|
|
/******************************Module*Header**********************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: fillpath.c * * Content: DrvFillPath support * * Copyright (c) 1994-1999 3Dlabs Inc. Ltd. All rights reserved. * Copyright (c) 1995-2003 Microsoft Corporation. All rights reserved. \*****************************************************************************/
//@@BEGIN_DDKSPLIT
// LATER identify convex polygons and special-case?
// LATER identify vertical edges and special-case?
// LATER move pointed-to variables into automatics in search loops
// LATER punt to the engine with segmented framebuffer callbacks
// LATER handle complex clipping
// LATER coalesce rectangles
//@@END_DDKSPLIT
#include "precomp.h"
#include "glint.h"
#define TAKING_ALLOC_STATS 0
#define NUM_BUFFER_POINTS 96 // Maximum number of points in a path
// for which we'll attempt to join
// all the path records so that the
// path may still be drawn by FastFill
#if TAKING_ALLOC_STATS
ULONG BufferHitInFillpath = 0; ULONG BufferMissInFillpath = 0; #endif
// Describe a single non-horizontal edge of a path to fill.
typedef struct _EDGE { PVOID pNext; INT iScansLeft; INT X; INT Y; INT iErrorTerm; INT iErrorAdjustUp; INT iErrorAdjustDown; INT iXWhole; INT iXDirection; INT iWindingDirection; } EDGE, *PEDGE;
// Maximum number of rects we'll fill per call to
// the fill code
#define MAX_PATH_RECTS 50
#define RECT_BYTES (MAX_PATH_RECTS * sizeof(RECTL))
#define EDGE_BYTES (TMP_BUFFER_SIZE - RECT_BYTES)
#define MAX_EDGES (EDGE_BYTES/sizeof(EDGE))
VOID AdvanceAETEdges(EDGE *pAETHead); VOID XSortAETEdges(EDGE *pAETHead); VOID MoveNewEdges(EDGE *pGETHead, EDGE *pAETHead, INT iCurrentY); EDGE * AddEdgeToGET(EDGE *pGETHead, EDGE *pFreeEdge, POINTFIX *ppfxEdgeStart, POINTFIX *ppfxEdgeEnd, RECTL *pClipRect); BOOL ConstructGET(EDGE *pGETHead, EDGE *pFreeEdges, PATHOBJ *ppo, PATHDATA *pd, BOOL bMore, RECTL *pClipRect); void AdjustErrorTerm(INT *pErrorTerm, INT iErrorAdjustUp, INT iErrorAdjustDown, INT yJump, INT *pXStart, INT iXDirection);
/******************************Public*Routine******************************\
* DrvFillPath * * Fill the specified path with the specified brush and ROP. * \**************************************************************************/
BOOL DrvFillPath( SURFOBJ* pso, PATHOBJ* ppo, CLIPOBJ* pco, BRUSHOBJ* pbo, POINTL* pptlBrush, MIX mix, FLONG flOptions) { BYTE jClipping; // clipping type
EDGE *pCurrentEdge; EDGE AETHead; // dummy head/tail node & sentinel for Active Edge Table
EDGE *pAETHead; // pointer to AETHead
EDGE GETHead; // dummy head/tail node & sentinel for Global Edge Table
EDGE *pGETHead; // pointer to GETHead
ULONG ulNumRects; // # of rectangles to draw currently in rectangle list
RECTL *prclRects; // pointer to start of rectangle draw list
INT iCurrentY; // scan line for which we're currently scanning out the
// fill
EDGE *pFreeEdges = NULL; // pointer to memory free for use to store edges
RBRUSH_COLOR rbc; // Realized brush or solid color
ULONG iSolidColor; // Copy of pbo->iSolidColor
GFNFILL *pfnFill; // Points to appropriate fill routine
BOOL bMore; PATHDATA pd; RECTL ClipRect; PDEV *ppdev = (PDEV*) pso->dhpdev; DSURF *pdsurf;
BOOL bRetVal=FALSE; // FALSE until proven TRUE
BOOL bMemAlloced=FALSE; // FALSE until proven TRUE
FLONG flFirstRecord; POINTFIX* pptfxTmp; ULONG cptfxTmp; POINTFIX aptfxBuf[NUM_BUFFER_POINTS]; ULONG logicop; ULONG bgLogicop; GLINT_DECL;
DISPDBG((DBGLVL, "Entering Fill Path"));
// Set up the clipping
