|
|
/******************************Module*Header***********************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: lines.c * * Contains the code for drawing short fractional endpoint lines and * longer lines with strips. * * Copyright (C) 1994-1998 3Dlabs Inc. Ltd. All rights reserved. * Copyright (C) 1995-1999 Microsoft Corporation. All rights reserved. ******************************************************************************/ #include "precomp.h"
#define SWAPL(x,y,t) {t = x; x = y; y = t;}
#define ABS(a) ((a) < 0 ? -(a) : (a))
FLONG gaflRound[] = { FL_H_ROUND_DOWN | FL_V_ROUND_DOWN, // no flips
FL_H_ROUND_DOWN | FL_V_ROUND_DOWN, // FL_FLIP_D
FL_H_ROUND_DOWN, // FL_FLIP_V
FL_V_ROUND_DOWN, // FL_FLIP_V | FL_FLIP_D
FL_V_ROUND_DOWN, // FL_FLIP_SLOPE_ONE
0xbaadf00d, // FL_FLIP_SLOPE_ONE | FL_FLIP_D
FL_H_ROUND_DOWN, // FL_FLIP_SLOPE_ONE | FL_FLIP_V
0xbaadf00d // FL_FLIP_SLOPE_ONE | FL_FLIP_V
// | FL_FLIP_D
};
BOOL bIntegerLine(PDev*, ULONG, ULONG, ULONG, ULONG); BOOL bHardwareLine(PDev*, POINTFIX*, POINTFIX*);
//------------------------------------------------------------------------------
//
// BOOL bLines(ppdev, pptfxFirst, pptfxBuf, cptfx, pls,
// prclClip, apfn[], flStart)
//
// Computes the DDA for the line and gets ready to draw it. Puts the
// pixel data into an array of strips, and calls a strip routine to
// do the actual drawing.
//
// Doing Lines Right
// -----------------
//
// In NT, all lines are given to the device driver in fractional
// coordinates, in a 28.4 fixed point format. The lower 4 bits are
// fractional for sub-pixel positioning.
//
// Note that you CANNOT! just round the coordinates to integers
// and pass the results to your favorite integer Bresenham routine!!
// (Unless, of course, you have such a high resolution device that
// nobody will notice -- not likely for a display device.) The
// fractions give a more accurate rendering of the line -- this is
// important for things like our Bezier curves, which would have 'kinks'
// if the points in its polyline approximation were rounded to integers.
//
// Unfortunately, for fractional lines there is more setup work to do
// a DDA than for integer lines. However, the main loop is exactly
// the same (and can be done entirely with 32 bit math).
//
// If You've Got Hardware That Does Bresenham
// ------------------------------------------
//
// A lot of hardware limits DDA error terms to 'n' bits. With fractional
// coordinates, 4 bits are given to the fractional part, letting
// you draw in hardware only those lines that lie entirely in a 2^(n-4)
// by 2^(n-4) pixel space.
//
// And you still have to correctly draw those lines with coordinates
// outside that space! Remember that the screen is only a viewport
// onto a 28.4 by 28.4 space -- if any part of the line is visible
// you MUST render it precisely, regardless of where the end points lie.
// So even if you do it in software, somewhere you'll have to have a
// 32 bit DDA routine.
//
// Our Implementation
// ------------------
//
// We employ a run length slice algorithm: our DDA calculates the
// number of pixels that are in each row (or 'strip') of pixels.
//
// We've separated the running of the DDA and the drawing of pixels:
// we run the DDA for several iterations and store the results in
// a 'strip' buffer (which are the lengths of consecutive pixel rows of
// the line), then we crank up a 'strip drawer' that will draw all the
// strips in the buffer.
//
// We also employ a 'half-flip' to reduce the number of strip
// iterations we need to do in the DDA and strip drawing loops: when a
// (normalized) line's slope is more than 1/2, we do a final flip
// about the line y = (1/2)x. So now, instead of each strip being
// consecutive horizontal or vertical pixel rows, each strip is composed
// of those pixels aligned in 45 degree rows. So a line like (0, 0) to
// (128, 128) would generate only one strip.
//
// We also always draw only left-to-right.
//
// Style lines may have arbitrary style patterns. We specially
// optimize the default patterns (and call them 'masked' styles).
//
// The DDA Derivation
// ------------------
//
// Here is how I like to think of the DDA calculation.
//
// We employ Knuth's "diamond rule": rendering a one-pixel-wide line
// can be thought of as dragging a one-pixel-wide by one-pixel-high
// diamond along the true line. Pixel centers lie on the integer
// coordinates, and so we light any pixel whose center gets covered
// by the "drag" region (John D. Hobby, Journal of the Association
// for Computing Machinery, Vol. 36, No. 2, April 1989, pp. 209-229).
