|
|
#include "precomp.h"
//
// SBC.C
// Send Bitmap Cache, display driver side
//
// Copyright(c) Microsoft 1997-
//
//
//
// SBC_DDProcessRequest() - see sbc.h
//
//
BOOL SBC_DDProcessRequest ( SURFOBJ* pso, DWORD fnEscape, LPOSI_ESCAPE_HEADER pRequest, LPOSI_ESCAPE_HEADER pResult, DWORD cbResult ) { BOOL rc; LPOSI_PDEV ppDev = (LPOSI_PDEV)pso->dhpdev;
DebugEntry(SBC_DDProcessRequest);
//
// Get the request number.
//
switch (fnEscape) { case SBC_ESC_NEW_CAPABILITIES: { if (cbResult != sizeof(SBC_NEW_CAPABILITIES)) { ERROR_OUT(("SBC_DDProcessRequest: Invalid size %d for SBC_ESC_NEW_CAPABILITIES", cbResult)); rc = FALSE; DC_QUIT; } TRACE_OUT(("SBC_ESC_NEW_CAPABILITIES"));
SBCDDSetNewCapabilities((LPSBC_NEW_CAPABILITIES)pRequest);
rc = TRUE; } break;
default: { ERROR_OUT(("Unrecognized SBC_ escape")); rc = FALSE; } break; }
DC_EXIT_POINT: DebugExitBOOL(SBC_DDProcessRequest, rc); return(rc); }
//
//
// SBC_DDInit() - see sbc.h
//
//
BOOL SBC_DDInit ( LPOSI_PDEV ppDev, LPBYTE pRestOfMemory, DWORD cbRestOfMemory, LPOSI_INIT_REQUEST pResult ) { UINT i; SIZEL bitmapSize; BOOL rc = FALSE;
DebugEntry(SBC_DDInit);
//
// We have to create work DIBs to Blt into when SBC_CacheMemScreenBlt
// is called.
//
for (i = 0 ; i < SBC_NUM_TILE_SIZES ; i++) { ASSERT(!g_asbcWorkInfo[i].pShuntBuffer); ASSERT(!g_asbcWorkInfo[i].mruIndex); ASSERT(!g_asbcWorkInfo[i].workBitmap);
if (i == SBC_MEDIUM_TILE_INDEX) { g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth = MP_MEDIUM_TILE_WIDTH; g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight = MP_MEDIUM_TILE_HEIGHT; } else { ASSERT(i == SBC_LARGE_TILE_INDEX);
g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth = MP_LARGE_TILE_WIDTH; g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight = MP_LARGE_TILE_HEIGHT; }
//
// Create the bitmap. Note that we create it "top down" rather
// than the default of "bottom up" to simplify copying data from
// the bitmap (we don't have to work out offsets into the data - we
// can copy from the beginning).
//
// We set the last parameter to NULL, to allow GDI to allocate
// memory for the bits. We can get a pointer to the bits later
// when we have a SURFOBJ for the bitmap.
//
bitmapSize.cx = g_asbcWorkInfo[i].tileWidth; bitmapSize.cy = g_asbcWorkInfo[i].tileHeight;
g_asbcWorkInfo[i].workBitmap = EngCreateBitmap(bitmapSize, BYTES_IN_BITMAP(g_asbcWorkInfo[i].tileWidth, 1, ppDev->cBitsPerPel), ppDev->iBitmapFormat, BMF_TOPDOWN, NULL);
if (! g_asbcWorkInfo[i].workBitmap) { ERROR_OUT(( "Failed to create work bitmap %d", i)); DC_QUIT; } }
//
// Initialize the shunt buffers
//
if (! SBCDDCreateShuntBuffers(ppDev, pRestOfMemory, cbRestOfMemory)) { ERROR_OUT(( "Failed to create shunt buffers")); DC_QUIT; }
//
// Set up the remaining global variables
//
EngQueryPerformanceFrequency(&g_sbcPerfFrequency);
//
// OK, so we can create our SBC cache. Fill in the details.
//
for (i = 0 ; i < SBC_NUM_TILE_SIZES; i++) { //
// This is filling in the APP address to the shunt buffers.
//
pResult->psbcTileData[i] = (LPBYTE)pResult->pSharedMemory + PTRBASE_TO_OFFSET(g_asbcWorkInfo[i].pShuntBuffer, g_asSharedMemory); }
pResult->aBitmasks[0] = ppDev->flRed; pResult->aBitmasks[1] = ppDev->flGreen; pResult->aBitmasks[2] = ppDev->flBlue;
//
// If we are a palette device (i.e. we are running at 8 bpp or less),
// set the paletteChanged flag so that we will send a color table to
// the share core before our first Mem(3)Blt.