if (pco == (CLIPOBJ *) NULL) { // No CLIPOBJ provided, so we don't have to worry about clipping
jClipping = DC_TRIVIAL; } else { // Use the CLIPOBJ-provided clipping
jClipping = pco->iDComplexity; }
// There's nothing to do if there are only one or two points
if (ppo->cCurves <= 2) { goto ReturnTrue; }
// Pass the surface off to GDI if it's a device bitmap that we've
// converted to a DIB:
pdsurf = (DSURF*) pso->dhsurf;
if (pdsurf->dt & DT_DIB) { DISPDBG((DBGLVL, "Passing to GDI")); return(EngFillPath(pdsurf->pso, ppo, pco, pbo, pptlBrush, mix, flOptions)); }
REMOVE_SWPOINTER(pso);
VALIDATE_DD_CONTEXT;
// We'll be drawing to the screen or an off-screen DFB; copy the surface's
// offset now so that we won't need to refer to the DSURF again:
//@@BEGIN_DDKSPLIT
#if 1
//@@END_DDKSPLIT
SETUP_PPDEV_OFFSETS(ppdev, pdsurf); //@@BEGIN_DDKSPLIT
#else
ppdev->DstPixelOrigin = pdsurf->poh->pixOffset; ppdev->xyOffsetDst = MAKEDWORD_XY( pdsurf->poh->x, pdsurf->poh->y ); ppdev->xOffset = pdsurf->poh->x; #endif
//@@END_DDKSPLIT
// It is too difficult to determine interaction between
// multiple paths, if there is more than one, skip this
bMore = PATHOBJ_bEnum(ppo, &pd);
pfnFill = ppdev->pgfnFillSolid; logicop = GlintLogicOpsFromR2[mix & 0xFF]; bgLogicop = GlintLogicOpsFromR2[mix >> 8]; iSolidColor = pbo->iSolidColor; rbc.iSolidColor = iSolidColor; if (rbc.iSolidColor == -1) { rbc.prb = pbo->pvRbrush; if (rbc.prb == NULL) { DISPDBG((DBGLVL, "Realizing brush")); rbc.prb = BRUSHOBJ_pvGetRbrush(pbo); if (rbc.prb == NULL) { return(FALSE); } DISPDBG((DBGLVL, "Realized brush")); } if (rbc.prb->fl & RBRUSH_2COLOR) { pfnFill = ppdev->pgfnFillPatMono; } else { pfnFill = ppdev->pgfnFillPatColor; } }
if (bMore) { // FastFill only knows how to take a single contiguous buffer
// of points. Unfortunately, GDI sometimes hands us paths
// that are split over multiple path data records. Convex
// figures such as Ellipses, Pies and RoundRects are almost
// always given in multiple records. Since probably 90% of
// multiple record paths could still be done by FastFill, for
// those cases we simply copy the points into a contiguous
// buffer...
// First make sure that the entire path would fit in the
// temporary buffer, and make sure the path isn't comprised
// of more than one subpath:
if ((ppo->cCurves >= NUM_BUFFER_POINTS) || (pd.flags & PD_ENDSUBPATH)) { goto SkipFastFill; }
pptfxTmp = &aptfxBuf[0];
RtlCopyMemory(pptfxTmp, pd.pptfx, sizeof(POINTFIX) * pd.count);
pptfxTmp += pd.count; cptfxTmp = pd.count; flFirstRecord = pd.flags; // Remember PD_BEGINSUBPATH flag
do { bMore = PATHOBJ_bEnum(ppo, &pd);
RtlCopyMemory(pptfxTmp, pd.pptfx, sizeof(POINTFIX) * pd.count); cptfxTmp += pd.count; pptfxTmp += pd.count; } while (!(pd.flags & PD_ENDSUBPATH));
// Fake up the path data record:
pd.pptfx = &aptfxBuf[0]; pd.count = cptfxTmp; pd.flags |= flFirstRecord;
// If there's more than one subpath, we can't call FastFill:
DISPDBG((DBGLVL, "More than one subpath!")); if (bMore) goto SkipFastFill; }
if ((*ppdev->pgfnFillPolygon)(ppdev, pd.count, pd.pptfx, iSolidColor, logicop, bgLogicop, pco, rbc.prb, pptlBrush)) { DISPDBG((DBGLVL, "Fast Fill Succeeded")); return(TRUE); }
SkipFastFill:
DISPDBG((DBGLVL, "Fast Fill Skipped"));
if (jClipping != DC_TRIVIAL) { if (jClipping != DC_RECT) { DISPDBG((DBGLVL, "Complex Clipping")); goto ReturnFalse; // there is complex clipping; let GDI fill the path
} // Clip to the clip rectangle
ClipRect = pco->rclBounds; } else { // So the y-clipping code doesn't do any clipping
// /16 so we don't blow the values out when we scale up to GIQ