//
// We must define which pixel gets lit when the true line falls
// exactly half-way between two pixels. In this case, we follow
// the rule: when two pels are equidistant, the upper or left pel
// is illuminated, unless the slope is exactly one, in which case
// the upper or right pel is illuminated. (So we make the edges
// of the diamond exclusive, except for the top and left vertices,
// which are inclusive, unless we have slope one.)
//
// This metric decides what pixels should be on any line BEFORE it is
// flipped around for our calculation. Having a consistent metric
// this way will let our lines blend nicely with our curves. The
// metric also dictates that we will never have one pixel turned on
// directly above another that's turned on. We will also never have
// a gap; i.e., there will be exactly one pixel turned on for each
// column between the start and end points. All that remains to be
// done is to decide how many pixels should be turned on for each row.
//
// So lines we draw will consist of varying numbers of pixels on
// successive rows, for example:
//
// ******
// *****
// ******
// *****
//
// We'll call each set of pixels on a row a "strip".
//
// (Please remember that our coordinate space has the origin as the
// upper left pixel on the screen; postive y is down and positive x
// is right.)
//
// Device coordinates are specified as fixed point 28.4 numbers,
// where the first 28 bits are the integer coordinate, and the last
// 4 bits are the fraction. So coordinates may be thought of as
// having the form (x, y) = (M/F, N/F) where F is the constant scaling
// factor F = 2^4 = 16, and M and N are 32 bit integers.
//
// Consider the line from (M0/F, N0/F) to (M1/F, N1/F) which runs
// left-to-right and whose slope is in the first octant, and let
// dM = M1 - M0 and dN = N1 - N0. Then dM >= 0, dN >= 0 and dM >= dN.
//
// Since the slope of the line is less than 1, the edges of the
// drag region are created by the top and bottom vertices of the
// diamond. At any given pixel row y of the line, we light those
// pixels whose centers are between the left and right edges.
//
// Let mL(n) denote the line representing the left edge of the drag
// region. On pixel row j, the column of the first pixel to be
// lit is
//
// iL(j) = ceiling( mL(j * F) / F)
//
// Since the line's slope is less than one:
//
// iL(j) = ceiling( mL([j + 1/2] F) / F )
//
// Recall the formula for our line:
//
// n(m) = (dN / dM) (m - M0) + N0
//
// m(n) = (dM / dN) (n - N0) + M0
//
// Since the line's slope is less than one, the line representing
// the left edge of the drag region is the original line offset
// by 1/2 pixel in the y direction:
//
// mL(n) = (dM / dN) (n - F/2 - N0) + M0
//
// From this we can figure out the column of the first pixel that
// will be lit on row j, being careful of rounding (if the left
// edge lands exactly on an integer point, the pixel at that
// point is not lit because of our rounding convention):
//
// iL(j) = floor( mL(j F) / F ) + 1
//
// = floor( ((dM / dN) (j F - F/2 - N0) + M0) / F ) + 1
//
// = floor( F dM j - F/2 dM - N0 dM + dN M0) / F dN ) + 1
//
// F dM j - [ dM (N0 + F/2) - dN M0 ]
// = floor( ---------------------------------- ) + 1
// F dN
//
// dM j - [ dM (N0 + F/2) - dN M0 ] / F
// = floor( ------------------------------------ ) + 1 (1)
// dN
//
// = floor( (dM j + alpha) / dN ) + 1
//
// where
//
// alpha = - [ dM (N0 + F/2) - dN M0 ] / F
//
// We use equation (1) to calculate the DDA: there are iL(j+1) - iL(j)
// pixels in row j. Because we are always calculating iL(j) for
// integer quantities of j, we note that the only fractional term
// is constant, and so we can 'throw away' the fractional bits of
// alpha:
//
// beta = floor( - [ dM (N0 + F/2) - dN M0 ] / F ) (2)
//
// so
//
// iL(j) = floor( (dM j + beta) / dN ) + 1 (3)
//
// for integers j.
//
// Note if iR(j) is the line's rightmost pixel on row j, that
// iR(j) = iL(j + 1) - 1.