//
ppDev->paletteChanged = (ppDev->cBitsPerPel <= 8);
rc = TRUE; DC_EXIT_POINT: DebugExitBOOL(SBC_DDInit, rc); return(rc); }
//
//
// SBC_DDTerm() - see sbc.h
//
//
void SBC_DDTerm(void) { UINT i;
DebugEntry(SBC_DDTerm);
//
// We just have to set the pointers to the shunt buffers to NULL
//
for (i = 0 ; i < SBC_NUM_TILE_SIZES ; i++) { // Kill the bitmap if there
if (g_asbcWorkInfo[i].workBitmap) { EngDeleteSurface((HSURF)g_asbcWorkInfo[i].workBitmap); g_asbcWorkInfo[i].workBitmap = 0; }
g_asbcWorkInfo[i].pShuntBuffer = NULL; g_asbcWorkInfo[i].mruIndex = 0; }
DebugExitVOID(SBC_DDTerm); }
//
//
// SBC_DDIsMemScreenBltCachable() - see sbc.h
//
//
BOOL SBC_DDIsMemScreenBltCachable(LPMEMBLT_ORDER_EXTRA_INFO pMemBltInfo) { BOOL rc = FALSE; UINT tileWidth; UINT tileHeight; SURFOBJ * pSourceSurf;
DebugEntry(SBC_DDIsMemScreenBltCachable);
//
// Is this an RLE bitmap - these bitmaps can have effective transparent
// sections which we cannot mimic with SBC.
//
pSourceSurf = pMemBltInfo->pSource; if ( (pSourceSurf->iBitmapFormat == BMF_4RLE) || (pSourceSurf->iBitmapFormat == BMF_8RLE) ) { TRACE_OUT(( "RLE Bitmap %d", pSourceSurf->iBitmapFormat)); DC_QUIT; }
//
// If this is a thrasher then don't cache it
//
if (SBCDDIsBitmapThrasher(pSourceSurf)) { TRACE_OUT(( "Its a thrasher")); DC_QUIT; }
//
// Make sure that this bitmap can be tiled OK
//
if (!SBC_DDQueryBitmapTileSize(pSourceSurf->sizlBitmap.cx, pSourceSurf->sizlBitmap.cy, &tileWidth, &tileHeight)) { TRACE_OUT(("Cache does not support tiling")); DC_QUIT; }
rc = TRUE;
DC_EXIT_POINT: DebugExitDWORD(SBC_DDIsMemScreenBltCachable, rc); return(rc); }
//
//
// SBC_DDCacheMemScreenBlt() - see sbc.h
//
//
BOOL SBC_DDCacheMemScreenBlt ( LPINT_ORDER pOrder, LPMEMBLT_ORDER_EXTRA_INFO pMemBltInfo ) { BOOL rc = FALSE; LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; UINT bmpWidth; UINT bmpHeight; UINT tileWidth; UINT tileHeight; POINTL tileOrg; UINT cxSubBitmapWidth; UINT cySubBitmapHeight; UINT type; SURFOBJ * pDestSurf; SURFOBJ * pSourceSurf; LPOSI_PDEV pDestDev; SURFOBJ * pWorkSurf = NULL; LPBYTE pWorkBits; RECTL destRectl; POINTL sourcePt; int tileSize; LPSBC_TILE_DATA pTileData = NULL;
DebugEntry(SBC_DDCacheMemScreenBlt);
//
// Do a first pass on the cacheability of the Blt
//
if (!SBC_DDIsMemScreenBltCachable(pMemBltInfo)) { TRACE_OUT(( "This MemBlt Order is not cachable")); DC_QUIT; }
//
// Get the width and height of the source bitmap
//
pSourceSurf = pMemBltInfo->pSource; bmpWidth = pSourceSurf->sizlBitmap.cx; bmpHeight = pSourceSurf->sizlBitmap.cy;
//
// Calculate the tile size for this blit
//
if (!SBC_DDQueryBitmapTileSize(bmpWidth, bmpHeight, &tileWidth, &tileHeight)) { TRACE_OUT(("Cache does not support tiling")); DC_QUIT; }
//
// Set up pointers to the source coordinates in the order.
//
type = pMemBltOrder->type; if (type == ORD_MEMBLT_TYPE) { sourcePt.x = pMemBltOrder->nXSrc; sourcePt.y = pMemBltOrder->nYSrc; TRACE_OUT(( "Request to cache MemBlt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMemBltOrder->nWidth, pMemBltOrder->nHeight, pMemBltOrder->nLeftRect, pMemBltOrder->nTopRect, pSourceSurf->hsurf)); } else { sourcePt.x = pMem3BltOrder->nXSrc; sourcePt.y = pMem3BltOrder->nYSrc; TRACE_OUT(( "Request to cache Mem3Blt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMem3BltOrder->nWidth, pMem3BltOrder->nHeight, pMem3BltOrder->nLeftRect, pMem3BltOrder->nTopRect, pSourceSurf->hsurf)); }
//
// Calculate the tile origin and size of remaining bitmap. Origin is
// rounded down to the nearest tile. Actual size of bitmap to cache
// may be smaller than tile size if the tile runs off the right/bottom
// of the bitmap
//
tileOrg.x = sourcePt.x - (sourcePt.x % tileWidth); tileOrg.y = sourcePt.y - (sourcePt.y % tileHeight);
//
// Actual size of bitmap to cache may be smaller than tile size if the
// tile runs off the right/bottom of the bitmap. To see why this
// calculation is correct, realize that (bmpWidth - tileOrg.x) is the
// remaining width of the bitmap after the start of this tile.