ClipRect.top = (LONG_MIN + 1) / 16; // +1 to avoid compiler problem
ClipRect.bottom = LONG_MAX / 16; } // Set up working storage in the temporary buffer
prclRects = (RECTL*) ppdev->pvTmpBuffer; // storage for list of rectangles to draw
if (!bMore) { RECTL *rectangle; INT cPoints = pd.count;
// The count can't be less than three, because we got all the edges
// in this subpath, and above we checked that there were at least
// three edges
// If the count is four, check to see if the polygon is really a
// rectangle since we can really speed that up. We'll also check for
// five with the first and last points the same, because under Win 3.1,
// it was required to close polygons
if ((cPoints == 4) || ((cPoints == 5) && (pd.pptfx[0].x == pd.pptfx[4].x) && (pd.pptfx[0].y == pd.pptfx[4].y))) {
rectangle = prclRects;
// We have to start somewhere so assume that most
// applications specify the top left point first
//
// we want to check that the first two points are
// either vertically or horizontally aligned. if
// they are then we check that the last point [3]
// is either horizontally or vertically aligned,
// and finally that the 3rd point [2] is aligned
// with both the first point and the last point.
#define FIX_SHIFT 4L
#define FIX_MASK (- (1 << FIX_SHIFT))
rectangle->top = pd.pptfx[0].y - 1 & FIX_MASK; rectangle->left = pd.pptfx[0].x - 1 & FIX_MASK; rectangle->right = pd.pptfx[1].x - 1 & FIX_MASK;
if (rectangle->left ^ rectangle->right) { if (rectangle->top ^ (pd.pptfx[1].y - 1 & FIX_MASK)) goto not_rectangle;
if (rectangle->left ^ (pd.pptfx[3].x - 1 & FIX_MASK)) goto not_rectangle;
if (rectangle->right ^ (pd.pptfx[2].x - 1 & FIX_MASK)) goto not_rectangle;
rectangle->bottom = pd.pptfx[2].y - 1 & FIX_MASK; if (rectangle->bottom ^ (pd.pptfx[3].y - 1 & FIX_MASK)) goto not_rectangle; } else { if (rectangle->top ^ (pd.pptfx[3].y - 1 & FIX_MASK)) goto not_rectangle;
rectangle->bottom = pd.pptfx[1].y - 1 & FIX_MASK; if (rectangle->bottom ^ (pd.pptfx[2].y - 1 & FIX_MASK)) goto not_rectangle;
rectangle->right = pd.pptfx[2].x - 1 & FIX_MASK; if (rectangle->right ^ (pd.pptfx[3].x - 1 & FIX_MASK)) goto not_rectangle; }
// if the left is greater than the right then
// swap them so the blt code doesn't wig out
if (rectangle->left > rectangle->right) { FIX temp;
temp = rectangle->left; rectangle->left = rectangle->right; rectangle->right = temp; } else { // if left == right there's nothing to draw
if (rectangle->left == rectangle->right) { DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } }
// shift the values to get pixel coordinates
rectangle->left = (rectangle->left >> FIX_SHIFT) + 1; rectangle->right = (rectangle->right >> FIX_SHIFT) + 1;
if (rectangle->top > rectangle->bottom) { FIX temp;
temp = rectangle->top; rectangle->top = rectangle->bottom; rectangle->bottom = temp; } else { if (rectangle->top == rectangle->bottom) { DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } }
// shift the values to get pixel coordinates
rectangle->top = (rectangle->top >> FIX_SHIFT) + 1; rectangle->bottom = (rectangle->bottom >> FIX_SHIFT) + 1;
// Finally, check for clipping
if (jClipping == DC_RECT) { // Clip to the clip rectangle
if (!bIntersect(rectangle, &ClipRect, rectangle)) { // Totally clipped, nothing to do
DISPDBG((DBGLVL, "Nothing to draw")); goto ReturnTrue; } }
// if we get here then the polygon is a rectangle,
// set count to 1 and goto bottom to draw it
ulNumRects = 1; goto draw_remaining_rectangles; }
not_rectangle:
; }
// Do we have enough memory for all the edges?