//
// Similarly, rewriting equation (1) as a function of column i,
// we can determine, given column i, on which pixel row j is the line
// lit:
//
// dN i + [ dM (N0 + F/2) - dN M0 ] / F
// j(i) = ceiling( ------------------------------------ ) - 1
// dM
//
// Floors are easier to compute, so we can rewrite this:
//
// dN i + [ dM (N0 + F/2) - dN M0 ] / F + dM - 1/F
// j(i) = floor( ----------------------------------------------- ) - 1
// dM
//
// dN i + [ dM (N0 + F/2) - dN M0 ] / F + dM - 1/F - dM
// = floor( ---------------------------------------------------- )
// dM
//
// dN i + [ dM (N0 + F/2) - dN M0 - 1 ] / F
// = floor( ---------------------------------------- )
// dM
//
// We can once again wave our hands and throw away the fractional bits
// of the remainder term:
//
// j(i) = floor( (dN i + gamma) / dM ) (4)
//
// where
//
// gamma = floor( [ dM (N0 + F/2) - dN M0 - 1 ] / F ) (5)
//
// We now note that
//
// beta = -gamma - 1 = ~gamma (6)
//
// To draw the pixels of the line, we could evaluate (3) on every scan
// line to determine where the strip starts. Of course, we don't want
// to do that because that would involve a multiply and divide for every
// scan. So we do everything incrementally.
//
// We would like to easily compute c , the number of pixels on scan j:
// j
//
// c = iL(j + 1) - iL(j)
// j
//
// = floor((dM (j + 1) + beta) / dN) - floor((dM j + beta) / dN) (7)
//
// This may be rewritten as
//
// c = floor(i + r / dN) - floor(i + r / dN) (8)
// j j+1 j+1 j j
//
// where i , i are integers and r < dN, r < dN.
// j j+1 j j+1
//
// Rewriting (7) again:
//
// c = floor(i + r / dN + dM / dN) - floor(i + r / dN)
// j j j j j
//
//
// = floor((r + dM) / dN) - floor(r / dN)
// j j
//
// This may be rewritten as
//
// c = dI + floor((r + dR) / dN) - floor(r / dN)
// j j j
//
// where dI + dR / dN = dM / dN, dI is an integer and dR < dN.
//
// r is the remainder (or "error") term in the DDA loop: r / dN
// j j
// is the exact fraction of a pixel at which the strip ends. To go
// on to the next scan and compute c we need to know r .
// j+1 j+1
//
// So in the main loop of the DDA:
//
// c = dI + floor((r + dR) / dN) and r = (r + dR) % dN
// j j j+1 j
//
// and we know r < dN, r < dN, and dR < dN.
// j j+1
//
// We have derived the DDA only for lines in the first octant; to
// handle other octants we do the common trick of flipping the line
// to the first octant by first making the line left-to-right by
// exchanging the end-points, then flipping about the lines y = 0 and
// y = x, as necessary. We must record the transformation so we can
// undo them later.
//
// We must also be careful of how the flips affect our rounding. If
// to get the line to the first octant we flipped about x = 0, we now
// have to be careful to round a y value of 1/2 up instead of down as
// we would for a line originally in the first octant (recall that
// "In the case where two pels are equidistant, the upper or left
// pel is illuminated...").
//
// To account for this rounding when running the DDA, we shift the line
// (or not) in the y direction by the smallest amount possible. That
// takes care of rounding for the DDA, but we still have to be careful
// about the rounding when determining the first and last pixels to be
// lit in the line.
//
// Determining The First And Last Pixels In The Line
// -------------------------------------------------
//
// Fractional coordinates also make it harder to determine which pixels
// will be the first and last ones in the line. We've already taken
// the fractional coordinates into account in calculating the DDA, but
// the DDA cannot tell us which are the end pixels because it is quite
// happy to calculate pixels on the line from minus infinity to positive
// infinity.
//
// The diamond rule determines the start and end pixels. (Recall that
// the sides are exclusive except for the left and top vertices.)
// This convention can be thought of in another way: there are diamonds
// around the pixels, and wherever the true line crosses a diamond,
// that pel is illuminated.
//
// Consider a line where we've done the flips to the first octant, and the
// floor of the start coordinates is the origin:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 00000000?1111111
// | 1 00000000 1111111
// | 2 0000000 111111
// | 3 000000 11111
// | 4 00000 ** 1111
// | 5 0000 ****1
// | 6 000 1***
// | 7 00 1 ****
// | 8 ? ***
// | 9 22 3 ****
// | a 222 33 ***
// | b 2222 333 ****
// | c 22222 3333 **
// | d 222222 33333
// | e 2222222 333333
// | f 22222222 3333333
// |
// | 2 3
// v
// +y
//
// If the start of the line lands on the diamond around pixel 0 (shown by
// the '0' region here), pixel 0 is the first pel in the line. The same
// is true for the other pels.
//
// A little more work has to be done if the line starts in the
// 'nether-land' between the diamonds (as illustrated by the '*' line):
// the first pel lit is the first diamond crossed by the line (pixel 1 in
// our example). This calculation is determined by the DDA or slope of
// the line.
//
// If the line starts exactly half way between two adjacent pixels
// (denoted here by the '?' spots), the first pixel is determined by our
// round-down convention (and is dependent on the flips done to
// normalize the line).
