|
|
/*++
Copyright (C) Microsoft Corporation, 1997 - 1999
Module Name:
example.cpp
Abstract:
This is a plug-in for the smart card driver test suite. This plug-in is smart card dependent
Author:
Klaus U. Schutz
Environment:
Win32 application
Revision History :
Nov. 1997 - initial version
--*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <afx.h>
#include <afxtempl.h>
#include <winioctl.h>
#include "winsmcrd.h"
#include "ifdtest.h"
void MyCardEntry(class CCardProvider& in_CCardProvider);
//
// Create a card provider object
// Note: all global varibales and all functions have to be static
//
static class CCardProvider MyCard(MyCardEntry); static ULONG MyCardSetProtocol( class CCardProvider& in_CCardProvider, class CReader& in_CReader ) /*++
Routine Description: This function will be called after the card has been correctly identified. We should here set the protocol that we need for further transmissions
Arguments:
in_CCardProvider - ref. to our card provider object in_CReader - ref. to the reader object
Return Value:
IFDSTATUS_FAILED - we were unable to set the protocol correctly IFDSTATUS_SUCCESS - protocol set correctly
--*/ { ULONG l_lResult;
TestStart("Try to set incorrect protocol T=1"); l_lResult = in_CReader.SetProtocol(SCARD_PROTOCOL_T1);
// The test MUST fail with the incorrect protocol
TEST_CHECK_NOT_SUPPORTED("Set protocol failed", l_lResult); TestEnd();
// Now set the correct protocol
TestStart("Set protocol T=0"); l_lResult = in_CReader.SetProtocol(SCARD_PROTOCOL_T0); TEST_CHECK_SUCCESS("Set protocol failed", l_lResult); TestEnd();
if (l_lResult != ERROR_SUCCESS) {
return IFDSTATUS_FAILED; }
return IFDSTATUS_SUCCESS; }
static ULONG MyCardTest( class CCardProvider& in_CCardProvider, class CReader& in_CReader ) /*++
Routine Description: This serves as the test function for a particular smart card
Arguments:
in_CReader - ref. to class that provides all information for the test
Return Value:
IFDSTATUS value
--*/ {
ULONG l_auNumBytes[] = { 1 , 25, 50, 75, 100, 125, 150, 175, 200, 225, 254 }; ULONG l_uNumBytes = l_auNumBytes[10]; ULONG l_lResult; ULONG l_uResultLength, l_uIndex; PUCHAR l_pchResult; UCHAR l_rgchBuffer[512]; ULONG l_uTest; UCHAR Buf_Tempo[9]; ULONG l_Tempo; ULONG Adresse;
switch (in_CCardProvider.GetTestNo()) {
case 1: TestStart("Buffer boundary test");
//
// Check if the reader correctly determines that
// our receive buffer is too small
//
in_CReader.SetReplyBufferSize(9); l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\x84\x00\x00\x08", 5, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult == ERROR_INSUFFICIENT_BUFFER, "Transmit should fail due to too small buffer" );
TestEnd();
in_CReader.SetReplyBufferSize(2048); break;
case 2: TestStart("3 byte APDU");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xC4\x00", 3, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_INVALID_PARAMETER, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL );
TEST_END(); break;
case 3: // Get Challenge
TestStart("GET CHALLENGE");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xC4\x00\x00\x08", 5, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 10, l_pchResult[8], l_pchResult[9], 0x90, 0x00, NULL, NULL, NULL );
TEST_END();
//
// Submit Alternate Identification Code (AID)
//
TestStart("VERIFY PIN");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\x38\x00\x00\x0A\x01\x02\x03\x04\x05\x06\x07\x08\x09\0x0A", 15, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x08, NULL, NULL, NULL );
TEST_END(); break;
case 4: // Translate of 4 byte APDU (Search for next blank word)
TestStart("SEARCH BLANK WORD");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xA0\x00\x00", // Search for next blank word
4, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x00, NULL, NULL, NULL );
TEST_END();