//
cxSubBitmapWidth = min(tileWidth, bmpWidth - tileOrg.x); cySubBitmapHeight = min(tileHeight, bmpHeight - tileOrg.y);
//
// We know how large a tile we have - we now have to Blt it into one of
// our work bitmaps and pass it up to the share core. First, work out
// which of our work bitmaps we should use and set up some variables
// based on this.
//
for (tileSize = 0; tileSize < SBC_NUM_TILE_SIZES ; tileSize++) { if ((cxSubBitmapWidth <= g_asbcWorkInfo[tileSize].tileWidth) && (cySubBitmapHeight <= g_asbcWorkInfo[tileSize].tileHeight)) { break; } }
if (tileSize == SBC_NUM_TILE_SIZES) { ERROR_OUT(( "%d x %d tile doesn't fit into work bmp", cxSubBitmapWidth, cySubBitmapHeight)); DC_QUIT; }
//
// Before doing any more work, get the next free entry in the shunt
// buffer. Note that this fills in the tileId element of the returned
// structure.
//
// It is perfectly valid for this call to fail. The shunt buffer may
// just be full if we are sending lots of bitmap data up to the share
// core.
//
if (!SBCDDGetNextFreeTile(tileSize, &pTileData)) { TRACE_OUT(( "Unable to get a free tile in shunt buffer")); DC_QUIT; }
//
// Lock the work bitmap to get a surface to pass to EngBitBlt
//
pWorkSurf = EngLockSurface((HSURF)g_asbcWorkInfo[tileSize].workBitmap); if (pWorkSurf == NULL) { ERROR_OUT(( "Failed to lock work surface")); DC_QUIT; } TRACE_OUT(( "Locked surface"));
//
// Do the Blt to our work bitmap to get the bits at native bpp, and
// using the color table which we sent to the share core.
//
destRectl.top = 0; destRectl.left = 0; destRectl.right = cxSubBitmapWidth; destRectl.bottom = cySubBitmapHeight;
sourcePt = tileOrg;
if (!EngBitBlt(pWorkSurf, pSourceSurf, NULL, // mask surface
NULL, // clip object
pMemBltInfo->pXlateObj, &destRectl, &sourcePt, NULL, // mask origin
NULL, // brush
NULL, // brush origin
0xcccc)) // SRCCPY
{ ERROR_OUT(( "Failed to Blt to work bitmap")); DC_QUIT; } TRACE_OUT(( "Completed BitBlt"));
//
// The Blt succeeded, so pass the bits to the share core by copying
// them into the correct shunt buffer.
//
// bytesUsed is set to the number of bytes required for
// cySubBitmapHeight number of full scanlines in the shunt buffer tile
// (NOT the number of bytes available in the tile, or the number of
// bytes of data which was actually Blted)
//
// major/minorCacheInfo are set to details from the source surface.
// hdev does not change on consecutive Blts from the same surface, but
// iUniq may.
//
pDestSurf = pMemBltInfo->pDest; pDestDev = (LPOSI_PDEV)pDestSurf->dhpdev; pTileData->bytesUsed = BYTES_IN_BITMAP(g_asbcWorkInfo[tileSize].tileWidth, cySubBitmapHeight, pDestDev->cBitsPerPel); pTileData->srcX = (TSHR_UINT16)sourcePt.x; pTileData->srcY = (TSHR_UINT16)sourcePt.y; pTileData->width = (WORD)cxSubBitmapWidth; pTileData->height = (WORD)cySubBitmapHeight; pTileData->tilingWidth = (WORD)tileWidth; pTileData->tilingHeight = (WORD)tileHeight; pTileData->majorCacheInfo = (UINT_PTR)pSourceSurf->hsurf; pTileData->minorCacheInfo = (UINT)pSourceSurf->iUniq; pTileData->majorPalette = (UINT_PTR)pMemBltInfo->pXlateObj; pTileData->minorPalette = (UINT)(pMemBltInfo->pXlateObj != NULL ? pMemBltInfo->pXlateObj->iUniq : 0);
//
// If the source surface has the BMF_DONTCACHE flag set then it is a
// DIB Section. This means that an app can change the bits in the
// surface without calling GDI, and hence without the iUniq value being
// updated.
//
// We rely on iUniq changing for the fast path to work, so we must
// exclude these bitmaps from the fast path. Do this by resetting the
// majorCacheInfo field (we use this rather than minorCacheInfo because
// we can't tell what an invalid iUniq value is).