//
// Last Pel Exclusive
// ------------------
//
// To eliminate repeatedly lit pels between continuous connected lines,
// we employ a last-pel exclusive convention: if the line ends exactly on
// the diamond around a pel, that pel is not lit. (This eliminates the
// checks we had in the old code to see if we were re-lighting pels.)
//
// The Half Flip
// -------------
//
// To make our run length algorithm more efficient, we employ a "half
// flip". If after normalizing to the first octant, the slope is more
// than 1/2, we subtract the y coordinate from the x coordinate. This
// has the effect of reflecting the coordinates through the line of slope
// 1/2. Note that the diagonal gets mapped into the x-axis after a half
// flip.
//
// How Many Bits Do We Need, Anyway?
// ---------------------------------
//
// Note that if the line is visible on your screen, you must light up
// exactly the correct pixels, no matter where in the 28.4 x 28.4 device
// space the end points of the line lie (meaning you must handle 32 bit
// DDAs, you can certainly have optimized cases for lesser DDAs).
//
// We move the origin to (floor(M0 / F), floor(N0 / F)), so when we
// calculate gamma from (5), we know that 0 <= M0, N0 < F. And we
// are in the first octant, so dM >= dN. Then we know that gamma can
// be in the range [(-1/2)dM, (3/2)dM]. The DDI guarantees us that
// valid lines will have dM and dN values at most 31 bits (unsigned)
// of significance. So gamma requires 33 bits of significance (we store
// this as a 64 bit number for convenience).
//
// When running through the DDA loop, r + dR can have a value in the
// j
// range 0 <= r < 2 dN; thus the result must be a 32 bit unsigned value.
// j
//
// Testing Lines
// -------------
//
// To be NT compliant, a display driver must exactly adhere to GIQ,
// which means that for any given line, the driver must light exactly
// the same pels as does GDI. This can be tested using the Guiman tool
// provided elsewhere in the DDK, and 'ZTest', which draws random lines
// on the screen and to a bitmap, and compares the results.
//
// If You've Got Line Hardware
// ---------------------------
//
// If your hardware already adheres to GIQ, you're all set. Otherwise
// you'll want to look at the S3 sample code and read the following:
//
// 1) You'll want to special case integer-only lines, since they require
// less processing time and are more common (CAD programs will probably
// only ever give integer lines). GDI does not provide a flag saying
// that all lines in a path are integer lines; consequently, you will
// have to explicitly check every line.
//
// 2) You are required to correctly draw any line in the 28.4 device
// space that intersects the viewport. If you have less than 32 bits
// of significance in the hardware for the Bresenham terms, extremely
// long lines would overflow the hardware. For such (rare) cases, you
// can fall back to strip-drawing code, of which there is a C version in
// the S3's lines.cxx (or if your display is a frame buffer, fall back
// to the engine).
//
// 3) If you can explicitly set the Bresenham terms in your hardware, you
// can draw non-integer lines using the hardware. If your hardware has
// 'n' bits of precision, you can draw GIQ lines that are up to 2^(n-5)
// pels long (4 bits are required for the fractional part, and one bit is
// used as a sign bit). Note that integer lines don't require the 4
// fractional bits, so if you special case them as in 1), you can do
// integer lines that are up to 2^(n - 1) pels long. See the S3's
// fastline.asm for an example.
//
//------------------------------------------------------------------------------
BOOL bLines(PDev* ppdev, POINTFIX* pptfxFirst, // Start of first line
POINTFIX* pptfxBuf, // Pointer to buffer of all remaining lines
RUN* prun, // Pointer to runs if doing complex clipping
ULONG cptfx, // Number of points in pptfxBuf or number of runs
// in prun
LINESTATE* pls, // Colour and style info
RECTL* prclClip, // Pointer to clip rectangle if doing simple
// clipping
PFNSTRIP apfn[], // Array of strip functions
FLONG flStart) // Flags for each line
{ ULONG M0; ULONG dM; ULONG N0; ULONG dN; ULONG dN_Original; FLONG fl; LONG x; LONG y;
LONGLONG llBeta; LONGLONG llGamma; LONGLONG dl; LONGLONG ll;
ULONG ulDelta;
ULONG x0; ULONG y0; ULONG x1; ULONG cStylePels; // Major length of line in pixels for styling
ULONG xStart; POINTL ptlStart; STRIP strip; PFNSTRIP pfn; LONG cPels; LONG* plStrip; LONG* plStripEnd; LONG cStripsInNextRun;
POINTFIX* pptfxBufEnd = pptfxBuf + cptfx - 1; // Last point in path record
STYLEPOS spThis; // Style pos for this line
LONG xmask = 0xffff800f; LONG ymask = 0xffffc00f; LONG xmask1 = 0xffff8000; LONG ymask1 = 0xffffc000; PERMEDIA_DECL;
do { //
// Start the DDA calculations
//
M0 = (LONG) pptfxFirst->x; dM = (LONG) pptfxBuf->x;
N0 = (LONG) pptfxFirst->y; dN = (LONG) pptfxBuf->y;
fl = flStart;
//
// Check for non-complex-clipped, non-styled integer endpoint lines
// Essentially, we allow rendering of any line which 'looks' like an
// unclipped solid line. Initialization of hardware will cause the
// correct results to appear
//
if ((fl & (FL_COMPLEX_CLIP | FL_STYLED)) == 0 ) { LONG orx = (LONG) (M0 | dM); LONG ory = (LONG) (N0 | dN);
if (orx < 0) { // At least one point was negative. Compute using abs points.
