|
|
//==========================================================================
//
// lhacm.c
//
// Description:
// This file contains the DriverProc and other routines which respond
// to ACM messages.
//
// Copyright (c) 1992 - 1996 Microsoft Corporation. All Rights Reserved.
//
//==========================================================================
#ifndef STRICT
#define STRICT
#endif
#include <windows.h>
#include <windowsx.h>
#include <mmsystem.h>
#include "mmddk.h"
#include <ctype.h>
#include <mmreg.h>
#include <msacm.h>
#include "msacmdrv.h"
#include "fv_x8.h"
#include "lhacm.h"
#define NEW_ANSWER 1
#include "resource.h"
enum { #ifdef CELP4800
IDX_LH_CELP, #endif
IDX_LH_SB8, IDX_LH_SB12, IDX_LH_SB16, IDX_PCM, NumOfTagIndices };
const UINT gauFormatTagIndexToTag[NumOfTagIndices] = { #ifdef CELP4800
WAVE_FORMAT_LH_CELP, #endif
WAVE_FORMAT_LH_SB8, WAVE_FORMAT_LH_SB12, WAVE_FORMAT_LH_SB16, WAVE_FORMAT_PCM };
const UINT gauTagNameIds[NumOfTagIndices] = { #ifdef CELP4800
IDS_CODEC_NAME_CELP, #endif
IDS_CODEC_NAME_SB8, IDS_CODEC_NAME_SB12, IDS_CODEC_NAME_SB16, 0 };
#define ACM_DRIVER_MAX_FORMAT_TAGS SIZEOF_ARRAY(gauFormatTagIndexToTag)
#define ACM_DRIVER_MAX_FILTER_TAGS 0
// arrays of sample rates supported.
// L&H codecs don't do sample rate conversion.
UINT gauPCMFormatIndexToSampleRate[] = { LH_PCM_SAMPLESPERSEC };
#ifdef CELP4800
UINT gauLHCELPFormatIndexToSampleRate[] = { LH_CELP_SAMPLESPERSEC }; #endif
UINT gauLHSB8FormatIndexToSampleRate[] = { LH_SB8_SAMPLESPERSEC };
UINT gauLHSB12FormatIndexToSampleRate[] = { LH_SB12_SAMPLESPERSEC };
UINT gauLHSB16FormatIndexToSampleRate[] = { LH_SB16_SAMPLESPERSEC };
#define ACM_DRIVER_MAX_PCM_SAMPLE_RATES SIZEOF_ARRAY(gauPCMFormatIndexToSampleRate)
#ifdef CELP4800
#define ACM_DRIVER_MAX_LH_CELP_SAMPLE_RATES SIZEOF_ARRAY(gauLHCELPFormatIndexToSampleRate)
#endif
#define ACM_DRIVER_MAX_LH_SB8_SAMPLE_RATES SIZEOF_ARRAY(gauLHSB8FormatIndexToSampleRate)
#define ACM_DRIVER_MAX_LH_SB12_SAMPLE_RATES SIZEOF_ARRAY(gauLHSB12FormatIndexToSampleRate)
#define ACM_DRIVER_MAX_LH_SB16_SAMPLE_RATES SIZEOF_ARRAY(gauLHSB16FormatIndexToSampleRate)
#define ACM_DRIVER_MAX_CHANNELS 1
// array of bits per sample supported.
// the current version of the LH codecs require 16 bit
UINT gauPCMFormatIndexToBitsPerSample[] = { LH_PCM_BITSPERSAMPLE };
#ifdef CELP4800
UINT gauLHCELPFormatIndexToBitsPerSample[] = { LH_CELP_BITSPERSAMPLE }; #endif
UINT gauLHSB8FormatIndexToBitsPerSample[] = { LH_SB8_BITSPERSAMPLE };
UINT gauLHSB12FormatIndexToBitsPerSample[] = { LH_SB12_BITSPERSAMPLE };
UINT gauLHSB16FormatIndexToBitsPerSample[] = { LH_SB16_BITSPERSAMPLE };
#define ACM_DRIVER_MAX_BITSPERSAMPLE_PCM SIZEOF_ARRAY(gauPCMFormatIndexToBitsPerSample)
#ifdef CELP4800
#define ACM_DRIVER_MAX_BITSPERSAMPLE_LH_CELP SIZEOF_ARRAY(gauLHCELPFormatIndexToBitsPerSample)
#endif
#define ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB8 SIZEOF_ARRAY(gauLHSB8FormatIndexToBitsPerSample)
#define ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB12 SIZEOF_ARRAY(gauLHSB12FormatIndexToBitsPerSample)
#define ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB16 SIZEOF_ARRAY(gauLHSB16FormatIndexToBitsPerSample)
// number of formats we enumerate per format tag is number of sample rates
// times number of channels times number of types (bits per sample).
#define ACM_DRIVER_MAX_FORMATS_PCM \
(ACM_DRIVER_MAX_PCM_SAMPLE_RATES * \ ACM_DRIVER_MAX_CHANNELS * \ ACM_DRIVER_MAX_BITSPERSAMPLE_PCM)
#ifdef CELP4800
#define ACM_DRIVER_MAX_FORMATS_LH_CELP \
(ACM_DRIVER_MAX_LH_CELP_SAMPLE_RATES * \ ACM_DRIVER_MAX_CHANNELS * \ ACM_DRIVER_MAX_BITSPERSAMPLE_LH_CELP) #endif
#define ACM_DRIVER_MAX_FORMATS_LH_SB8 \
(ACM_DRIVER_MAX_LH_SB8_SAMPLE_RATES * \ ACM_DRIVER_MAX_CHANNELS * \ ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB8)
#define ACM_DRIVER_MAX_FORMATS_LH_SB12 \
(ACM_DRIVER_MAX_LH_SB12_SAMPLE_RATES * \ ACM_DRIVER_MAX_CHANNELS * \ ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB12)
#define ACM_DRIVER_MAX_FORMATS_LH_SB16 \
(ACM_DRIVER_MAX_LH_SB16_SAMPLE_RATES * \ ACM_DRIVER_MAX_CHANNELS * \ ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB16)
//////////////////////////////////////////////////////////
//
// lonchanc: special shorthand for L&H codecs
//
static DWORD _GetAvgBytesPerSec ( PCODECINFO pCodecInfo ) { return ((pCodecInfo->dwSampleRate * (DWORD) pCodecInfo->wCodedBufferSize) / ((DWORD) pCodecInfo->wPCMBufferSize / (DWORD) (pCodecInfo->wBitsPerSamplePCM >> 3))); }
static PCODECINFO _GetCodecInfoFromFormatIdx ( PINSTANCEDATA pid, int idx ) { PCODECINFO pCodecInfo = NULL;
switch (gauFormatTagIndexToTag[idx]) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: pCodecInfo = &(pid->CELP.CodecInfo); break; #endif
case WAVE_FORMAT_LH_SB8: pCodecInfo = &(pid->SB8.CodecInfo); break; case WAVE_FORMAT_LH_SB12: pCodecInfo = &(pid->SB12.CodecInfo); break; case WAVE_FORMAT_LH_SB16: pCodecInfo = &(pid->SB16.CodecInfo); break; default: break; }
return pCodecInfo; }
//--------------------------------------------------------------------------;
//
// int LoadStringCodec
//
// Description:
// This function should be used by all codecs to load resource strings
// which will be passed back to the ACM.
//
// The 32-bit ACM always expects Unicode strings. Therefore,
// when UNICODE is defined, this function is compiled to
// LoadStringW to load a Unicode string. When UNICODE is
// not defined, this function loads an ANSI string, converts
// it to Unicode, and returns the Unicode string to the
// codec.
//
// Note that you may use LoadString for other strings (strings which
// will not be passed back to the ACM), because these strings will
// always be consistent with the definition of UNICODE.
//
// Arguments:
// Same as LoadString, except that it expects an LPSTR for Win16 and a
// LPWSTR for Win32.