//
if ( (pSourceSurf->iType == STYPE_BITMAP) && ((pSourceSurf->fjBitmap & BMF_DONTCACHE) != 0) ) { TRACE_OUT(( "Source hsurf %#.8lx has BMF_DONTCACHE set", pTileData->majorCacheInfo)); pTileData->majorCacheInfo = SBC_DONT_FASTPATH; }
//
// Note that this only works correctly because we create our work
// bitmaps to be "top down" rather than the default of "bottom up".
// i.e. the data for the top scanline is first in memory, so we can
// start copying from the start of the bit data. Bottom up would mean
// working out an offset into the work bitmap to start copying from.
//
memcpy(pTileData->bitData, pWorkSurf->pvBits, pTileData->bytesUsed);
//
// We've done the copy. Reset the work bitmap bits for next time we
// use this work bitmap - this helps with compression later on.
//
memset(pWorkSurf->pvBits, 0, pWorkSurf->cjBits);
//
// Fill in the required info in the Mem(3)Blt order.
//
if (type == ORD_MEMBLT_TYPE) { pMemBltOrder->cacheId = pTileData->tileId; } else { pMem3BltOrder->cacheId = pTileData->tileId; }
//
// We've filled in all the data in the shunt buffer entry, so mark it
// as in use so that the share core can access it.
//
pTileData->inUse = TRUE;
//
// Must have completed successfully to get to here
//
TRACE_OUT(( "Queued tile (%d, %d), %d x %d, tile %d x %d, Id %hx", sourcePt.x, sourcePt.y, cxSubBitmapWidth, cySubBitmapHeight, g_asbcWorkInfo[tileSize].tileWidth, g_asbcWorkInfo[tileSize].tileHeight, pTileData->tileId)); rc = TRUE;
DC_EXIT_POINT:
//
// Unlock the work surface (if required)
//
if (pWorkSurf != NULL) { EngUnlockSurface(pWorkSurf); TRACE_OUT(( "Unlocked surface")); }
DebugExitDWORD(SBC_DDCacheMemScreenBlt, rc); return(rc); }
//
// SBC_DDQueryBitmapTileSize()
//
// Once 2.X COMPAT is gone, we don't need this anymore. We won't set our
// random cell sizes based off of what REMOTES say.
//
BOOL SBC_DDQueryBitmapTileSize ( UINT bmpWidth, UINT bmpHeight, UINT * pTileWidth, UINT * pTileHeight ) { BOOL rc = FALSE;
DebugEntry(SBC_DDQueryBitmapTileSize);
//
// The tile cell sizes are currently changed when back level nodes
// join in a 3.0 call, in which case we must take the MINIMUM of the
// cell sizes/entries for everybody in the share.
//
if (g_asbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize < BYTES_IN_BITMAP(g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth, g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight, g_sbcSendingBPP)) { //
// This should be a short-term thing. When an old dude joins the
// share, we'll also adjust g_sbcSendingBPP.
//
TRACE_OUT(("SBC_DDQueryBitmapTileSize: No space for any cells")); DC_QUIT; }
rc = TRUE;
//
// If the large size is adequate, use that cell size
//
if (g_asbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize >= BYTES_IN_BITMAP(g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth, g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight, g_sbcSendingBPP)) { if ((bmpWidth > g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth) || (bmpHeight > g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight)) { *pTileWidth = g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth; *pTileHeight = g_asbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight; DC_QUIT; } }
//
// Sigh, medium cells it is.
//
*pTileWidth = g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileWidth; *pTileHeight = g_asbcWorkInfo[SBC_MEDIUM_TILE_INDEX].tileHeight;
DC_EXIT_POINT: DebugExitBOOL(SBC_DDQueryBitmapTileSize, rc); return(rc); }
//
//
// SBC_DDSyncUpdatesNow() - see sbc.h
//
//
void SBC_DDSyncUpdatesNow(LPOSI_PDEV ppDev) { LPSBC_TILE_DATA pTileData; UINT i; UINT j;
DebugEntry(SBC_DDSyncUpdatesNow);
TRACE_OUT(( "Marking all shunt buffer entries as not in use"));
//
// We have to mark all entries in the shunt buffers as being free.
//
for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { if(g_asbcWorkInfo[i].pShuntBuffer) { for (j = 0; j < g_asbcWorkInfo[i].pShuntBuffer->numEntries ; j++) { pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[i].pShuntBuffer, j); pTileData->inUse = FALSE; } } //
// Reset the MRU counter for this shunt buffer
//
g_asbcWorkInfo[i].mruIndex = 0; }
//
// If we are a palette device (i.e. we are running at 8 bpp or less),
// set the paletteChanged flag so we will send up a color table before
// our next Mem(3)Blt. We do this because the color table order for
// the current device palette may have been discarded during the OA
// sync.