orx = ABS((LONG)M0) | ABS((LONG)dM); } if (ory < 0) { // At least one point was negative. Compute using abs points.
ory = ABS((LONG)N0) | ABS((LONG)dN); }
DBG_GDI((7, "Lines: Trying Fast Integer %x %x %x %x", M0, N0, dM, dN));
// Call fast integer line routines it integer coordinates
if (((orx & xmask) == 0) && ((ory & ymask) == 0)) { if (bFastIntegerLine(ppdev, M0, N0, dM, dN)) {
if ((fl & FL_READ)) { // If we have a logical op which requires reading from
// the frame buffer, we cannot guarantee
// ContinueNewLine's behaviour when overwriting pixels.
// Also, avoid ContinueNewLine on an MX.
pptfxFirst = pptfxBuf; pptfxBuf++; continue; } else { // This is an optimization to use continue new line
// to draw any subequent integer lines. The loop is
// essentially the same as the outer loop, however, we
// dont need to check for a lot of things that we already
// know. We need to be able to fall out to the standard
// outer loop if we cant handle a line though.
while (TRUE) { // Have we reached the end of the list of points.
if (pptfxBuf == pptfxBufEnd) return(TRUE);
pptfxFirst = pptfxBuf; pptfxBuf++;
M0 = dM; N0 = dN; dM = (LONG) pptfxBuf->x; dN = (LONG) pptfxBuf->y;
// We know M0 and N0 satisfy our criteria for a
// continue new line. Therefore, we just have to
// check the new coordinates
orx = (LONG) dM; ory = (LONG) dN;
if (orx < 0) { // At least one point was negative.
// Recompute or using abs.
orx = ABS((LONG)dM); } if (ory < 0) { // At least one point was negative.
// Recompute or using abs.
ory = ABS((LONG)dN); }
// We need to call the routine to continue
// the line now. If the line is not a fast integer
// line, then we need to break out and try non
// integer lines. In this case, or will still be
// valid, because we know M0, N0 are integer coords
// that Permedia2 can handle.
DBG_GDI((7, "Lines: Trying %x %x %x %x", M0, N0, dM, dN)); if (((orx & xmask) != 0) || ((ory & ymask) != 0) || (!bFastIntegerContinueLine( ppdev, M0, N0, dM, dN))) // Either we cant draw the line or the strip
// drawer failed.
break; } } } }
// Call fast non integer line routines.
if (((orx & xmask1) == 0) && ((ory & ymask1) == 0)) { if (bFastLine(ppdev, M0, N0, dM, dN)) { // This line done, do next line.
pptfxFirst = pptfxBuf; pptfxBuf++; continue; } } }
DBG_GDI((7, "Lines: Slow Lines %x %x %x %x", M0, N0, dM, dN));
if ((LONG) M0 > (LONG) dM) { // Ensure that we run left-to-right:
register ULONG ulTmp; SWAPL(M0, dM, ulTmp); SWAPL(N0, dN, ulTmp); fl |= FL_FLIP_H; }
// Compute the delta dx. The DDI says we can never have a valid delta
// with a magnitude more than 2^31 - 1, but GDI never actually checks
// its transforms. So we have to check for this case to avoid overflow:
dM -= M0; if ((LONG) dM < 0) // We can skip any lines with delta > 2^31 - 1
{ goto Next_Line; }
if ((LONG) dN < (LONG) N0) { // Line runs from bottom to top, so flip across y = 0:
N0 = -(LONG) N0; dN = -(LONG) dN; fl |= FL_FLIP_V; }
dN -= N0; if ((LONG) dN < 0) // We can skip any lines with delta > 2^31 - 1
{ goto Next_Line; }
// We now have a line running left-to-right, top-to-bottom from (M0, N0)
// to (M0 + dM, N0 + dN):
if (dN >= dM) { if (dN == dM) { // Have to special case slopes of one:
fl |= FL_FLIP_SLOPE_ONE; } else { // Since line has slope greater than 1, flip across x = y:
register ULONG ulTmp; SWAPL(dM, dN, ulTmp); SWAPL(M0, N0, ulTmp); fl |= FL_FLIP_D; } }
fl |= gaflRound[(fl & FL_ROUND_MASK) >> FL_ROUND_SHIFT];
//
// Convert M0 and N0 from 28.4 format to normal interger
//
x = LFLOOR((LONG)M0); y = LFLOOR((LONG)N0);
M0 = FXFRAC(M0); N0 = FXFRAC(N0);
// Calculate the remainder term [ dM * (N0 + F/2) - M0 * dN ]:
llGamma = Int32x32To64(dM, N0 + FBITS/2) - Int32x32To64(M0, dN); if (fl & FL_V_ROUND_DOWN) // Adjust so y = 1/2 rounds down
{ llGamma--; }
llGamma >>= FLOG2; llBeta = ~llGamma;
//
// Figure out which pixels are at the ends of the line.