//
// Return (int):
// Same as LoadString.
//
//--------------------------------------------------------------------------;
#ifdef UNICODE
#define LoadStringCodec LoadStringW
#else
int LoadStringCodec ( HINSTANCE hInst, UINT uID, LPWSTR lpwstr, int cch ) { LPSTR lpstr; int iReturn;
lpstr = (LPSTR) LocalAlloc (LPTR, cch); if (NULL == lpstr) { return 0; }
iReturn = LoadStringA (hInst, uID, lpstr, cch); if (0 == iReturn) { if (0 != cch) { lpwstr[0] = '\0'; } } else { MultiByteToWideChar (GetACP(), 0, lpstr, cch, lpwstr, cch); }
LocalFree ((HLOCAL) lpstr);
return iReturn; } #endif // UNICODE
//--------------------------------------------------------------------------;
//
// BOOL pcmIsValidFormat
//
// Description:
// This function verifies that a wave format header is a valid PCM
// header that _this_ ACM driver can deal with.
//
// Arguments:
// LPWAVEFORMATEX pwfx: Pointer to format header to verify.
//
// Return (BOOL):
// The return value is non-zero if the format header looks valid. A
// zero return means the header is not valid.
//
//--------------------------------------------------------------------------;
BOOL pcmIsValidFormat( LPWAVEFORMATEX pwfx ) { BOOL fReturn = FALSE;
FUNCTION_ENTRY ("pcmIsValidFormat")
if (NULL == pwfx) { DBGMSG (1, (_T ("%s: pwfx is null\r\n"), SZFN)); goto MyExit; }
if (WAVE_FORMAT_PCM != pwfx->wFormatTag) { DBGMSG (1, (_T ("%s: bad wFormatTag=%d\r\n"), SZFN, (UINT) pwfx->wFormatTag)); goto MyExit; }
//
// verify nChannels member is within the allowed range
//
if ((pwfx->nChannels < 1) || (pwfx->nChannels > ACM_DRIVER_MAX_CHANNELS)) { DBGMSG (1, (_T ("%s: bad nChannels=%d\r\n"), SZFN, (UINT) pwfx->nChannels)); goto MyExit; }
//
// only allow the bits per sample that we can encode and decode with
//
if (pwfx->wBitsPerSample != LH_PCM_BITSPERSAMPLE) { DBGMSG (1, (_T ("%s: bad wBitsPerSample=%d\r\n"), SZFN, (UINT) pwfx->wBitsPerSample)); goto MyExit; }
// lonchanc: BUG BUG do we really care about the alignment???
//
// now verify that the block alignment is correct..
//
if (PCM_BLOCKALIGNMENT (pwfx) != pwfx->nBlockAlign) { DBGMSG (1, (_T ("%s: bad nBlockAlign=%d\r\n"), SZFN, (UINT) pwfx->nBlockAlign)); goto MyExit; }
// lonchanc: BUG BUG this only check the integrity of the wave format struct
// but does not ensure that this is a good PCM for us.
//
// finally, verify that avg bytes per second is correct
//
if (PCM_AVGBYTESPERSEC (pwfx) != pwfx->nAvgBytesPerSec) { DBGMSG (1, (_T ("%s: bad nAvgBytesPerSec=%d\r\n"), SZFN, (UINT) pwfx->nAvgBytesPerSec)); goto MyExit; }
fReturn = TRUE;
MyExit:
DBGMSG (1, (_T ("%s: fReturn=%d\r\n"), SZFN, (UINT) fReturn));
return fReturn;
} // pcmIsValidFormat()
//--------------------------------------------------------------------------;
//
// BOOL lhacmIsValidFormat
//
// Description:
// This function ensures that the header is a valid LH header
//
//--------------------------------------------------------------------------;
BOOL lhacmIsValidFormat ( LPWAVEFORMATEX pwfx, PINSTANCEDATA pid ) { BOOL fReturn = FALSE; PCODECINFO pCodecInfo; WORD cbSize;
FUNCTION_ENTRY ("lhacmIsValidFormat()");
if (NULL == pwfx) { DBGMSG (1, (_T ("%s: pwfx is null\r\n"), SZFN)); goto MyExit; }
if ((pwfx->nChannels < 1) || (pwfx->nChannels > ACM_DRIVER_MAX_CHANNELS)) { DBGMSG (1, (_T ("%s: bad nChannels=%d\r\n"), SZFN, (UINT) pwfx->nChannels)); goto MyExit; }
switch (pwfx->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: pCodecInfo = &(pid->CELP.CodecInfo); break; #endif
case WAVE_FORMAT_LH_SB8: pCodecInfo = &(pid->SB8.CodecInfo); break; case WAVE_FORMAT_LH_SB12: pCodecInfo = &(pid->SB12.CodecInfo); break; case WAVE_FORMAT_LH_SB16: pCodecInfo = &(pid->SB16.CodecInfo); break; default: DBGMSG (1, (_T ("%s: bad wFormatTag=%d\r\n"), SZFN, (UINT) pwfx->wFormatTag)); goto MyExit; } cbSize = 0;
if (pwfx->wBitsPerSample != pCodecInfo->wBitsPerSamplePCM) { DBGMSG (1, (_T ("%s: bad wBitsPerSample=%d\r\n"), SZFN, (UINT) pwfx->wBitsPerSample)); goto MyExit; }
if (pwfx->nBlockAlign != pCodecInfo->wCodedBufferSize) { DBGMSG (1, (_T ("%s: bad nBlockAlign=%d\r\n"), SZFN, (UINT) pwfx->nBlockAlign)); goto MyExit; }
if (pwfx->nSamplesPerSec != pCodecInfo->dwSampleRate) { DBGMSG (1, (_T ("%s: bad nSamplesPerSec=%d\r\n"), SZFN, (UINT) pwfx->nSamplesPerSec)); goto MyExit; }
if (pwfx->cbSize != cbSize) { DBGMSG (1, (_T ("%s: bad cbSize=%d\r\n"), SZFN, (UINT) pwfx->cbSize)); goto MyExit; }
fReturn = TRUE;
MyExit:
DBGMSG (1, (_T ("%s: fReturn=%d\r\n"), SZFN, (UINT) fReturn));
return fReturn;
} // lhacmIsValidFormat()
//==========================================================================;
//
// The followings are message handlers...
//
//
//==========================================================================;
//==========================================================================;
//
// on DRV_OPEN
//
//==========================================================================;
LRESULT FAR PASCAL acmdDriverOpen ( HDRVR hdrvr, LPACMDRVOPENDESC paod ) { PINSTANCEDATA pdata = NULL;
FUNCTION_ENTRY ("acmdDriverOpen")
//
// the [optional] open description that is passed to this driver can
// be from multiple 'managers.' for example, AVI looks for installable
// drivers that are tagged with 'vidc' and 'vcap'. we need to verify
// that we are being opened as an Audio Compression Manager driver.
//
// if paod is NULL, then the driver is being opened for some purpose
// other than converting (that is, there will be no stream open
// requests for this instance of being opened). the most common case
// of this is the Control Panel's Drivers option checking for config
// support (DRV_[QUERY]CONFIGURE).
//
// we want to succeed this open, but be able to know that this
// open instance is bogus for creating streams. for this purpose we
// leave most of the members of our instance structure that we
// allocate below as zero...
//
if (paod) { //
// refuse to open if we are not being opened as an ACM driver.
// note that we do NOT modify the value of paod->dwError in this
// case.
