAPS_KEY) { devExt->KeyStatusFlags &= ~CAPS_PRESSING; } else { devExt->KeyStatusFlags &= ~KANA_PRESSING; }
} CurrentInputDataStart = CurrentInputData + 1;
break;
case CTRL_KEY:
if ((CurrentInputData->Flags & (KEY_E0|KEY_E1)) == KEY_E1) {
Print(("NecKbdServiceCallBack: prefix of STOP(%s)\n", (CurrentInputData->Flags & KEY_BREAK) ? "Break" : "Make" ));
if (CurrentInputDataStart < CurrentInputData) { CLASSSERVICE_CALLBACK( CurrentInputDataStart, CurrentInputData); }
RtlCopyMemory( (PCHAR)&(devExt->CachedInputData), (PCHAR)CurrentInputData, sizeof(KEYBOARD_INPUT_DATA) );
devExt->KeyStatusFlags |= STOP_PREFIX; CurrentInputDataStart = CurrentInputData + 1; }
break;
case NUMLOCK_KEY:
if ((CurrentInputData->Flags & (KEY_E0|KEY_E1)) == 0) {
if (devExt->KeyStatusFlags & STOP_PREFIX) {
if ((CurrentInputData->Flags & KEY_BREAK) == (devExt->CachedInputData.Flags & KEY_BREAK)) {
//
// it is STOP key
//
Print(("NecKbdServiceCallBack: Captured STOP(%s)\n", ((CurrentInputData->Flags & KEY_BREAK) ? "Break" : "Make") ));
devExt->KeyStatusFlags &= ~STOP_PREFIX;
//
// make packets for 0x1d
//
RtlCopyMemory( (PCHAR)&(TempInputData[0]), (PCHAR)CurrentInputData, sizeof(KEYBOARD_INPUT_DATA) ); TempInputData[0].MakeCode = CTRL_KEY; TempInputData[0].Flags &= ~(KEY_E0|KEY_E1);
//
// make packet for 0x46+E0
//
RtlCopyMemory( (PCHAR)&(TempInputData[1]), (PCHAR)CurrentInputData, sizeof(KEYBOARD_INPUT_DATA) ); TempInputData[1].MakeCode = STOP_KEY; TempInputData[1].Flags |= KEY_E0; TempInputData[1].Flags &= ~KEY_E1;
//
// send packets 0x1d, 0x46+E0
//
CLASSSERVICE_CALLBACK( &(TempInputData[0]), &(TempInputData[1]));
CurrentInputDataStart = CurrentInputData + 1;
} else {
//
// invalid prefix. send it as is.
//
Print(("NecKbdServiceCallBack: invalid prefix for STOP(%s)\n", ((CurrentInputData->Flags & KEY_BREAK) ? "Break" : "Make") ));
}
} else {
//
// it is vf3 key. it behaves as F13 or NumLock
//
Print(("NecKbdServiceCallBack: Captured vf3(VfKeyEmulation is %s)\n", ((VfKeyEmulation) ? "On" : "Off") ));
if (!(VfKeyEmulation)) { CurrentInputData->MakeCode = VF3_KEY; CurrentInputData->Flags &= ~(KEY_E0|KEY_E1); }
} }
break;
//
// ScrollLock can emulate VF4
//
case SCROLL_LOCK_KEY:
if ((CurrentInputData->Flags & (KEY_E0|KEY_E1)) == 0) {
Print(("NecKbdServiceCallBack: Captured vf4(VfKeyEmulation is %s)\n", ((VfKeyEmulation) ? "On" : "Off") ));
if (!(VfKeyEmulation)) { CurrentInputData->MakeCode = VF4_KEY; CurrentInputData->Flags &= ~(KEY_E0|KEY_E1); } }
break;
//
// hankaku/zenkaku can emulate VF5
//
case HANKAKU_ZENKAKU_KEY:
if ((CurrentInputData->Flags & (KEY_E0|KEY_E1)) == 0) {
Print(("NecKbdServiceCallBack: Captured vf5(VfKeyEmulation is %s)\n", ((VfKeyEmulation) ? "On" : "Off") ));
if (!(VfKeyEmulation)) { CurrentInputData->MakeCode = VF5_KEY; CurrentInputData->Flags &= ~(KEY_E0|KEY_E1); } }
break;
//
// the others(sent as is)
//
default: break; }
CurrentInputData++;
}
//
// flush InputData
//
if (CurrentInputDataStart < InputDataEnd) { if (devExt->KeyStatusFlags & STOP_PREFIX) { CLASSSERVICE_CALLBACK( CurrentInputDataStart, InputDataEnd - 1); } else { CLASSSERVICE_CALLBACK( CurrentInputDataStart, InputDataEnd); } }
}
VOID NecKbdUnload( IN PDRIVER_OBJECT Driver ) /*++
Routine Description:
Free all the allocated resources associated with this driver.