//
// The toughest part of GIQ is determining the start and end pels.
//
// Our approach here is to calculate x0 and x1 (the inclusive start
// and end columns of the line respectively, relative to our normalized
// origin). Then x1 - x0 + 1 is the number of pels in the line. The
// start point is easily calculated by plugging x0 into our line equation
// (which takes care of whether y = 1/2 rounds up or down in value)
// getting y0, and then undoing the normalizing flips to get back
// into device space.
//
// We look at the fractional parts of the coordinates of the start and
// end points, and call them (M0, N0) and (M1, N1) respectively, where
// 0 <= M0, N0, M1, N1 < 16. We plot (M0, N0) on the following grid
// to determine x0:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 ........?xxxxxxx
// | 1 ..........xxxxxx
// | 2 ...........xxxxx
// | 3 ............xxxx
// | 4 .............xxx
// | 5 ..............xx
// | 6 ...............x
// | 7 ................
// | 8 ................
// | 9 ......**........
// | a ........****...x
// | b ............****
// | c .............xxx****
// | d ............xxxx ****
// | e ...........xxxxx ****
// | f ..........xxxxxx
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 2. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) + 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one require a special case for both the start
// and end. For example, if the line ends such that (M1, N1) is (9, 1),
// the line has gone exactly through (8, 0) -- which may be considered
// to be part of 'x' because of rounding! So slopes of exactly slope
// one going through (8, 0) must also be considered as belonging in 'x'.
//
// For lines that go left-to-right, we have the following grid:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 xxxxxxxx?.......
// | 1 xxxxxxx.........
// | 2 xxxxxx..........
// | 3 xxxxx...........
// | 4 xxxx............
// | 5 xxx.............
// | 6 xx..............
// | 7 x...............
// | 8 x...............
// | 9 x.....**........
// | a xx......****....
// | b xxx.........****
// | c xxxx............****
// | d xxxxx........... ****
// | e xxxxxx.......... ****
// | f xxxxxxx.........
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 0. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) - 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one must be handled similarly to the right-to-
// left case.
{
// Calculate x0, x1
ULONG N1 = FXFRAC(N0 + dN); ULONG M1 = FXFRAC(M0 + dM);
//
// Store normal integer in x1, not 28.4 format
//
x1 = LFLOOR(M0 + dM);
if (fl & FL_FLIP_H) { // Line runs right-to-left: <----
// Compute x1:
if (N1 == 0) { if (LROUND(M1, fl & FL_H_ROUND_DOWN)) { x1++; } } else if (ABS((LONG) (N1 - FBITS/2)) + M1 > FBITS) { x1++; }
if ((fl & (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN)) == (FL_FLIP_SLOPE_ONE)) { // Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// pixels, if we're supposed to round x=1/2 down:
if ((N1 > 0) && (M1 == N1 + 8)) x1++;
if ((N0 > 0) && (M0 == N0 + 8)) { x0 = 2; ulDelta = dN; goto right_to_left_compute_y0; } }
// Compute x0:
x0 = 1; ulDelta = 0; if (N0 == 0) { if (LROUND(M0, fl & FL_H_ROUND_DOWN)) { x0 = 2; ulDelta = dN; } } else if (ABS((LONG) (N0 - FBITS/2)) + M0 > FBITS) { x0 = 2; ulDelta = dN; }
// Compute y0:
right_to_left_compute_y0:
y0 = 0; ll = llGamma + (LONGLONG) ulDelta;
if (ll >= (LONGLONG) (2 * dM - dN)) y0 = 2; else if (ll >= (LONGLONG) (dM - dN)) y0 = 1; } else { // ---------------------------------------------------------------
// Line runs left-to-right: ---->
// Compute x1:
x1--;