//
if (paod->fccType != ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC) { return 0; } }
// !!! add check for LH DLL version here
// we're not using the instance data for much right
// now. when we add a configuration dialog it will
// be more useful
pdata= LocalAlloc (LPTR, sizeof (INSTANCEDATA)); if (pdata == NULL) { if (paod) { paod->dwError = MMSYSERR_NOMEM; }
return 0; }
pdata->cbStruct = sizeof (INSTANCEDATA); pdata->hInst = GetDriverModuleHandle (hdrvr);
#ifdef CELP4800
pdata->CELP.wFormatTag = WAVE_FORMAT_LH_CELP; MSLHSB_GetCodecInfo (&(pdata->CELP.CodecInfo), 4800);
DBGMSG (1, (_T ("%s: CELP's codec info\r\n"), SZFN)); DBGMSG (1, (_T ("%s: wPCMBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->CELP.CodecInfo.wPCMBufferSize)); DBGMSG (1, (_T ("%s: wCodedBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->CELP.CodecInfo.wCodedBufferSize)); DBGMSG (1, (_T ("%s: wBitsPerSamplePCM=0x%X\r\n"), SZFN, (UINT) pdata->CELP.CodecInfo.wBitsPerSamplePCM)); DBGMSG (1, (_T ("%s: dwSampleRate=0x%lX\r\n"), SZFN, pdata->CELP.CodecInfo.dwSampleRate)); DBGMSG (1, (_T ("%s: wFormatSubTag=0x%X\r\n"), SZFN, (UINT) pdata->CELP.CodecInfo.wFormatSubTag)); DBGMSG (1, (_T ("%s: wFormatSubTagName=[%s]\r\n"), SZFN, pdata->CELP.CodecInfo.wFormatSubTagName)); DBGMSG (1, (_T ("%s: dwDLLVersion=0x%lX\r\n"), SZFN, pdata->CELP.CodecInfo.dwDLLVersion)); #endif
pdata->SB8.wFormatTag = WAVE_FORMAT_LH_SB8; MSLHSB_GetCodecInfo (&(pdata->SB8.CodecInfo), 8000);
DBGMSG (1, (_T ("%s: SB8's codec info\r\n"), SZFN)); DBGMSG (1, (_T ("%s: wPCMBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB8.CodecInfo.wPCMBufferSize)); DBGMSG (1, (_T ("%s: wCodedBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB8.CodecInfo.wCodedBufferSize)); DBGMSG (1, (_T ("%s: wBitsPerSamplePCM=0x%X\r\n"), SZFN, (UINT) pdata->SB8.CodecInfo.wBitsPerSamplePCM)); DBGMSG (1, (_T ("%s: dwSampleRate=0x%lX\r\n"), SZFN, pdata->SB8.CodecInfo.dwSampleRate)); DBGMSG (1, (_T ("%s: wFormatSubTag=0x%X\r\n"), SZFN, (UINT) pdata->SB8.CodecInfo.wFormatSubTag)); DBGMSG (1, (_T ("%s: wFormatSubTagName=[%s]\r\n"), SZFN, pdata->SB8.CodecInfo.wFormatSubTagName)); DBGMSG (1, (_T ("%s: dwDLLVersion=0x%lX\r\n"), SZFN, pdata->SB8.CodecInfo.dwDLLVersion));
pdata->SB12.wFormatTag = WAVE_FORMAT_LH_SB12; MSLHSB_GetCodecInfo (&(pdata->SB12.CodecInfo), 12000);
DBGMSG (1, (_T ("%s: SB12's codec info\r\n"), SZFN)); DBGMSG (1, (_T ("%s: wPCMBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB12.CodecInfo.wPCMBufferSize)); DBGMSG (1, (_T ("%s: wCodedBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB12.CodecInfo.wCodedBufferSize)); DBGMSG (1, (_T ("%s: wBitsPerSamplePCM=0x%X\r\n"), SZFN, (UINT) pdata->SB12.CodecInfo.wBitsPerSamplePCM)); DBGMSG (1, (_T ("%s: dwSampleRate=0x%lX\r\n"), SZFN, pdata->SB12.CodecInfo.dwSampleRate)); DBGMSG (1, (_T ("%s: wFormatSubTag=0x%X\r\n"), SZFN, (UINT) pdata->SB12.CodecInfo.wFormatSubTag)); DBGMSG (1, (_T ("%s: wFormatSubTagName=[%s]\r\n"), SZFN, pdata->SB12.CodecInfo.wFormatSubTagName)); DBGMSG (1, (_T ("%s: dwDLLVersion=0x%lX\r\n"), SZFN, pdata->SB12.CodecInfo.dwDLLVersion));
pdata->SB16.wFormatTag = WAVE_FORMAT_LH_SB16; MSLHSB_GetCodecInfo (&(pdata->SB16.CodecInfo), 16000);
DBGMSG (1, (_T ("%s: SB16's codec info\r\n"), SZFN)); DBGMSG (1, (_T ("%s: wPCMBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB16.CodecInfo.wPCMBufferSize)); DBGMSG (1, (_T ("%s: wCodedBufferSize=0x%X\r\n"), SZFN, (UINT) pdata->SB16.CodecInfo.wCodedBufferSize)); DBGMSG (1, (_T ("%s: wBitsPerSamplePCM=0x%X\r\n"), SZFN, (UINT) pdata->SB16.CodecInfo.wBitsPerSamplePCM)); DBGMSG (1, (_T ("%s: dwSampleRate=0x%lX\r\n"), SZFN, pdata->SB16.CodecInfo.dwSampleRate)); DBGMSG (1, (_T ("%s: wFormatSubTag=0x%X\r\n"), SZFN, (UINT) pdata->SB16.CodecInfo.wFormatSubTag)); DBGMSG (1, (_T ("%s: wFormatSubTagName=[%s]\r\n"), SZFN, pdata->SB16.CodecInfo.wFormatSubTagName)); DBGMSG (1, (_T ("%s: dwDLLVersion=0x%lX\r\n"), SZFN, pdata->SB16.CodecInfo.dwDLLVersion));
pdata->fInit = TRUE;
// let's update some global data
gauPCMFormatIndexToSampleRate[0] = pdata->CELP.CodecInfo.dwSampleRate; #ifdef CELP4800
gauLHCELPFormatIndexToSampleRate[0] = pdata->CELP.CodecInfo.dwSampleRate; #endif
gauLHSB8FormatIndexToSampleRate[0] = pdata->SB8.CodecInfo.dwSampleRate; gauLHSB12FormatIndexToSampleRate[0] = pdata->SB12.CodecInfo.dwSampleRate; gauLHSB16FormatIndexToSampleRate[0] = pdata->SB16.CodecInfo.dwSampleRate;
gauPCMFormatIndexToBitsPerSample[0] = pdata->CELP.CodecInfo.wBitsPerSamplePCM; #ifdef CELP4800
gauLHCELPFormatIndexToBitsPerSample[0] = pdata->CELP.CodecInfo.wBitsPerSamplePCM; #endif
gauLHSB8FormatIndexToBitsPerSample[0] = pdata->SB8.CodecInfo.wBitsPerSamplePCM; gauLHSB12FormatIndexToBitsPerSample[0] = pdata->SB12.CodecInfo.wBitsPerSamplePCM; gauLHSB16FormatIndexToBitsPerSample[0] = pdata->SB16.CodecInfo.wBitsPerSamplePCM;
// report success
if (paod) { paod->dwError = MMSYSERR_NOERROR; }
return (LRESULT) pdata;
} // acmdDriverOpen()
//==========================================================================;
//
// on DRV_CLOSE
//
//==========================================================================;
LRESULT FAR PASCAL acmdDriverClose ( PINSTANCEDATA pid ) { FUNCTION_ENTRY ("acmdDriverClose")
if (pid) { LocalFree ((HLOCAL) pid); }
return 1; } // acmdDriverClose()
//--------------------------------------------------------------------------;
//
// on DRV_CONFIGURE
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdDriverConfigure ( PINSTANCEDATA pid, HWND hwnd, LPDRVCONFIGINFO pdci ) {
//
// first check to see if we are only being queried for hardware
// configuration support. if hwnd == (HWND)-1 then we are being
// queried and should return zero for 'not supported' and non-zero
// for 'supported'.
//
if (hwnd == (HWND) -1) { //
// this codec does not support hardware configuration so return
// zero...
//
return 0; }
//
// we are being asked to bring up our hardware configuration dialog.