// LATER does cCurves include closure?
if (ppo->cCurves > MAX_EDGES) { #if TAKING_ALLOC_STATS
BufferMissInFillpath++; #endif
//
// try to allocate enough memory
//
pFreeEdges = (EDGE *) ENGALLOCMEM(FL_ZERO_MEMORY, (ppo->cCurves * sizeof(EDGE)), ALLOC_TAG_GDI(6)); if (pFreeEdges == NULL) { DISPDBG((DBGLVL, "Too many edges")); goto ReturnFalse; // too many edges; let GDI fill the path
} else { bMemAlloced = TRUE; } } else { #if TAKING_ALLOC_STATS
BufferHitInFillpath++; #endif
pFreeEdges = (EDGE*) ((BYTE*) ppdev->pvTmpBuffer + RECT_BYTES); // use our handy temporary buffer (it's big enough)
}
// Initialize an empty list of rectangles to fill
ulNumRects = 0;
// Enumerate the path edges and build a Global Edge Table (GET) from them
// in YX-sorted order.
pGETHead = &GETHead; if (!ConstructGET(pGETHead, pFreeEdges, ppo, &pd, bMore, &ClipRect)) { DISPDBG((DBGLVL, "Outside Range")); goto ReturnFalse; // outside GDI's 2**27 range
}
// Create an empty AET with the head node also a tail sentinel
pAETHead = &AETHead; AETHead.pNext = pAETHead; // mark that the AET is empty
AETHead.X = 0x7FFFFFFF; // this is greater than any valid X value, so
// searches will always terminate
// Top scan of polygon is the top of the first edge we come to
iCurrentY = ((EDGE *)GETHead.pNext)->Y;
// Loop through all the scans in the polygon, adding edges from the GET to
// the Active Edge Table (AET) as we come to their starts, and scanning out
// the AET at each scan into a rectangle list. Each time it fills up, the
// rectangle list is passed to the filling routine, and then once again at
// the end if any rectangles remain undrawn. We continue so long as there
// are edges to be scanned out
while (1) {
// Advance the edges in the AET one scan, discarding any that have
// reached the end (if there are any edges in the AET)
if (AETHead.pNext != pAETHead) { AdvanceAETEdges(pAETHead); }
// If the AET is empty, done if the GET is empty, else jump ahead to
// the next edge in the GET; if the AET isn't empty, re-sort the AET
if (AETHead.pNext == pAETHead) { if (GETHead.pNext == pGETHead) { // Done if there are no edges in either the AET or the GET
break; } // There are no edges in the AET, so jump ahead to the next edge in
// the GET
iCurrentY = ((EDGE *)GETHead.pNext)->Y; } else { // Re-sort the edges in the AET by X coordinate, if there are at
// least two edges in the AET (there could be one edge if the
// balancing edge hasn't yet been added from the GET)
if (((EDGE *)AETHead.pNext)->pNext != pAETHead) { XSortAETEdges(pAETHead); } }
// Move any new edges that start on this scan from the GET to the AET;
// bother calling only if there's at least one edge to add
if (((EDGE *)GETHead.pNext)->Y == iCurrentY) { MoveNewEdges(pGETHead, pAETHead, iCurrentY); }
// Scan the AET into rectangles to fill (there's always at least one
// edge pair in the AET)
pCurrentEdge = AETHead.pNext; // point to the first edge
do { INT iLeftEdge;
// The left edge of any given edge pair is easy to find; it's just
// wherever we happen to be currently
iLeftEdge = pCurrentEdge->X;
// Find the matching right edge according to the current fill rule
if ((flOptions & FP_WINDINGMODE) != 0) { INT iWindingCount;
// Do winding fill; scan across until we've found equal numbers
// of up and down edges
iWindingCount = pCurrentEdge->iWindingDirection; do { pCurrentEdge = pCurrentEdge->pNext; iWindingCount += pCurrentEdge->iWindingDirection; } while (iWindingCount != 0); } else { // Odd-even fill; the next edge is the matching right edge