if (M1 > 0) { if (N1 == 0) { if (LROUND(M1, fl & FL_H_ROUND_DOWN)) x1++; } else if (ABS((LONG) (N1 - FBITS/2)) <= (LONG) M1) { x1++; } }
if ((fl & (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN)) == (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN)) { // Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// pixels, if we're supposed to round x=1/2 down:
if ((M1 > 0) && (N1 == M1 + 8)) x1--;
if ((M0 > 0) && (N0 == M0 + 8)) { x0 = 0; goto left_to_right_compute_y0; } }
// Compute x0:
x0 = 0; if (M0 > 0) { if (N0 == 0) { if (LROUND(M0, fl & FL_H_ROUND_DOWN)) x0 = 1; } else if (ABS((LONG) (N0 - FBITS/2)) <= (LONG) M0) { x0 = 1; } }
// Compute y0:
left_to_right_compute_y0:
y0 = 0; if (llGamma >= (LONGLONG) (dM - (dN & (-(LONG) x0)))) { y0 = 1; } } }
cStylePels = x1 - x0 + 1; if ((LONG) cStylePels <= 0) goto Next_Line;
xStart = x0;
//
// Complex clipping. *
//
if (fl & FL_COMPLEX_CLIP) { dN_Original = dN;
Continue_Complex_Clipping:
if (fl & FL_FLIP_H) { // Line runs right-to-left <-----
x0 = xStart + cStylePels - prun->iStop - 1; x1 = xStart + cStylePels - prun->iStart - 1; } else { // Line runs left-to-right ----->
x0 = xStart + prun->iStart; x1 = xStart + prun->iStop; }
prun++;
// Reset some variables we'll nuke a little later:
dN = dN_Original; pls->spNext = pls->spComplex;
// No overflow since large integer math is used. Both values
// will be positive:
dl = Int32x32To64(x0, dN) + llGamma;
y0 = UInt64Div32To32(dl, dM);
ASSERTDD((LONG) y0 >= 0, "y0 weird: Goofed up end pel calc?"); }
//
// Simple rectangular clipping.
//
if (fl & FL_SIMPLE_CLIP) { ULONG y1; LONG xRight; LONG xLeft; LONG yBottom; LONG yTop;
// Note that y0 and y1 are actually the lower and upper bounds,
// respectively, of the y coordinates of the line (the line may
// have actually shrunk due to first/last pel clipping).
//
// Also note that x0, y0 are not necessarily zero.
RECTL* prcl = &prclClip[(fl & FL_RECTLCLIP_MASK) >> FL_RECTLCLIP_SHIFT];
// Normalize to the same point we've normalized for the DDA
// calculations:
xRight = prcl->right - x; xLeft = prcl->left - x; yBottom = prcl->bottom - y; yTop = prcl->top - y;
if (yBottom <= (LONG) y0 || xRight <= (LONG) x0 || xLeft > (LONG) x1) { Totally_Clipped:
if (fl & FL_STYLED) { pls->spNext += cStylePels; if (pls->spNext >= pls->spTotal2) pls->spNext %= pls->spTotal2; }
goto Next_Line; }
if ((LONG) x1 >= xRight) x1 = xRight - 1;
// We have to know the correct y1, which we haven't bothered to
// calculate up until now. This multiply and divide is quite
// expensive; we could replace it with code similar to that which
// we used for computing y0.
//
// The reason why we need the actual value, and not an upper
// bounds guess like y1 = LFLOOR(dM) + 2 is that we have to be
// careful when calculating x(y) that y0 <= y <= y1, otherwise
// we can overflow on the divide (which, needless to say, is very
// bad).
dl = Int32x32To64(x1, dN) + llGamma;
y1 = UInt64Div32To32(dl, dM);
if (yTop > (LONG) y1) goto Totally_Clipped;
if (yBottom <= (LONG) y1) { y1 = yBottom; dl = Int32x32To64(y1, dM) + llBeta;
x1 = UInt64Div32To32(dl, dN); }
// At this point, we've taken care of calculating the intercepts
// with the right and bottom edges. Now we work on the left and
// top edges:
if (xLeft > (LONG) x0) { x0 = xLeft; dl = Int32x32To64(x0, dN) + llGamma;
y0 = UInt64Div32To32(dl, dM);
if (yBottom <= (LONG) y0) goto Totally_Clipped; }
if (yTop > (LONG) y0) { y0 = yTop; dl = Int32x32To64(y0, dM) + llBeta;
x0 = UInt64Div32To32(dl, dN) + 1;
if (xRight <= (LONG) x0) goto Totally_Clipped; }
ASSERTDD(x0 <= x1, "Improper rectangle clip"); }
//
// Done clipping. Unflip if necessary.