// if this codec can bring up a dialog box, then after the dialog
// is dismissed we return non-zero. if we are not able to display a
// dialog, then return zero.
//
return 0;
} // acmdDriverConfigure()
//--------------------------------------------------------------------------;
//
// on ACMDM_DRIVER_DETAILS
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdDriverDetails ( PINSTANCEDATA pid, LPACMDRIVERDETAILS padd ) {
ACMDRIVERDETAILS add; DWORD cbStruct;
FUNCTION_ENTRY ("acmdDriverDetails")
//
// it is easiest to fill in a temporary structure with valid info
// and then copy the requested number of bytes to the destination
// buffer.
//
ZeroMemory (&add, sizeof (add)); cbStruct = min (padd->cbStruct, sizeof (ACMDRIVERDETAILS)); add.cbStruct = cbStruct;
//
// for the current implementation of an ACM driver, the fccType and
// fccComp members *MUST* always be ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC
// ('audc') and ACMDRIVERDETAILS_FCCCOMP_UNDEFINED (0) respectively.
//
add.fccType = ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC; add.fccComp = ACMDRIVERDETAILS_FCCCOMP_UNDEFINED;
//
// the manufacturer id (wMid) and product id (wPid) must be filled
// in with your company's _registered_ identifier's. for more
// information on these identifier's and how to get them registered
// contact Microsoft and get the Multimedia Developer Registration Kit:
//
// Microsoft Corporation
// Multimedia Technology Group
// One Microsoft Way
// Redmond, WA 98052-6399
//
// Developer Services Phone: (800) 227-4679 x11771
//
// note that during the development phase or your ACM driver, you may
// use the reserved value of '0' for both wMid and wPid. however it
// is not acceptable to ship a driver with these values.
//
add.wMid = MM_ACM_MID_LH; add.wPid = MM_ACM_PID_LH;
//
// the vdwACM and vdwDriver members contain version information for
// the driver.
//
// vdwACM: must contain the version of the *ACM* that the driver was
// _designed_ for. this is the _minimum_ version number of the ACM
// that the driver will work with. this value must be >= V2.00.000.
//
// vdwDriver: the version of this ACM driver.
//
// ACM driver versions are 32 bit numbers broken into three parts as
// follows (note these parts are displayed as decimal values):
//
// bits 24 - 31: 8 bit _major_ version number
// bits 16 - 23: 8 bit _minor_ version number
// bits 0 - 15: 16 bit build number
//
add.vdwACM = VERSION_MSACM; add.vdwDriver = VERSION_ACM_DRIVER;
//
// the following flags are used to specify the type of conversion(s)
// that the ACM driver supports. note that a driver may support one or
// more of these flags in any combination.
//
// ACMDRIVERDETAILS_SUPPORTF_CODEC: this flag is set if the driver
// supports conversions from one format tag to another format tag. for
// example, if a converter compresses or decompresses WAVE_FORMAT_PCM
// and WAVE_FORMAT_IMA_ADPCM, then this bit should be set. this is
// true even if the data is not actually changed in size--for example
// a conversion from u-Law to A-Law will still set this bit because
// the format tags differ.
//
// ACMDRIVERDETAILS_SUPPORTF_CONVERTER: this flags is set if the
// driver supports conversions on the same format tag. as an example,
// the PCM converter that is built into the ACM sets this bit (and only
// this bit) because it converts only between PCM formats (bits, sample
// rate).
//
// ACMDRIVERDETAILS_SUPPORTF_FILTER: this flag is set if the driver
// supports transformations on a single format tag but does change
// the base characteristics of the format (bit depth, sample rate, etc
// will remain the same). for example, a driver that changed the
// 'volume' of PCM data or applied a low pass filter would set this bit.
//
add.fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC;
// the number of individual format tags this ACM driver supports. for
// example, if a driver uses the WAVE_FORMAT_IMA_ADPCM and
// WAVE_FORMAT_PCM format tags, then this value would be two. if the
// driver only supports filtering on WAVE_FORMAT_PCM, then this value
// would be one. if this driver supported WAVE_FORMAT_ALAW,
// WAVE_FORMAT_MULAW and WAVE_FORMAT_PCM, then this value would be
// three. etc, etc.
add.cFormatTags = ACM_DRIVER_MAX_FORMAT_TAGS;
// the number of individual filter tags this ACM driver supports. if
// a driver supports no filters (ACMDRIVERDETAILS_SUPPORTF_FILTER is
// NOT set in the fdwSupport member), then this value must be zero.
add.cFilterTags = ACM_DRIVER_MAX_FILTER_TAGS;
// the remaining members in the ACMDRIVERDETAILS structure are sometimes
// not needed. because of this we make a quick check to see if we
// should go through the effort of filling in these members.
if (FIELD_OFFSET (ACMDRIVERDETAILS, hicon) < cbStruct) { // fill in the hicon member will a handle to a custom icon for
// the ACM driver. this allows the driver to be represented by
// an application graphically (usually this will be a company
// logo or something). if a driver does not wish to have a custom
// icon displayed, then simply set this member to NULL and a
// generic icon will be displayed instead.
//
// See the MSFILTER sample for a codec which contains a custom icon.
add.hicon = NULL;
// the short name and long name are used to represent the driver
// in a unique description. the short name is intended for small
// display areas (for example, in a menu or combo box). the long
// name is intended for more descriptive displays (for example,
// in an 'about box').
//
// NOTE! an ACM driver should never place formatting characters
// of any sort in these strings (for example CR/LF's, etc). it
// is up to the application to format the text.
LoadStringCodec (pid->hInst, IDS_CODEC_SHORTNAME, add.szShortName, SIZEOFACMSTR (add.szShortName)); LoadStringCodec (pid->hInst, IDS_CODEC_LONGNAME, add.szLongName, SIZEOFACMSTR (add.szLongName));
// the last three members are intended for 'about box' information.
// these members are optional and may be zero length strings if
// the driver wishes.
//
// NOTE! an ACM driver should never place formatting characters
// of any sort in these strings (for example CR/LF's, etc). it
// is up to the application to format the text.
if (FIELD_OFFSET (ACMDRIVERDETAILS, szCopyright) < cbStruct) { LoadStringCodec (pid->hInst, IDS_CODEC_COPYRIGHT, add.szCopyright, SIZEOFACMSTR (add.szCopyright)); LoadStringCodec (pid->hInst, IDS_CODEC_LICENSING, add.szLicensing, SIZEOFACMSTR (add.szLicensing)); LoadStringCodec (pid->hInst, IDS_CODEC_FEATURES, add.szFeatures, SIZEOFACMSTR (add.szFeatures)); } }
// now copy the correct number of bytes to the caller's buffer
CopyMemory (padd, &add, (UINT) add.cbStruct);
// success!
return MMSYSERR_NOERROR;
} // acmdDriverDetails()
//--------------------------------------------------------------------------;
//
// on ACMDM_DRIVER_ABOUT
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdDriverAbout ( PINSTANCEDATA pid, HWND hwnd ) { FUNCTION_ENTRY ("acmdDriverAbout")
//
// first check to see if we are only being queried for custom about
// box support. if hwnd == (HWND)-1 then we are being queried and
// should return MMSYSERR_NOTSUPPORTED for 'not supported' and
// MMSYSERR_NOERROR for 'supported'.
//
// this driver does not support a custom dialog, so tell the ACM or
// calling application to display one for us. note that this is the
// _recommended_ method for consistency and simplicity of ACM drivers.