//
ppDev->paletteChanged = (ppDev->cBitsPerPel <= 8);
DebugExitVOID(SBC_DDSyncUpdatesNow); }
//
//
// SBC_DDOrderSpoiltNotification() - see sbc.h
//
//
void SBC_DDOrderSpoiltNotification(LPINT_ORDER pOrder) { LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; UINT tileId; LPSBC_TILE_DATA pTileData; UINT tileType; UINT i;
DebugEntry(SBC_DDOrderSpoiltNotification);
//
// pOrder has been removed from the order heap before being processed.
// We have to free up the entry which it references in one of the shunt
// buffers. First get the tile Id.
//
if (pMemBltOrder->type == ORD_MEMBLT_TYPE) { tileId = pMemBltOrder->cacheId; } else { tileId = pMem3BltOrder->cacheId; } TRACE_OUT(( "Order referencing tile %hx has been spoiled", tileId));
//
// Find out which of the shunt buffers the entry should be in based on
// the tileId
//
tileType = SBC_TILE_TYPE(tileId);
//
// We implement the shunt buffers as circular FIFO queues, so we will
// start looking from the last order which we marked as being in use,
// and work BACKWARDS. This is because, in general, the entries after
// the last one we accessed will not be in use (unless the whole shunt
// buffer is in use).
//
// So, get the index of the last tile we accessed.
//
i = g_asbcWorkInfo[tileType].mruIndex;
//
// Loop through the circular buffer until we get a match, or have
// circled back to the beginning.
//
// Note that this has been coded as a "do while" loop, rather than just
// a "while" loop so that we don't miss mruIndex. mruIndex is set up
// to point to the NEXT entry to be used, rather than the last entry to
// be used, so decrementing i before doing any work first time round
// the loop is actually what we want to do.
//
do { //
// On to the next tile
//
i = (i == 0) ? g_asbcWorkInfo[tileType].pShuntBuffer->numEntries - 1 : i - 1;
pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[tileType].pShuntBuffer, i);
if (pTileData->inUse && (pTileData->tileId == tileId)) { //
// We've got a match, so mark the tile as being free.
//
// We don't want to update the shunt buffer mruIndex - this
// should remain indicating the next tile to be used when
// adding an entry to the shunt buffer.
//
TRACE_OUT(( "Marked tile Id %hx at index %d as free", tileId, i)); pTileData->inUse = FALSE; break; } } while (i != g_asbcWorkInfo[tileType].mruIndex);
DebugExitVOID(SBC_DDOrderSpoiltNotification); }
//
//
// SBC_DDMaybeQueueColorTable() - see sbc.h
//
//
BOOL SBC_DDMaybeQueueColorTable(LPOSI_PDEV ppDev) { BOOL queuedOK = FALSE; int orderSize; LPINT_ORDER pOrder; LPINT_COLORTABLE_ORDER_1BPP pColorTableOrder; UINT numColors; UINT i;
DebugEntry(SBC_DDMaybeQueueColorTable);
//
// If we're running at > 8 bpp, then we don't have a palette, so just
// quit out.
//
if (ppDev->cBitsPerPel > 8) { queuedOK = TRUE; DC_QUIT; }
//
// Check the boolean in our PDEV to see if the palette has changed
// since the last time we sent a color table order. Note that if we
// have a non palette device, the boolean will never be set.
//
if (!ppDev->paletteChanged) { queuedOK = TRUE; DC_QUIT; }
//
// The palette has changed, so allocate order memory to queue a color
// table order. The order size depends on the bpp of our device. Note
// that the allocation can fail if the order buffer is full.
//
switch (ppDev->cBitsPerPel) { case 1: { orderSize = sizeof(INT_COLORTABLE_ORDER_1BPP); } break;
case 4: { orderSize = sizeof(INT_COLORTABLE_ORDER_4BPP); } break;
case 8: { orderSize = sizeof(INT_COLORTABLE_ORDER_8BPP); } break;
default: { ERROR_OUT(("Invalid bpp (%d) for palette device", ppDev->cBitsPerPel)); DC_QUIT; } break; }
pOrder = OA_DDAllocOrderMem(orderSize, 0); if (pOrder == NULL) { TRACE_OUT(( "Failed to allocate %d bytes for order", orderSize)); DC_QUIT; } TRACE_OUT(( "Allocate %d bytes for color table order", orderSize));
//
// We've successfully allocated the order, so fill in the details. We
// mark the order as internal so that the Update Packager will spot it
// up in the share core and prevent it being sent over the wire.
//
pOrder->OrderHeader.Common.fOrderFlags = OF_INTERNAL;
pColorTableOrder = (LPINT_COLORTABLE_ORDER_1BPP)&(pOrder->abOrderData); pColorTableOrder->header.type = INTORD_COLORTABLE_TYPE; pColorTableOrder->header.bpp = (TSHR_UINT16)ppDev->cBitsPerPel;
//
// Unfortunately we can't just copy the palette from the PDEV into the
// color table order because the PDEV has an array of PALETTEENTRY
// structures which are RGBs whereas the order has an array of
// TSHR_RGBQUADs which are BGRs...