pCurrentEdge = pCurrentEdge->pNext; }
// See if the resulting span encompasses at least one pixel, and
// add it to the list of rectangles to draw if so
if (iLeftEdge < pCurrentEdge->X) { // We've got an edge pair to add to the list to be filled; see
// if there's room for one more rectangle
if (ulNumRects >= MAX_PATH_RECTS) { // No more room; draw the rectangles in the list and reset
// it to empty
(*pfnFill)(ppdev, ulNumRects, prclRects, logicop, bgLogicop, rbc, pptlBrush);
// Reset the list to empty
ulNumRects = 0; }
// Add the rectangle representing the current edge pair
if (jClipping == DC_RECT) { // Clipped
// Clip to left
prclRects[ulNumRects].left = max(iLeftEdge, ClipRect.left); // Clip to right
prclRects[ulNumRects].right = min(pCurrentEdge->X, ClipRect.right); // Draw only if not fully clipped
if (prclRects[ulNumRects].left < prclRects[ulNumRects].right) { prclRects[ulNumRects].top = iCurrentY; prclRects[ulNumRects].bottom = iCurrentY+1; ulNumRects++; } } else { // Unclipped
prclRects[ulNumRects].top = iCurrentY; prclRects[ulNumRects].bottom = iCurrentY+1; prclRects[ulNumRects].left = iLeftEdge; prclRects[ulNumRects].right = pCurrentEdge->X; ulNumRects++; } } } while ((pCurrentEdge = pCurrentEdge->pNext) != pAETHead);
iCurrentY++; // next scan
}
// Draw the remaining rectangles, if there are any.
draw_remaining_rectangles:
if (ulNumRects > 0) { (*pfnFill)(ppdev, ulNumRects, prclRects, logicop, bgLogicop, rbc, pptlBrush); }
ReturnTrue: DISPDBG((DBGLVL, "Drawn")); bRetVal = TRUE; // done successfully
ReturnFalse:
// bRetVal is originally false. If you jumped to ReturnFalse from somewhere,
// then it will remain false, and be returned.
if (bMemAlloced) { //
// we did allocate memory, so release it
//
ENGFREEMEM(pFreeEdges); }
DISPDBG((DBGLVL, "Returning %s", bRetVal ? "True" : "False")); return(bRetVal); }
// Advance the edges in the AET to the next scan, dropping any for which we've
// done all scans. Assumes there is at least one edge in the AET.
VOID AdvanceAETEdges(EDGE *pAETHead) { EDGE *pLastEdge, *pCurrentEdge;
pLastEdge = pAETHead; pCurrentEdge = pLastEdge->pNext; do {
// Count down this edge's remaining scans
if (--pCurrentEdge->iScansLeft == 0) { // We've done all scans for this edge; drop this edge from the AET
pLastEdge->pNext = pCurrentEdge->pNext; } else { // Advance the edge's X coordinate for a 1-scan Y advance
// Advance by the minimum amount
pCurrentEdge->X += pCurrentEdge->iXWhole; // Advance the error term and see if we got one extra pixel this
// time
pCurrentEdge->iErrorTerm += pCurrentEdge->iErrorAdjustUp; if (pCurrentEdge->iErrorTerm >= 0) { // The error term turned over, so adjust the error term and
// advance the extra pixel
pCurrentEdge->iErrorTerm -= pCurrentEdge->iErrorAdjustDown; pCurrentEdge->X += pCurrentEdge->iXDirection; }
pLastEdge = pCurrentEdge; } } while ((pCurrentEdge = pLastEdge->pNext) != pAETHead); }
// X-sort the AET, because the edges may have moved around relative to
// one another when we advanced them. We'll use a multipass bubble
// sort, which is actually okay for this application because edges
// rarely move relative to one another, so we usually do just one pass.
// Also, this makes it easy to keep just a singly-linked list. Assumes there
// are at least two edges in the AET.