// why write code when you don't have to?
return MMSYSERR_NOTSUPPORTED;
} // acmdDriverAbout()
//--------------------------------------------------------------------------;
//
// on ACMDM_FORMAT_SUGGEST
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdFormatSuggest ( PINSTANCEDATA pid, LPACMDRVFORMATSUGGEST padfs ) { #define ACMD_FORMAT_SUGGEST_SUPPORT (ACM_FORMATSUGGESTF_WFORMATTAG | \
ACM_FORMATSUGGESTF_NCHANNELS | \ ACM_FORMATSUGGESTF_NSAMPLESPERSEC |\ ACM_FORMATSUGGESTF_WBITSPERSAMPLE)
LPWAVEFORMATEX pwfxSrc; LPWAVEFORMATEX pwfxDst; DWORD fdwSuggest;
DWORD nSamplesPerSec; WORD wBitsPerSample;
FUNCTION_ENTRY ("acmdFormatSuggest")
// grab the suggestion restriction bits and verify that we support
// the ones that are specified... an ACM driver must return the
// MMSYSERR_NOTSUPPORTED if the suggestion restriction bits specified
// are not supported.
fdwSuggest = (ACM_FORMATSUGGESTF_TYPEMASK & padfs->fdwSuggest);
if (~ACMD_FORMAT_SUGGEST_SUPPORT & fdwSuggest) return MMSYSERR_NOTSUPPORTED;
// get the source and destination formats in more convenient variables
pwfxSrc = padfs->pwfxSrc; pwfxDst = padfs->pwfxDst;
switch (pwfxSrc->wFormatTag) { case WAVE_FORMAT_PCM: DBGMSG (1, (_T ("%s: src wFormatTag=WAVE_FORMAT_PCM\r\n"), SZFN)); // strictly verify that the source format is acceptable for
// this driver
//
if (! pcmIsValidFormat (pwfxSrc)) { DBGMSG (1, (_T ("%s: src format not valid\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; }
// if the destination format tag is restricted, verify that
// it is within our capabilities...
//
// this driver can encode to one of four L&H codecs
if (ACM_FORMATSUGGESTF_WFORMATTAG & fdwSuggest) { switch (pwfxDst->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: break; default: DBGMSG (1, (_T ("%s: not supported dest wFormatTag=%d\r\n"), SZFN, (UINT) pwfxDst->wFormatTag)); return ACMERR_NOTPOSSIBLE; } } else { #ifdef CELP4800
pwfxDst->wFormatTag = WAVE_FORMAT_LH_CELP; #else
pwfxDst->wFormatTag = WAVE_FORMAT_LH_SB12; #endif
}
// if the destination channel count is restricted, verify that
// it is within our capabilities...
//
// this driver is not able to change the number of channels
if (ACM_FORMATSUGGESTF_NCHANNELS & fdwSuggest) { if ((pwfxSrc->nChannels != pwfxDst->nChannels) || ((pwfxDst->nChannels < 1) && (pwfxDst->nChannels > ACM_DRIVER_MAX_CHANNELS))) { DBGMSG (1, (_T ("%s: ERROR src'nChannels=%ld and dest'nChannels=%ld are different\r\n"), SZFN, (DWORD) pwfxSrc->nChannels, (DWORD) pwfxDst->nChannels)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->nChannels = pwfxSrc->nChannels; }
switch (pwfxDst->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: nSamplesPerSec = pid->CELP.CodecInfo.dwSampleRate; wBitsPerSample = pid->CELP.CodecInfo.wBitsPerSamplePCM; pwfxDst->nBlockAlign = pid->CELP.CodecInfo.wCodedBufferSize; pwfxDst->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->CELP.CodecInfo)); pwfxDst->cbSize = 0; break; #endif
case WAVE_FORMAT_LH_SB8: nSamplesPerSec = pid->SB8.CodecInfo.dwSampleRate; wBitsPerSample = pid->CELP.CodecInfo.wBitsPerSamplePCM; pwfxDst->nBlockAlign = pid->SB8.CodecInfo.wCodedBufferSize; pwfxDst->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB8.CodecInfo)); pwfxDst->cbSize = 0; break; case WAVE_FORMAT_LH_SB12: nSamplesPerSec = pid->SB12.CodecInfo.dwSampleRate; wBitsPerSample = pid->CELP.CodecInfo.wBitsPerSamplePCM; pwfxDst->nBlockAlign = pid->SB12.CodecInfo.wCodedBufferSize; pwfxDst->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB12.CodecInfo)); pwfxDst->cbSize = 0; break; case WAVE_FORMAT_LH_SB16: nSamplesPerSec = pid->SB16.CodecInfo.dwSampleRate; wBitsPerSample = pid->CELP.CodecInfo.wBitsPerSamplePCM; pwfxDst->nBlockAlign = pid->SB16.CodecInfo.wCodedBufferSize; pwfxDst->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB16.CodecInfo)); pwfxDst->cbSize = 0; break; default: DBGMSG (1, (_T ("%s: not supported dest wFormatTag=%d\r\n"), SZFN, (UINT) pwfxDst->wFormatTag)); return ACMERR_NOTPOSSIBLE; }
// if the destination samples per second is restricted, verify
// that it is within our capabilities...
if (ACM_FORMATSUGGESTF_NSAMPLESPERSEC & fdwSuggest) { if (pwfxDst->nSamplesPerSec != nSamplesPerSec) { DBGMSG (1, (_T ("%s: ERROR dest'nSamplesPerSec=%ld must be 8000\r\n"), SZFN, (DWORD) pwfxDst->nSamplesPerSec)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->nSamplesPerSec = nSamplesPerSec; }
// if the destination bits per sample is restricted, verify
// that it is within our capabilities...
if (ACM_FORMATSUGGESTF_WBITSPERSAMPLE & fdwSuggest) { if (pwfxDst->wBitsPerSample != wBitsPerSample) { DBGMSG (1, (_T ("%s: dest wBitsPerSample is not valid\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->wBitsPerSample = wBitsPerSample; }
DBGMSG (1, (_T ("%s: returns no error\r\n"), SZFN)); return MMSYSERR_NOERROR;
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: DBGMSG (1, (_T ("%s: src wFormatTag=0x%X\r\n"), SZFN, (UINT) pwfxSrc->wFormatTag));
// strictly verify that the source format is acceptable for
// this driver
//
if (! lhacmIsValidFormat (pwfxSrc, pid)) { DBGMSG (1, (_T ("%s: src format not valid\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; }
// if the destination format tag is restricted, verify that
// it is within our capabilities...
//
// this driver is only able to decode to PCM
if (ACM_FORMATSUGGESTF_WFORMATTAG & fdwSuggest) { if (pwfxDst->wFormatTag != WAVE_FORMAT_PCM) { DBGMSG (1, (_T ("%s: not supported dest wFormatTag=%d\r\n"), SZFN, (UINT) pwfxDst->wFormatTag)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->wFormatTag = WAVE_FORMAT_PCM; }
// if the destination channel count is restricted, verify that
// it is within our capabilities...
//
// this driver is not able to change the number of channels
if (ACM_FORMATSUGGESTF_NCHANNELS & fdwSuggest) { if ((pwfxSrc->nChannels != pwfxDst->nChannels) || ((pwfxDst->nChannels < 1) && (pwfxDst->nChannels > ACM_DRIVER_MAX_CHANNELS))) { DBGMSG (1, (_T ("%s: ERROR src'nChannels=%ld and dest'nChannels=%ld are different\r\n"), SZFN, (DWORD) pwfxSrc->nChannels, (DWORD) pwfxDst->nChannels)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->nChannels = pwfxSrc->nChannels; }
// if the destination samples per second is restricted, verify
// that it is within our capabilities...