//
numColors = COLORS_FOR_BPP(ppDev->cBitsPerPel); ASSERT(numColors);
for (i = 0; i < numColors; i++) { pColorTableOrder->colorData[i].rgbRed = ppDev->pPal[i].peRed; pColorTableOrder->colorData[i].rgbGreen = ppDev->pPal[i].peGreen; pColorTableOrder->colorData[i].rgbBlue = ppDev->pPal[i].peBlue; }
//
// Add the order
//
OA_DDAddOrder(pOrder, NULL); TRACE_OUT(( "Added internal color table order, size %d", orderSize));
//
// Reset the flag which indicates that the palette needs to be sent
//
ppDev->paletteChanged = FALSE;
//
// Must be OK to get to here
//
queuedOK = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBC_DDMaybeQueueColorTable, queuedOK); return(queuedOK); }
//
// SBCDDCreateShuntBuffers()
//
// Here's where we calc how many cache entries (tiles) we can support. This
// depends on:
// * The amount of shared memory we have
// * The color depth of the driver
//
// There is an upper bound on the amount of memory we'll use, since this
// maps to how much memory on remotes will be needed to store our sent
// cache entries.
//
// The tiles are created in a fixed proportion (MP_RATIO_MTOL).
//
// We return TRUE for success if we can set up the caches and create the
// objects necessary for a sent bitmap cache.
//
BOOL SBCDDCreateShuntBuffers ( LPOSI_PDEV ppDev, LPBYTE psbcSharedMemory, DWORD sbcSharedMemorySize ) { int i; UINT memPerBuffer[SBC_NUM_TILE_SIZES]; UINT memPerTile[SBC_NUM_TILE_SIZES]; UINT numTiles[SBC_NUM_TILE_SIZES]; UINT memRequired; LPBYTE pBuffer = psbcSharedMemory; BOOL rc = FALSE;
DebugEntry(SBCDDCreateShuntBuffers);
//
// We should already have a pointer to the shared memory we can use for
// our shunt buffers, and the number of bytes available. What we have
// to do is to partition this shared memory into SBC_NUM_TILE_SIZE
// shunt buffers. i.e. one shunt buffer per tile size.
//
//
// <--- buffer 0 ---><------------------ buffer 1 -------------------->
//
//��������������������������������������������������������������������Ŀ
//� � : : : : � � : : : : �
//� � : : : : � � tile : tile : tile : tile : tile �
//� � : : : : � � : : : : �
//����������������������������������������������������������������������
//^ ^ ^
//� � �
//� ���� header[0] ���� header[1]
//�
//��� psbcSharedMemory
//
//
// We try to use the number of entries given in the pEntries array, but
// if we do not have enough shared memory for this, we reduce the
// number of entries in each shunt buffer, preserving the ratio between
// the number of entries in each of the shunt buffers.
//
//
// First make sure that we have some shared memory
//
if (sbcSharedMemorySize == 0) { ERROR_OUT(( "No SBC shared memory !")); DC_QUIT; }
// Max out at MP_MEMORY_MAX bytes
sbcSharedMemorySize = min(sbcSharedMemorySize, MP_MEMORY_MAX);
//
// Do we have enough shared memory to satisfy the requested number of
// entries in each shunt buffer ?
//
memRequired = 0;
for (i = 0; i < SBC_NUM_TILE_SIZES; i++) { memPerTile[i] = SBC_BYTES_PER_TILE(g_asbcWorkInfo[i].tileWidth, g_asbcWorkInfo[i].tileHeight, ppDev->cBitsPerPel);
// We use the same amount of memory for each tile size.
numTiles[i] = ((sbcSharedMemorySize / SBC_NUM_TILE_SIZES) - (sizeof(SBC_SHUNT_BUFFER) - sizeof(SBC_TILE_DATA))) / memPerTile[i]; TRACE_OUT(("Can fit %d tiles of memory size %d in tile cache %d", numTiles[i], memPerTile[i], i));
memPerBuffer[i] = (numTiles[i] * memPerTile[i]) + (sizeof(SBC_SHUNT_BUFFER) - sizeof(SBC_TILE_DATA)); memRequired += memPerBuffer[i]; }
TRACE_OUT(( "%d bytes required for request, %d bytes available", memRequired, sbcSharedMemorySize));
ASSERT(memRequired <= sbcSharedMemorySize);
// Zero out rest of amount we're going to use
RtlFillMemory(psbcSharedMemory, memRequired, 0);
//
// OK, we've got the
// - the bytes per tile in memPerTile[i]
// - number of entries per shunt buffer in numTiles[i]
// - the total size of each shunt buffer in memPerBuffer[i].
//
// Do the partitioning.
//
for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { g_asbcWorkInfo[i].pShuntBuffer = (LPSBC_SHUNT_BUFFER)pBuffer;
g_asbcWorkInfo[i].pShuntBuffer->numEntries = numTiles[i]; g_asbcWorkInfo[i].pShuntBuffer->numBytes = memPerTile[i] - sizeof(SBC_TILE_DATA); g_asbcWorkInfo[i].pShuntBuffer->structureSize = memPerTile[i];
//
// Move the buffer pointer past the memory we are using for this
// shunt buffer.