VOID XSortAETEdges(EDGE *pAETHead) { BOOL bEdgesSwapped; EDGE *pLastEdge, *pCurrentEdge, *pNextEdge;
do {
bEdgesSwapped = FALSE; pLastEdge = pAETHead; pCurrentEdge = pLastEdge->pNext; pNextEdge = pCurrentEdge->pNext;
do { if (pNextEdge->X < pCurrentEdge->X) { // Next edge is to the left of the current edge; swap them
pLastEdge->pNext = pNextEdge; pCurrentEdge->pNext = pNextEdge->pNext; pNextEdge->pNext = pCurrentEdge; bEdgesSwapped = TRUE; pCurrentEdge = pNextEdge; // continue sorting before the edge
// we just swapped; it might move
// farther yet
} pLastEdge = pCurrentEdge; pCurrentEdge = pLastEdge->pNext; } while ((pNextEdge = pCurrentEdge->pNext) != pAETHead); } while (bEdgesSwapped); }
// Moves all edges that start on the current scan from the GET to the AET in
// X-sorted order. Parameters are pointer to head of GET and pointer to dummy
// edge at head of AET, plus current scan line. Assumes there's at least one
// edge to be moved.
VOID MoveNewEdges(EDGE *pGETHead, EDGE *pAETHead, INT iCurrentY) { EDGE *pCurrentEdge = pAETHead; EDGE *pGETNext = pGETHead->pNext;
do {
// Scan through the AET until the X-sorted insertion point for this
// edge is found. We can continue from where the last search left
// off because the edges in the GET are in X sorted order, as is
// the AET. The search always terminates because the AET sentinel
// is greater than any valid X
while (pGETNext->X > ((EDGE *)pCurrentEdge->pNext)->X) { pCurrentEdge = pCurrentEdge->pNext; }
// We've found the insertion point; add the GET edge to the AET, and
// remove it from the GET
pGETHead->pNext = pGETNext->pNext; pGETNext->pNext = pCurrentEdge->pNext; pCurrentEdge->pNext = pGETNext; pCurrentEdge = pGETNext; // continue insertion search for the next
// GET edge after the edge we just added
pGETNext = pGETHead->pNext;
} while (pGETNext->Y == iCurrentY); }
// Build the Global Edge Table from the path. There must be enough memory in
// the free edge area to hold all edges. The GET is constructed in Y-X order,
// and has a head/tail/sentinel node at pGETHead.
BOOL ConstructGET( EDGE *pGETHead, EDGE *pFreeEdges, PATHOBJ *ppo, PATHDATA *pd, BOOL bMore, RECTL *pClipRect) { POINTFIX pfxPathStart; // point that started the current subpath
POINTFIX pfxPathPrevious; // point before the current point in a subpath;
// starts the current edge
// Create an empty GET with the head node also a tail sentinel
pGETHead->pNext = pGETHead; // mark that the GET is empty
pGETHead->Y = 0x7FFFFFFF; // this is greater than any valid Y value, so
// searches will always terminate
// PATHOBJ_vEnumStart is implicitly performed by engine
// already and first path is enumerated by the caller.
next_subpath:
// Make sure the PATHDATA is not empty (is this necessary)
if (pd->count != 0) { // If first point starts a subpath, remember it as such
// and go on to the next point, so we can get an edge
if (pd->flags & PD_BEGINSUBPATH) { // the first point starts the subpath; remember it
pfxPathStart = *pd->pptfx; // the subpath starts here
pfxPathPrevious = *pd->pptfx; // this points starts the next edge
pd->pptfx++; // advance to the next point
pd->count--; // count off this point
}
// Add edges in PATHDATA to GET, in Y-X sorted order
while (pd->count--) { if ((pFreeEdges = AddEdgeToGET(pGETHead, pFreeEdges, &pfxPathPrevious, pd->pptfx, pClipRect)) == NULL) { goto ReturnFalse; }
pfxPathPrevious = *pd->pptfx; // current point becomes previous
pd->pptfx++; // advance to the next point
}
// If last point ends the subpath, insert the edge that
// connects to first point (is this built in already?)
if (pd->flags & PD_ENDSUBPATH) { if ((pFreeEdges = AddEdgeToGET(pGETHead, pFreeEdges, &pfxPathPrevious, &pfxPathStart, pClipRect)) == NULL) { goto ReturnFalse; } } }
// The initial loop conditions preclude a do, while or for
if (bMore) { bMore = PATHOBJ_bEnum(ppo, pd); goto next_subpath; }
return(TRUE); // done successfully
ReturnFalse:
return(FALSE); // failed
}
// Adds the edge described by the two passed-in points to the Global Edge
// Table, if the edge spans at least one pixel vertically.