//
// this driver is not able to change the sample rate
if (ACM_FORMATSUGGESTF_NSAMPLESPERSEC & fdwSuggest) { if (pwfxDst->nSamplesPerSec != pwfxSrc->nSamplesPerSec) { DBGMSG (1, (_T ("%s: ERROR invalid dest'nSamplesPerSec=%ld\r\n"), SZFN, (DWORD) pwfxDst->nSamplesPerSec)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->nSamplesPerSec = pwfxSrc->nSamplesPerSec; }
// if the destination bits per sample is restricted, verify
// that it is within our capabilities...
if (ACM_FORMATSUGGESTF_WBITSPERSAMPLE & fdwSuggest) { if (pwfxDst->wBitsPerSample != LH_PCM_BITSPERSAMPLE) { DBGMSG (1, (_T ("%s: dest wBitsPerSample is not 16\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; } } else { pwfxDst->wBitsPerSample = pwfxSrc->wBitsPerSample; }
// at this point, we have filled in all fields except the
// following for our 'suggested' destination format:
//
// nAvgBytesPerSec
// nBlockAlign
// cbSize
pwfxDst->nBlockAlign = PCM_BLOCKALIGNMENT (pwfxDst); pwfxDst->nAvgBytesPerSec = pwfxDst->nSamplesPerSec * pwfxDst->nBlockAlign;
// pwfxDst->cbSize = not used;
DBGMSG (1, (_T ("%s: returns no error\r\n"), SZFN)); return MMSYSERR_NOERROR; }
// can't suggest anything because either the source format is foreign
// or the destination format has restrictions that this ACM driver
// cannot deal with.
DBGMSG (1, (_T ("%s: bad wFormatTag=%d\r\n"), SZFN, (UINT) pwfxSrc->wFormatTag));
return ACMERR_NOTPOSSIBLE;
} // acmdFormatSuggest()
//--------------------------------------------------------------------------;
//
// on ACMDM_FORMATTAG_DETAILS
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdFormatTagDetails ( PINSTANCEDATA pid, LPACMFORMATTAGDETAILS padft, DWORD fdwDetails ) { UINT uFormatTag;
FUNCTION_ENTRY ("acmdFormatTagDetails")
switch (ACM_FORMATTAGDETAILSF_QUERYMASK & fdwDetails) { case ACM_FORMATTAGDETAILSF_INDEX: DBGMSG (1, (_T ("%s: ACM_FORMATTAGDETAILSF_INDEX\r\n"), SZFN));
// if the index is too large, then they are asking for a
// non-existant format. return error.
if (padft->dwFormatTagIndex >= ACM_DRIVER_MAX_FORMAT_TAGS) { DBGMSG (1, (_T ("%s: ERROR too big dwFormatTagIndex=%ld\r\n"), SZFN, padft->dwFormatTagIndex)); return ACMERR_NOTPOSSIBLE; }
uFormatTag = gauFormatTagIndexToTag[padft->dwFormatTagIndex]; break;
case ACM_FORMATTAGDETAILSF_LARGESTSIZE: DBGMSG (1, (_T ("%s: ACM_FORMATTAGDETAILSF_LARGESTSIZE\r\n"), SZFN)); switch (padft->dwFormatTag) { case WAVE_FORMAT_UNKNOWN: #ifdef CELP4800
padft->dwFormatTag = WAVE_FORMAT_LH_CELP; #else
padft->dwFormatTag = WAVE_FORMAT_LH_SB12; #endif
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: uFormatTag = padft->dwFormatTag; DBGMSG (1, (_T ("%s: dwFormatTag=0x%x\r\n"), SZFN, uFormatTag)); break;
case WAVE_FORMAT_PCM: DBGMSG (1, (_T ("%s: dwFormatTag=WAVE_FORMAT_PCM\r\n"), SZFN)); uFormatTag = WAVE_FORMAT_PCM; break;
default: DBGMSG (1, (_T ("%s: dwFormatTag=%ld not valid\r\n"), SZFN, padft->dwFormatTag)); return ACMERR_NOTPOSSIBLE; } break;
case ACM_FORMATTAGDETAILSF_FORMATTAG: DBGMSG (1, (_T ("%s: ACM_FORMATTAGDETAILSF_FORMATTAG\r\n"), SZFN)); switch (padft->dwFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: case WAVE_FORMAT_PCM: uFormatTag = padft->dwFormatTag; DBGMSG (1, (_T ("%s: dwFormatTag=0x%x\r\n"), SZFN, uFormatTag)); break; default: DBGMSG (1, (_T ("%s: dwFormatTag=%ld not valid\r\n"), SZFN, padft->dwFormatTag)); return ACMERR_NOTPOSSIBLE; } break;
// if this ACM driver does not understand a query type, then
// return 'not supported'
default: DBGMSG (1, (_T ("%s: this detail option is not supported, fdwDetails=0x%lX\r\n"), SZFN, fdwDetails)); return MMSYSERR_NOTSUPPORTED; }
// ok, let's fill in the structure based on uFormatTag!
switch (uFormatTag) { case WAVE_FORMAT_PCM: DBGMSG (1, (_T ("%s: uFormatTag=WAVE_FORMAT_PCM\r\n"), SZFN)); padft->dwFormatTagIndex = IDX_PCM; padft->dwFormatTag = WAVE_FORMAT_PCM; padft->cbFormatSize = sizeof (PCMWAVEFORMAT); padft->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC; padft->cStandardFormats = ACM_DRIVER_MAX_FORMATS_PCM; //
// the ACM is responsible for the PCM format tag name
//
padft->szFormatTag[0] = 0; break;
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: DBGMSG (1, (_T ("%s: uFormatTag=WAVE_FORMAT_LH_CELP\r\n"), SZFN)); padft->dwFormatTagIndex = IDX_LH_CELP; #endif
/* GOTOs - ugh! */ Label_LH_common:
padft->dwFormatTag = uFormatTag; padft->cbFormatSize = sizeof (WAVEFORMATEX); padft->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC; #ifdef CELP4800
padft->cStandardFormats = ACM_DRIVER_MAX_FORMATS_LH_CELP; #else
padft->cStandardFormats = ACM_DRIVER_MAX_FORMATS_LH_SB16; #endif
LoadStringCodec (pid->hInst, gauTagNameIds[padft->dwFormatTagIndex], padft->szFormatTag, SIZEOFACMSTR (padft->szFormatTag)); break; case WAVE_FORMAT_LH_SB8: DBGMSG (1, (_T ("%s: uFormatTag=WAVE_FORMAT_LH_SB8\r\n"), SZFN)); padft->dwFormatTagIndex = IDX_LH_SB8; goto Label_LH_common;
case WAVE_FORMAT_LH_SB12: DBGMSG (1, (_T ("%s: uFormatTag=WAVE_FORMAT_LH_SB12\r\n"), SZFN)); padft->dwFormatTagIndex = IDX_LH_SB12; goto Label_LH_common;
case WAVE_FORMAT_LH_SB16: DBGMSG (1, (_T ("%s: uFormatTag=WAVE_FORMAT_LH_SB16\r\n"), SZFN)); padft->dwFormatTagIndex = IDX_LH_SB16; goto Label_LH_common;
default: DBGMSG (1, (_T ("%s: uFormatTag=%d not valid\r\n"), SZFN, uFormatTag)); return ACMERR_NOTPOSSIBLE; }
// return only the requested info
//
// the ACM will guarantee that the ACMFORMATTAGDETAILS structure
// passed is at least large enough to hold the base information of
// the details structure
padft->cbStruct = min (padft->cbStruct, sizeof (*padft));
return MMSYSERR_NOERROR;
} // acmdFormatTagDetails()
//--------------------------------------------------------------------------;
//
// on ACMDM_FORMAT_DETAILS
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdFormatDetails ( PINSTANCEDATA pid, LPACMFORMATDETAILS padf, DWORD fdwDetails ) { LPWAVEFORMATEX pwfx; UINT uFormatIndex; UINT u; DWORD dwFormatTag;
FUNCTION_ENTRY ("acmdFormatDetails")
pwfx = padf->pwfx;
switch (ACM_FORMATDETAILSF_QUERYMASK & fdwDetails) { // enumerate by index
//
// verify that the format tag is something we know about and
// return the details on the 'standard format' supported by
// this driver at the specified index...
case ACM_FORMATDETAILSF_INDEX: DBGMSG (1, (_T ("%s: ACM_FORMATDETAILSF_INDEX\r\n"), SZFN)); //
// put some stuff in more accessible variables--note that we
// bring variable sizes down to a reasonable size for 16 bit
// code...