//
pBuffer += memPerBuffer[i];
TRACE_OUT(( "Shunt buffer %d at %#.8lx: tile bytes %u, " "structure size %u, num entries %u", i, g_asbcWorkInfo[i].pShuntBuffer, g_asbcWorkInfo[i].pShuntBuffer->numBytes, g_asbcWorkInfo[i].pShuntBuffer->structureSize, g_asbcWorkInfo[i].pShuntBuffer->numEntries));
//
// Fill in the mruIndex for this shunt buffer
//
g_asbcWorkInfo[i].mruIndex = 0; }
//
// Initialize the global variables associated with the shunt buffers
//
g_sbcNextTileId = 0;
//
// Must be OK to get to here
//
rc = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBCDDCreateShuntBuffers, rc); return(rc); }
//
// Name: SBCGetNextFreeTile
//
// Purpose: Return the next free tile of the correct size from one of the
// shunt buffers.
//
// Returns: TRUE if a tile is returned, FALSE otherwise
//
// Params: IN workTileSize - The tile size. One of
// SBC_MEDIUM_TILE
// SBC_LARGE_TILE
// OUT ppTileData - A pointer to the tile.
//
// Operation: The tileId field of the tile is filled in on return from
// this function.
//
//
BOOL SBCDDGetNextFreeTile(int tileSize, LPSBC_TILE_DATA FAR * ppTileData) { BOOL foundFreeTile = FALSE; LPSBC_TILE_DATA pTileData;
DebugEntry(SBCDDGetNextFreeTile);
//
// Make sure that we have a valid tile size
//
if (tileSize >= SBC_NUM_TILE_SIZES) { ERROR_OUT(( "Invalid tile size %d", tileSize)); DC_QUIT; }
//
// Get a pointer to the next entry to be used in the shunt buffer
// containing tiles of the given size.
//
pTileData = SBCTilePtrFromIndex(g_asbcWorkInfo[tileSize].pShuntBuffer, g_asbcWorkInfo[tileSize].mruIndex);
//
// If the entry is still in use (the share core has not yet processed
// the order which references this tile) we have to quit - the shunt
// buffer is full.
//
if (pTileData->inUse) { TRACE_OUT(( "Target entry (%d, %d) is still in use", tileSize, g_asbcWorkInfo[tileSize].mruIndex)); DC_QUIT; }
//
// The entry is not in use - we can re-use it. Fill in the Id field,
// and the pointer to the entry which we return to the caller.
//
// We always set the top bit of the tile Id for large tiles, and clear
// it for small tiles.
//
*ppTileData = pTileData; pTileData->tileId = g_sbcNextTileId; if (tileSize == SBC_MEDIUM_TILE_INDEX) { pTileData->tileId &= ~0x8000; } else { pTileData->tileId |= 0x8000; } TRACE_OUT(( "Returning entry (%d, %d), Id %hx", tileSize, g_asbcWorkInfo[tileSize].mruIndex, pTileData->tileId));
//
// Update the index of the next free entry in this shunt buffer, and
// also the Id which we should assign next time. Remember to wrap the
// shunt buffer index to the number of entries in the shunt buffer.
//
g_asbcWorkInfo[tileSize].mruIndex = (g_asbcWorkInfo[tileSize].mruIndex + 1) % g_asbcWorkInfo[tileSize].pShuntBuffer->numEntries;
g_sbcNextTileId++; g_sbcNextTileId &= ~0x8000;
//
// Completed successfully !
//
foundFreeTile = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBCDDGetNextFreeTile, foundFreeTile); return(foundFreeTile); }
//
//
// Name: SBCDDIsBitmapThrasher
//
// Purpose: Check to see if the given bitmap (surface object) is one
// which would cause cache thrashing.
//
// Returns: TRUE if the bitmap is a thrasher, FALSE otherwise.
//
// Params: IN pSurfObj - Pointer to the bitmap
//
//
BOOL SBCDDIsBitmapThrasher(SURFOBJ * pSurfObj) { UINT i; BOOL rc = FALSE; BOOL bitmapInList = FALSE; BOOL updateEntry = FALSE; UINT updateIndex; UINT nextTickCount; UINT evictIndex; UINT evictTickCount;
DebugEntry(SBCDDIsBitmapThrasher);
//
// Here's an overview of how our bitmap cache thrash detection works...
//
// We hold an array of information about the last SBC_NUM_THRASHERS
// bitmaps which we have tried to cache. This information is
// - A value to identify the bitmap. This is the hsurf field from the
// bitmap surface object, and is different for every bitmap.
// - A value to identify the "version" of the bitmap. This is the
// iUniq field from the bitmap surface object, and is updated by GDI
// each time the bitmap is drawn to.
// - A timestamp for the last time which we saw iUniq change for this
// bitmap (or when we added the bitmap to the array).