Arguments:
DriverObject - Pointer to the driver object.
Return Value:
None.
--*/
{ PAGED_CODE(); ASSERT(NULL == Driver->DeviceObject); return; }
VOID NecKbdServiceParameters( IN PUNICODE_STRING RegistryPath )
/*++
Routine Description:
This routine retrieves this driver's service parameters information from the registry.
Arguments:
RegistryPath - Pointer to the null-terminated Unicode name of the registry path for this driver.
Return Value:
None.
--*/
{ NTSTATUS Status = STATUS_SUCCESS; PRTL_QUERY_REGISTRY_TABLE Parameters = NULL; PWSTR Path = NULL; UNICODE_STRING ParametersPath; ULONG QueriedVfKeyEmulation = 0; ULONG DefaultVfKeyEmulation = 0; USHORT queries = 1;
PAGED_CODE();
ParametersPath.Buffer = NULL;
//
// Registry path is already null-terminated, so just use it.
//
Path = RegistryPath->Buffer;
if (NT_SUCCESS(Status)) {
//
// Allocate the Rtl query table.
//
Parameters = ExAllocatePool( PagedPool, sizeof(RTL_QUERY_REGISTRY_TABLE) * (queries + 1) );
if (!Parameters) {
Print(("NecKbdServiceParameters: couldn't allocate table for Rtl query to %ws for %ws\n", pwParameters, Path )); Status = STATUS_UNSUCCESSFUL;
} else {
RtlZeroMemory( Parameters, sizeof(RTL_QUERY_REGISTRY_TABLE) * (queries + 1) );
//
// Form a path to this driver's Parameters subkey.
//
RtlInitUnicodeString( &ParametersPath, NULL ); ParametersPath.MaximumLength = RegistryPath->Length + (wcslen(pwParameters) * sizeof(WCHAR) ) + sizeof(UNICODE_NULL);
ParametersPath.Buffer = ExAllocatePool( PagedPool, ParametersPath.MaximumLength );
if (!ParametersPath.Buffer) {
Print(("NecKbdServiceParameters: Couldn't allocate string for path to %ws for %ws\n", pwParameters, Path )); Status = STATUS_UNSUCCESSFUL;
} } }
if (NT_SUCCESS(Status)) {
//
// Form the parameters path.
//
RtlZeroMemory( ParametersPath.Buffer, ParametersPath.MaximumLength ); RtlAppendUnicodeToString( &ParametersPath, Path ); RtlAppendUnicodeToString( &ParametersPath, pwParameters );
//
// Gather all of the "user specified" information from
// the registry.
//
Parameters[0].Flags = RTL_QUERY_REGISTRY_DIRECT; Parameters[0].Name = pwVfKeyEmulation; Parameters[0].EntryContext = &QueriedVfKeyEmulation; Parameters[0].DefaultType = REG_DWORD; Parameters[0].DefaultData = &DefaultVfKeyEmulation; Parameters[0].DefaultLength = sizeof(ULONG);
Status = RtlQueryRegistryValues( RTL_REGISTRY_ABSOLUTE | RTL_REGISTRY_OPTIONAL, ParametersPath.Buffer, Parameters, NULL, NULL );
if (!NT_SUCCESS(Status)) { Print(("NecKbdServiceParameters: RtlQueryRegistryValues failed (0x%x)\n", Status)); } }
if (!NT_SUCCESS(Status)) {
//
// assign driver defaults.
//
VfKeyEmulation = (DefaultVfKeyEmulation == 0) ? FALSE : TRUE;
} else {
VfKeyEmulation = (QueriedVfKeyEmulation == 0) ? FALSE : TRUE;
}
Print(("NecKbdServiceParameters: VfKeyEmulation is %s\n", VfKeyEmulation ? "Enable" : "Disable"));
//
// Free the allocated memory before returning.
//
if (ParametersPath.Buffer) ExFreePool(ParametersPath.Buffer); if (Parameters) ExFreePool(Parameters); }
|