//
dwFormatTag = padf->dwFormatTag; uFormatIndex = padf->dwFormatIndex;
switch (dwFormatTag) { case WAVE_FORMAT_PCM: DBGMSG (1, (_T ("%s: WAVE_FORMAT_PCM\r\n"), SZFN)); if (uFormatIndex >= ACM_DRIVER_MAX_FORMATS_PCM) { DBGMSG (1, (_T ("%s: ERROR too big dwFormatIndex=%ld\n"), SZFN, padf->dwFormatIndex)); return ACMERR_NOTPOSSIBLE; }
//
// now fill in the format structure
//
pwfx->wFormatTag = WAVE_FORMAT_PCM;
u = uFormatIndex % ACM_DRIVER_MAX_PCM_SAMPLE_RATES; pwfx->nSamplesPerSec = gauPCMFormatIndexToSampleRate[u];
u = uFormatIndex % ACM_DRIVER_MAX_CHANNELS; pwfx->nChannels = u + 1;
u = uFormatIndex % ACM_DRIVER_MAX_BITSPERSAMPLE_PCM; pwfx->wBitsPerSample = gauPCMFormatIndexToBitsPerSample[u];
pwfx->nBlockAlign = PCM_BLOCKALIGNMENT(pwfx); pwfx->nAvgBytesPerSec = pwfx->nSamplesPerSec * pwfx->nBlockAlign;
//
// note that the cbSize field is NOT valid for PCM
// formats
//
// pwfx->cbSize = 0;
break;
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: DBGMSG (1, (_T ("%s: WAVE_FORMAT_LH_CELP\r\n"), SZFN)); if (uFormatIndex >= ACM_DRIVER_MAX_FORMATS_LH_CELP) { DBGMSG (1, (_T ("%s: too big dwFormatIndex=%ld\r\n"), SZFN, padf->dwFormatIndex)); return ACMERR_NOTPOSSIBLE; }
pwfx->wFormatTag = WAVE_FORMAT_LH_CELP;
u = uFormatIndex % ACM_DRIVER_MAX_LH_CELP_SAMPLE_RATES; pwfx->nSamplesPerSec = gauLHCELPFormatIndexToSampleRate[u];
u = uFormatIndex % ACM_DRIVER_MAX_BITSPERSAMPLE_LH_CELP; pwfx->wBitsPerSample = gauLHCELPFormatIndexToBitsPerSample[u];
pwfx->nChannels = ACM_DRIVER_MAX_CHANNELS; pwfx->nBlockAlign = pid->CELP.CodecInfo.wCodedBufferSize; pwfx->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->CELP.CodecInfo)); pwfx->cbSize = 0; break; #endif
case WAVE_FORMAT_LH_SB8: DBGMSG (1, (_T ("%s: WAVE_FORMAT_LH_SB8\r\n"), SZFN)); if (uFormatIndex >= ACM_DRIVER_MAX_FORMATS_LH_SB8) { DBGMSG (1, (_T ("%s: too big dwFormatIndex=%ld\r\n"), SZFN, padf->dwFormatIndex)); return ACMERR_NOTPOSSIBLE; }
pwfx->wFormatTag = WAVE_FORMAT_LH_SB8;
u = uFormatIndex % ACM_DRIVER_MAX_LH_SB8_SAMPLE_RATES; pwfx->nSamplesPerSec = gauLHSB8FormatIndexToSampleRate[u];
u = uFormatIndex % ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB8; pwfx->wBitsPerSample = gauLHSB8FormatIndexToBitsPerSample[u];
pwfx->nChannels = ACM_DRIVER_MAX_CHANNELS; pwfx->nBlockAlign = pid->SB8.CodecInfo.wCodedBufferSize; pwfx->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB8.CodecInfo)); pwfx->cbSize = 0; break;
case WAVE_FORMAT_LH_SB12: DBGMSG (1, (_T ("%s: WAVE_FORMAT_LH_SB12\r\n"), SZFN)); if (uFormatIndex >= ACM_DRIVER_MAX_FORMATS_LH_SB12) { DBGMSG (1, (_T ("%s: too big dwFormatIndex=%ld\r\n"), SZFN, padf->dwFormatIndex)); return ACMERR_NOTPOSSIBLE; }
pwfx->wFormatTag = WAVE_FORMAT_LH_SB12;
u = uFormatIndex % ACM_DRIVER_MAX_LH_SB12_SAMPLE_RATES; pwfx->nSamplesPerSec = gauLHSB12FormatIndexToSampleRate[u];
u = uFormatIndex % ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB12; pwfx->wBitsPerSample = gauLHSB12FormatIndexToBitsPerSample[u];
pwfx->nChannels = ACM_DRIVER_MAX_CHANNELS; pwfx->nBlockAlign = pid->SB12.CodecInfo.wCodedBufferSize; pwfx->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB12.CodecInfo)); pwfx->cbSize = 0; break;
case WAVE_FORMAT_LH_SB16: DBGMSG (1, (_T ("%s: WAVE_FORMAT_LH_SB16\r\n"), SZFN)); if (uFormatIndex >= ACM_DRIVER_MAX_FORMATS_LH_SB16) { DBGMSG (1, (_T ("%s: too big dwFormatIndex=%ld\r\n"), SZFN, padf->dwFormatIndex)); return ACMERR_NOTPOSSIBLE; }
pwfx->wFormatTag = WAVE_FORMAT_LH_SB16;
u = uFormatIndex % ACM_DRIVER_MAX_LH_SB16_SAMPLE_RATES; pwfx->nSamplesPerSec = gauLHSB16FormatIndexToSampleRate[u];
u = uFormatIndex % ACM_DRIVER_MAX_BITSPERSAMPLE_LH_SB16; pwfx->wBitsPerSample = gauLHSB16FormatIndexToBitsPerSample[u];
pwfx->nChannels = ACM_DRIVER_MAX_CHANNELS; pwfx->nBlockAlign = pid->SB16.CodecInfo.wCodedBufferSize; pwfx->nAvgBytesPerSec = _GetAvgBytesPerSec (&(pid->SB16.CodecInfo)); pwfx->cbSize = 0; break;
default: DBGMSG (1, (_T ("%s: unknown dwFormatTag=%ld\r\n"), SZFN, dwFormatTag)); return ACMERR_NOTPOSSIBLE; } break;
case ACM_FORMATDETAILSF_FORMAT: DBGMSG (1, (_T ("%s: ACM_FORMATDETAILSF_FORMAT\r\n"), SZFN)); //
// return details on specified format
//
// the caller normally uses this to verify that the format is
// supported and to retrieve a string description...
//
dwFormatTag = (DWORD) pwfx->wFormatTag; switch (dwFormatTag) { case WAVE_FORMAT_PCM: DBGMSG (1, (_T ("%s: WAVE_FORMAT_PCM\r\n"), SZFN)); if (! pcmIsValidFormat (pwfx)) { DBGMSG (1, (_T ("%s: format not valid\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; } break;
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: DBGMSG (1, (_T ("%s: WAVE_FORMAT_LH\r\n"), SZFN)); if (! lhacmIsValidFormat (pwfx, pid)) { DBGMSG (1, (_T ("%s: format not valid\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; } break;
default: DBGMSG (1, (_T ("%s: bad dwFormatTag=%ld\r\n"), SZFN, dwFormatTag)); return (ACMERR_NOTPOSSIBLE); } break;
default: //
// don't know how to do the query type passed--return 'not
// supported'.