//
// Each time this function is called, we scan this array looking for an
// entry for the bitmap.
//
// If we find an entry, we check whether the bitmap has changed (has
// the iUniq field changed). If it has not changed, the bitmap is not
// a thrasher. If the bitmap has changed, we check the interval from
// the timestamp value to the current time. If the interval is less
// than the SBC_THRASH_INTERVAL, the bitmap has changed too quickly, so
// it is a thrasher. If the interval is OK, the bitmap is not a
// thrasher. In either case, we update the stored iUniq field and the
// timestamp to record the time / version at which we spotted that the
// bitmap changed.
//
// If we do not find an entry for the bitmap, we add an entry for it.
// If the array is fully populated, we evict the entry with the oldest
// timestamp, and replace it with the new entry.
//
//
// Scan the thrasher list looking for a match
//
for (i=0 ; i<SBC_NUM_THRASHERS ; i++) { //
// If we find a match then we are only worried if it has been
// modified since the last time we read it.
//
if (g_sbcThrashers[i].hsurf == pSurfObj->hsurf) { bitmapInList = TRUE;
if (g_sbcThrashers[i].iUniq != pSurfObj->iUniq) { TRACE_OUT(( "Matching surface %x, index %u," "tick count %u has been modified", pSurfObj->hsurf, i, g_sbcThrashers[i].tickCount)); updateEntry = TRUE; updateIndex = i;
//
// Now we need to determine if this is a thrasher. It is a
// thrasher if the time we last read it is less than our
// thrash interval. (We only update the time when we read
// a modified bitmap)
//
nextTickCount = SBCDDGetTickCount(); if ((nextTickCount - g_sbcThrashers[i].tickCount) < SBC_THRASH_INTERVAL) { TRACE_OUT(( "Rejected cache attempt of thrashy bitmap %x", pSurfObj->hsurf)); rc = TRUE; } g_sbcThrashers[i].tickCount = nextTickCount; g_sbcThrashers[i].iUniq = pSurfObj->iUniq; }
//
// We've found a match - we can break out of the loop
//
break; } }
if (!bitmapInList) { //
// The bitmap isn't already in the thrasher list, so add it now.
// Find the entry with the smallest (earliest) tick count - we will
// evict this entry from the array to make room for the new entry.
//
evictIndex = 0; evictTickCount = 0xffffffff;
for (i=0 ; i<SBC_NUM_THRASHERS ; i++) { if (evictTickCount > g_sbcThrashers[i].tickCount) { evictTickCount = g_sbcThrashers[i].tickCount; evictIndex = i; } } TRACE_OUT(( "Evicting entry %d, surface %x", evictIndex, g_sbcThrashers[i].hsurf));
nextTickCount = SBCDDGetTickCount();
TRACE_OUT(( "Adding surface %x to thrash list, tick %d", pSurfObj->hsurf, nextTickCount)); updateEntry = TRUE; updateIndex = evictIndex; }
if (updateEntry) { //
// We have to update the entry at index updateIndex. We optimise
// things slightly by always putting the most recent bitmap in
// position 0 of the array, so copy entry 0 to the eviction index,
// and put the new entry in position 0.
//
g_sbcThrashers[updateIndex] = g_sbcThrashers[0];
g_sbcThrashers[0].hsurf = pSurfObj->hsurf; g_sbcThrashers[0].iUniq = pSurfObj->iUniq; g_sbcThrashers[0].tickCount = nextTickCount; }
DebugExitBOOL(SBCDDIsBitmapThrasher, rc); return(rc); }
//
//
// Name: SBCDDGetTickCount
//
// Purpose: Get a system tick count
//
// Returns: The number of centi-seconds since the system was started.
// This number will wrap after approximately 497 days!
//
// Params: None
//
//
DWORD SBCDDGetTickCount(void) { DWORD tickCount; LONGLONG perfTickCount;
DebugEntry(SBCDDGetTickCount);
//
// Get the number of system ticks since the system was started.
//
EngQueryPerformanceCounter(&perfTickCount);
//
// Now convert this into a number of centi-seconds. g_sbcPerfFrequency
// contains the number of system ticks per second.
//
tickCount = (DWORD)((100 * perfTickCount) / g_sbcPerfFrequency);
DebugExitDWORD(SBCDDGetTickCount, tickCount); return(tickCount); }
//
// FUNCTION: SBCDDSetNewCapabilities
//
// DESCRIPTION:
//
// Set the new SBC related capabilities
//
// RETURNS:
//
// NONE
//
// PARAMETERS:
//
// pDataIn - pointer to the input buffer
//
//
void SBCDDSetNewCapabilities(LPSBC_NEW_CAPABILITIES pCapabilities) { DebugEntry(SBCSetNewCapabilities);
g_sbcSendingBPP = pCapabilities->sendingBpp; memcpy(&g_asbcCacheInfo, pCapabilities->cacheInfo, sizeof(g_asbcCacheInfo));
DebugExitVOID(SBCSetNewCapabilities); }
|