EDGE * AddEdgeToGET(EDGE *pGETHead, EDGE *pFreeEdge, POINTFIX *ppfxEdgeStart, POINTFIX *ppfxEdgeEnd, RECTL *pClipRect) { INT iYStart, iYEnd, iXStart, iXEnd, iYHeight, iXWidth; INT yJump, yTop;
// Set the winding-rule direction of the edge, and put the endpoints in
// top-to-bottom order
iYHeight = ppfxEdgeEnd->y - ppfxEdgeStart->y; if (iYHeight == 0) { return(pFreeEdge); // zero height; ignore this edge
} else if (iYHeight >= 0) { iXStart = ppfxEdgeStart->x; iYStart = ppfxEdgeStart->y; iXEnd = ppfxEdgeEnd->x; iYEnd = ppfxEdgeEnd->y; pFreeEdge->iWindingDirection = 1; } else { iYHeight = -iYHeight; iXEnd = ppfxEdgeStart->x; iYEnd = ppfxEdgeStart->y; iXStart = ppfxEdgeEnd->x; iYStart = ppfxEdgeEnd->y; pFreeEdge->iWindingDirection = -1; }
if (iYHeight & 0x80000000) { return(NULL); // too large; outside 2**27 GDI range
}
// Set the error term and adjustment factors, all in GIQ coordinates for
// now
iXWidth = iXEnd - iXStart; if (iXWidth >= 0) { // Left to right, so we change X as soon as we move at all
pFreeEdge->iXDirection = 1; pFreeEdge->iErrorTerm = -1; } else { // Right to left, so we don't change X until we've moved a full GIQ
// coordinate
iXWidth = -iXWidth; pFreeEdge->iXDirection = -1; pFreeEdge->iErrorTerm = -iYHeight; }
if (iXWidth & 0x80000000) { return(NULL); // too large; outside 2**27 GDI range
}
if (iXWidth >= iYHeight) { // Calculate base run length (minimum distance advanced in X for a 1-
// scan advance in Y)
pFreeEdge->iXWhole = iXWidth / iYHeight; // Add sign back into base run length if going right to left
if (pFreeEdge->iXDirection == -1) { pFreeEdge->iXWhole = -pFreeEdge->iXWhole; } pFreeEdge->iErrorAdjustUp = iXWidth % iYHeight; } else { // Base run length is 0, because line is closer to vertical than
// horizontal
pFreeEdge->iXWhole = 0; pFreeEdge->iErrorAdjustUp = iXWidth; } pFreeEdge->iErrorAdjustDown = iYHeight;
// Calculate the number of pixels spanned by this edge, accounting for
// clipping
// Top true pixel scan in GIQ coordinates
// Shifting to divide and multiply by 16 is okay because the clip rect
// always contains positive numbers
yTop = max(pClipRect->top << 4, (iYStart + 15) & ~0x0F); pFreeEdge->Y = yTop >> 4; // initial scan line on which to fill edge
// Calculate # of scans to actually fill, accounting for clipping
if ((pFreeEdge->iScansLeft = min(pClipRect->bottom, ((iYEnd + 15) >> 4)) - pFreeEdge->Y) <= 0) { return(pFreeEdge); // no pixels at all are spanned, so we can
// ignore this edge
}
// If the edge doesn't start on a pixel scan (that is, it starts at a
// fractional GIQ coordinate), advance it to the first pixel scan it
// intersects. Ditto if there's top clipping. Also clip to the bottom if
// needed
if (iYStart != yTop) { // Jump ahead by the Y distance in GIQ coordinates to the first pixel
// to draw
yJump = yTop - iYStart;
// Advance x the minimum amount for the number of scans traversed
iXStart += pFreeEdge->iXWhole * yJump;
AdjustErrorTerm(&pFreeEdge->iErrorTerm, pFreeEdge->iErrorAdjustUp, pFreeEdge->iErrorAdjustDown, yJump, &iXStart, pFreeEdge->iXDirection); }
// Turn the calculations into pixel rather than GIQ calculations
// Move the X coordinate to the nearest pixel, and adjust the error term
// accordingly
// Dividing by 16 with a shift is okay because X is always positive
pFreeEdge->X = (iXStart + 15) >> 4; // convert from GIQ to pixel coordinates
//@@BEGIN_DDKSPLIT
// LATER adjust only if needed (if prestepped above)?