//
ptlStart.x = x + x0; ptlStart.y = y + y0;
if (fl & FL_FLIP_D) { register LONG lTmp; SWAPL(ptlStart.x, ptlStart.y, lTmp); }
if (fl & FL_FLIP_V) { ptlStart.y = -ptlStart.y; }
cPels = x1 - x0 + 1;
// Style calculations.
if (fl & FL_STYLED) { STYLEPOS sp;
spThis = pls->spNext; pls->spNext += cStylePels;
{ if (pls->spNext >= pls->spTotal2) pls->spNext %= pls->spTotal2;
if (fl & FL_FLIP_H) sp = pls->spNext - x0 + xStart; else sp = spThis + x0 - xStart;
ASSERTDD(fl & FL_ARBITRARYSTYLED, "Oops");
// Normalize our target style position:
if ((sp < 0) || (sp >= pls->spTotal2)) { sp %= pls->spTotal2;
// The modulus of a negative number is not well-defined
// in C -- if it's negative we'll adjust it so that it's
// back in the range [0, spTotal2):
if (sp < 0) sp += pls->spTotal2; }
// Since we always draw the line left-to-right, but styling is
// always done in the direction of the original line, we have
// to figure out where we are in the style array for the left
// edge of this line.
if (fl & FL_FLIP_H) { // Line originally ran right-to-left:
sp = -sp; if (sp < 0) sp += pls->spTotal2;
pls->ulStyleMask = ~pls->ulStartMask; pls->pspStart = &pls->aspRtoL[0]; pls->pspEnd = &pls->aspRtoL[pls->cStyle - 1]; } else { // Line originally ran left-to-right:
pls->ulStyleMask = pls->ulStartMask; pls->pspStart = &pls->aspLtoR[0]; pls->pspEnd = &pls->aspLtoR[pls->cStyle - 1]; }
if (sp >= pls->spTotal) { sp -= pls->spTotal; if (pls->cStyle & 1) pls->ulStyleMask = ~pls->ulStyleMask; }
pls->psp = pls->pspStart; while (sp >= *pls->psp) sp -= *pls->psp++;
ASSERTDD(pls->psp <= pls->pspEnd, "Flew off into NeverNeverLand");
pls->spRemaining = *pls->psp - sp; if ((pls->psp - pls->pspStart) & 1) pls->ulStyleMask = ~pls->ulStyleMask; } }
plStrip = &strip.alStrips[0]; plStripEnd = &strip.alStrips[STRIP_MAX]; // Is exclusive
cStripsInNextRun = 0x7fffffff;
strip.ptlStart = ptlStart;
if (2 * dN > dM && !(fl & FL_STYLED) && !(fl & FL_DONT_DO_HALF_FLIP)) { // Do a half flip! Remember that we may doing this on the
// same line multiple times for complex clipping (meaning the
// affected variables should be reset for every clip run):
fl |= FL_FLIP_HALF;
llBeta = llGamma - (LONGLONG) ((LONG) dM); dN = dM - dN; y0 = x0 - y0; // Note this may overflow, but that's okay
}
// Now, run the DDA starting at (ptlStart.x, ptlStart.y)!
strip.flFlips = fl; pfn = apfn[(fl & FL_STRIP_MASK) >> FL_STRIP_SHIFT];
// Now calculate the DDA variables needed to figure out how many pixels
// go in the very first strip:
{ register LONG i; register ULONG dI; register ULONG dR; ULONG r;
if (dN == 0) i = 0x7fffffff; else { dl = Int32x32To64(y0 + 1, dM) + llBeta;
ASSERTDD(dl >= 0, "Oops!");
i = UInt64Div32To32(dl, dN); r = UInt64Mod32To32(dl, dN); i = i - x0 + 1;
dI = dM / dN; dR = dM % dN; // 0 <= dR < dN
ASSERTDD(dI > 0, "Weird dI"); }
ASSERTDD(i > 0 && i <= 0x7fffffff, "Weird initial strip length"); ASSERTDD(cPels > 0, "Zero pel line");
//
// Run the DDA! *
//
while (TRUE) { cPels -= i; if (cPels <= 0) break;
*plStrip++ = i;
if (plStrip == plStripEnd) { strip.cStrips = (LONG)(plStrip - &strip.alStrips[0]); (*pfn)(ppdev, &strip, pls); plStrip = &strip.alStrips[0]; }
i = dI; r += dR;
if (r >= dN) { r -= dN; i++; } }
*plStrip++ = cPels + i;
strip.cStrips = (LONG)(plStrip - &strip.alStrips[0]); (*pfn)(ppdev, &strip, pls);
}
Next_Line:
if (fl & FL_COMPLEX_CLIP) { cptfx--; if (cptfx != 0) goto Continue_Complex_Clipping;
break; } else { pptfxFirst = pptfxBuf; pptfxBuf++; } } while (pptfxBuf <= pptfxBufEnd);
return(TRUE); }// bLines()
|