// Read result of Search for next blank word
TestStart("GET RESPONSE");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xC0\x00\x00\x08", // Read Result command
5, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 10, l_pchResult[8], l_pchResult[9], 0x90, 0x00, NULL, NULL, NULL );
TEST_END(); break;
case 5: // Select Working File 2F01
TestStart("Lc byte incorrect");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xA4\x00\x00\x02\x2F", 6, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_INVALID_PARAMETER, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL );
TEST_END(); break;
case 6: //
// Select Working File 2F01
//
TestStart("SELECT FILE");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xA4\x00\x00\x02\x2F\x01", 7, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x00, NULL, NULL, NULL );
TEST_END(); // Erase memory with restart of work waiting time
TestStart("ERASE BINARY");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\x0E\x00\x00\x02\x00\x78", 7, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x00, NULL, NULL, NULL );
TEST_END(); // Generate a 'test' pattern which will be written to the card
for (l_uIndex = 0; l_uIndex < 256; l_uIndex++) {
l_rgchBuffer[l_uIndex] = (UCHAR) l_uIndex; } // Tpdu for write binary. TB100L can write only 4 byte 4 byte
memcpy(Buf_Tempo, "\xBC\xD0", 2); // writting order
Buf_Tempo[4] = 0x4; //write 4 bytes in the card
// This is the amount of bytes we write to the card
l_uTest = 0; Adresse = 0;
while (l_uTest < 256) { for(l_Tempo=5 ; l_Tempo < 9; l_Tempo++){
Buf_Tempo[l_Tempo] = l_rgchBuffer[l_uTest++]; } Buf_Tempo[2] = 00; // Writting address
Buf_Tempo[3] = (UCHAR) Adresse++; //
// Write
//
TestStart("WRITE BINARY - 4 bytes (%03d)",Adresse); //
// Append number of bytes (note: the buffer contains the pattern already)
//
l_lResult = in_CReader.Transmit( Buf_Tempo, 9, &l_pchResult, &l_uResultLength );
TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x00, NULL, NULL, NULL );
TEST_END(); } // Read 256 bytes
TestStart("READ BINARY - 256 bytes");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xB0\x00\x00\x00", 5, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, l_uNumBytes + 4, l_pchResult[256], l_pchResult[257], 0x90, 0x00, l_pchResult, l_rgchBuffer , l_uNumBytes + 2 );
TEST_END(); break;
case 7: //
// Command with Slave Mode
// Data bytes transferred subsequently (INS')
//
TestStart("GENERATE TEMP KEY");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\x80\x00\x00\x02\x12\x00", 7, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x08, NULL, NULL, NULL );
TEST_END(); break;
case 8: // Select Master File 3F00
TestStart("SELECT FILE");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\xA4\x00\x00\x02\x3F\x00", 7, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SUCCESS, l_uResultLength, 2, l_pchResult[0], l_pchResult[1], 0x90, 0x00, NULL, NULL, NULL );
TEST_END(); // Erase memory on an invalid file => mute card
TestStart("ERASE BINARY");
l_lResult = in_CReader.Transmit( (PUCHAR) "\xBC\x0E\x00\x00\x02\x00\x78", 7, &l_pchResult, &l_uResultLength ); TestCheck( l_lResult, "==", ERROR_SEM_TIMEOUT, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL );
TEST_END(); return IFDSTATUS_END; default: return IFDSTATUS_FAILED; } return IFDSTATUS_SUCCESS; }
static void MyCardEntry( class CCardProvider& in_CCardProvider ) /*++
Routine Description: This function registers all callbacks from the test suite Arguments:
CCardProvider - ref. to card provider class
Return Value:
-
--*/ { // Set protocol callback
in_CCardProvider.SetProtocol(MyCardSetProtocol);
// Card test callback
in_CCardProvider.SetCardTest(MyCardTest);
// Name of our card
in_CCardProvider.SetCardName("Bull");
// Maximum number of tests
in_CCardProvider.SetAtr((PBYTE) "\x3f\x67\x25\x00\x21\x20\x00\x0F\x68\x90\x00", 11); }
|