//@@END_DDKSPLIT
if (pFreeEdge->iXDirection == 1) { // Left to right
pFreeEdge->iErrorTerm -= pFreeEdge->iErrorAdjustDown * (((iXStart + 15) & ~0x0F) - iXStart); } else { // Right to left
pFreeEdge->iErrorTerm -= pFreeEdge->iErrorAdjustDown * ((iXStart - 1) & 0x0F); }
// Scale the error term down 16 times to switch from GIQ to pixels.
// Shifts work to do the multiplying because these values are always
// non-negative
pFreeEdge->iErrorTerm >>= 4;
// Insert the edge into the GET in YX-sorted order. The search always ends
// because the GET has a sentinel with a greater-than-possible Y value
while ((pFreeEdge->Y > ((EDGE *)pGETHead->pNext)->Y) || ((pFreeEdge->Y == ((EDGE *)pGETHead->pNext)->Y) && (pFreeEdge->X > ((EDGE *)pGETHead->pNext)->X))) { pGETHead = pGETHead->pNext; }
pFreeEdge->pNext = pGETHead->pNext; // link the edge into the GET
pGETHead->pNext = pFreeEdge;
return(++pFreeEdge); // point to the next edge storage location for next
// time
}
// Adjust the error term for a skip ahead in y. This is in ASM because there's
// a multiply/divide that may involve a larger than 32-bit value.
void AdjustErrorTerm(INT *pErrorTerm, INT iErrorAdjustUp, INT iErrorAdjustDown, INT yJump, INT *pXStart, INT iXDirection) { #if defined(_X86_) || defined(i386)
// Adjust the error term up by the number of y coordinates we'll skip
//*pErrorTerm += iErrorAdjustUp * yJump;
_asm mov ebx,pErrorTerm _asm mov eax,iErrorAdjustUp _asm mul yJump _asm add eax,[ebx] _asm adc edx,-1 // the error term starts out negative
// See if the error term turned over even once while skipping
// if (*pErrorTerm >= 0) {
_asm js short NoErrorTurnover
// # of times we'll turn over the error term and step an extra x
// coordinate while skipping
// NumAdjustDowns = (*pErrorTerm / iErrorAdjustDown) + 1;
_asm div iErrorAdjustDown _asm inc eax // Note that EDX is the remainder; (EDX - iErrorAdjustDown) is where
// the error term ends up ultimately
// Advance x appropriately for the # of times the error term
// turned over
// if (iXDirection == 1) {
// *pXStart += NumAdjustDowns;
// } else {
// *pXStart -= NumAdjustDowns;
// }
_asm mov ecx,pXStart _asm cmp iXDirection,1 _asm jz short GoingRight _asm neg eax GoingRight: _asm add [ecx],eax
// Adjust the error term down to its proper post-skip value
// *pErrorTerm -= iErrorAdjustDown * NumAdjustDowns;
_asm sub edx,iErrorAdjustDown _asm mov eax,edx // put into EAX for storing to pErrorTerm next
// }
NoErrorTurnover: _asm mov [ebx],eax #else
// LONGLONGS are 64 bit integers (We hope!) as the multiply could
// overflow 32 bit integers. If 64 bit ints are unsupported, the
// LONGLONG will end up as a double. Hopefully there will be no
// noticable difference in accuracy.
LONGLONG NumAdjustDowns; LONGLONG tmpError = *pErrorTerm;
// Adjust the error term up by the number of y coordinates we'll skip
tmpError += (LONGLONG)iErrorAdjustUp * (LONGLONG)yJump;
// See if the error term turned over even once while skipping
if (tmpError >= 0) { // # of times we'll turn over the error term and step an extra x
// coordinate while skipping
NumAdjustDowns = (tmpError / (LONGLONG)iErrorAdjustDown) + 1;
// Advance x appropriately for the # of times the error term
// turned over
if (iXDirection == 1) { *pXStart += (LONG) NumAdjustDowns; } else { *pXStart -= (LONG) NumAdjustDowns; }
// Adjust the error term down to its proper post-skip value
tmpError -= (LONGLONG)iErrorAdjustDown * NumAdjustDowns; }
*pErrorTerm = (LONG)tmpError;
#endif // X86
}
|