//
DBGMSG (1, (_T ("%s: not support this detail option=%ld\r\n"), SZFN, fdwDetails)); return MMSYSERR_NOTSUPPORTED; }
// return the size of the valid information we are returning
//
// the ACM will guarantee that the ACMFORMATDETAILS structure
// passed is at least large enough to hold the base structure
//
// note that we let the ACM create the format string for us since
// we require no special formatting (and don't want to deal with
// internationalization issues, etc). simply set the string to
// a zero length.
padf->cbStruct = min (padf->cbStruct, sizeof (*padf)); if (padf->cbStruct == 0) padf->cbStruct = sizeof (*padf); padf->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC; padf->szFormat[0] = '\0';
#ifdef _DEBUG
DBGMSG (1, (_T ("%s: %s, %ld Samp/Sec, %u Channels, %u-bit, Align=%u, %ld Bytes/Sec, cbSize=%u\n"), SZFN, (WAVE_FORMAT_PCM == pwfx->wFormatTag ? (LPCTSTR) _T ("PCM") : (LPCTSTR) _T ("LH")), pwfx->nSamplesPerSec, pwfx->nChannels, pwfx->wBitsPerSample, pwfx->nBlockAlign, pwfx->nAvgBytesPerSec, pwfx->cbSize)); #endif
return MMSYSERR_NOERROR;
} // acmdFormatDetails()
//--------------------------------------------------------------------------;
//
// on ACMDM_STREAM_OPEN
//
// Description:
// This function handles the ACMDM_STREAM_OPEN message. This message
// is sent to initiate a new conversion stream. This is usually caused
// by an application calling acmStreamOpen. If this function is
// successful, then one or more ACMDM_STREAM_CONVERT messages will be
// sent to convert individual buffers (user calls acmStreamConvert).
//
// Note that an ACM driver will not receive open requests for ASYNC
// or FILTER operations unless the ACMDRIVERDETAILS_SUPPORTF_ASYNC
// or ACMDRIVERDETAILS_SUPPORTF_FILTER flags are set in the
// ACMDRIVERDETAILS structure. There is no need for the driver to
// check for these requests unless it sets those support bits.
//
// If the ACM_STREAMOPENF_QUERY flag is set in the padsi->fdwOpen
// member, then no resources should be allocated. Just verify that
// the conversion request is possible by this driver and return the
// appropriate error (either ACMERR_NOTPOSSIBLE or MMSYSERR_NOERROR).
// The driver will NOT receive an ACMDM_STREAM_CLOSE for queries.
//
// If the ACM_STREAMOPENF_NONREALTIME bit is NOT set, then conversion
// must be done in 'real-time'. This is a tough one to describe
// exactly. If the driver may have trouble doing the conversion without
// breaking up the audio, then a configuration dialog might be used
// to allow the user to specify whether the real-time conversion
// request should be succeeded. DO NOT SUCCEED THE CALL UNLESS YOU
// ACTUALLY CAN DO REAL-TIME CONVERSIONS! There may be another driver
// installed that can--so if you succeed the call you are hindering
// the performance of the user's system!
//
// Arguments:
// HLOCAL pid: Pointer to private ACM driver instance structure.
// This structure is [optionally] allocated during the DRV_OPEN message
// which is handled by the acmdDriverOpen function.
//
// LPACMDRVSTREAMINSTANCE padsi: Pointer to instance data for the
// conversion stream. This structure was allocated by the ACM and
// filled with the most common instance data needed for conversions.
// This structure will be passed back to all future stream messages
// if the open succeeds. The information in this structure will never
// change during the lifetime of the stream--so it is not necessary
// to re-verify the information referenced by this structure.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero error code
// if the function fails.
//
// A driver should return ACMERR_NOTPOSSIBLE if the conversion cannot
// be performed due to incompatible source and destination formats.
//
// A driver should return MMSYSERR_NOTSUPPORTED if the conversion
// cannot be performed in real-time and the request does not specify
// the ACM_STREAMOPENF_NONREALTIME flag.
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdStreamOpen ( PINSTANCEDATA pid, LPACMDRVSTREAMINSTANCE padsi ) { LPWAVEFORMATEX pwfxSrc = padsi->pwfxSrc; LPWAVEFORMATEX pwfxDst = padsi->pwfxDst; PSTREAMINSTANCEDATA psi; BOOL fCompress; UINT uEncodedFormatTag; UINT cbMaxData; DWORD dwMaxBitRate; PFN_CONVERT pfnConvert = NULL; PFN_CLOSE pfnClose = NULL; HANDLE hAccess = NULL; PCODECDATA pCodecData = NULL;
FUNCTION_ENTRY ("acmdStreamOpen")
// Validate that the input and output formats are compatible
DBGMSG (1, (_T ("%s: wFormatTag: Src=%d, Dst=%d\r\n"), SZFN, (UINT) pwfxSrc->wFormatTag, (UINT) pwfxDst->wFormatTag));
switch (pwfxSrc->wFormatTag) { case WAVE_FORMAT_PCM: // Source is PCM (we'll be compressing): check it and
// make sure destination type is LH
if (! pcmIsValidFormat (pwfxSrc)) { return ACMERR_NOTPOSSIBLE; } if (! lhacmIsValidFormat (pwfxDst, pid)) { return ACMERR_NOTPOSSIBLE; } uEncodedFormatTag = pwfxDst->wFormatTag; fCompress = TRUE; break;
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: // Source is LH (we'll be decompressing): check it and
// make sure destination type is PCM
if (! lhacmIsValidFormat (pwfxSrc, pid)) { return ACMERR_NOTPOSSIBLE; } if (! pcmIsValidFormat (pwfxDst)) { return ACMERR_NOTPOSSIBLE; } uEncodedFormatTag = pwfxSrc->wFormatTag; fCompress = FALSE; break;
default: return ACMERR_NOTPOSSIBLE; }
// For this driver, we must also verify that the nChannels and
// nSamplesPerSec members are the same between the source and
// destination formats.
if (pwfxSrc->nChannels != pwfxDst->nChannels) { DBGMSG (1, (_T ("%s: bad nChannels: Src=%d, Dst=%d\r\n"), SZFN, (UINT) pwfxSrc->nChannels, (UINT) pwfxDst->nChannels)); return MMSYSERR_NOTSUPPORTED; }
if (pwfxSrc->nSamplesPerSec != pwfxDst->nSamplesPerSec) { DBGMSG (1, (_T ("%s: bad nSamplesPerSec: Src=%d, Dst=%d\r\n"), SZFN, (UINT) pwfxSrc->nSamplesPerSec, (UINT) pwfxDst->nSamplesPerSec)); return MMSYSERR_NOTSUPPORTED; }
// we have determined that the conversion requested is possible by
// this driver. now check if we are just being queried for support.
// if this is just a query, then do NOT allocate any instance data
// or create tables, etc. just succeed the call.
if (ACM_STREAMOPENF_QUERY & padsi->fdwOpen) { DBGMSG (1, (_T ("%s: Query ok\r\n"), SZFN)); return MMSYSERR_NOERROR; }
// we have decided that this driver can handle the conversion stream.
// so we want to do _AS MUCH WORK AS POSSIBLE_ right now to prepare
// for converting data. any resource allocation, table building, etc
// that can be dealt with at this time should be done.
//
// THIS IS VERY IMPORTANT! all ACMDM_STREAM_CONVERT messages need to
// be handled as quickly as possible.
cbMaxData = 0; dwMaxBitRate = 0;
switch (uEncodedFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: #endif
case WAVE_FORMAT_LH_SB8: case WAVE_FORMAT_LH_SB12: case WAVE_FORMAT_LH_SB16: #ifdef CELP4800
if (uEncodedFormatTag == WAVE_FORMAT_LH_CELP) { dwMaxBitRate = 4800; pCodecData = &(pid->CELP); } else #endif
if (uEncodedFormatTag == WAVE_FORMAT_LH_SB8) { dwMaxBitRate = 8000; pCodecData = &(pid->SB8); } else if (uEncodedFormatTag == WAVE_FORMAT_LH_SB12) { dwMaxBitRate = 12000; pCodecData = &(pid->SB12); } else if (uEncodedFormatTag == WAVE_FORMAT_LH_SB16) { dwMaxBitRate = 16000; pCodecData = &(pid->SB16); } if (fCompress) { hAccess = MSLHSB_Open_Coder (dwMaxBitRate); pfnConvert = MSLHSB_Encode; pfnClose = MSLHSB_Close_Coder; } else { hAccess = MSLHSB_Open_Decoder (dwMaxBitRate); pfnConvert = MSLHSB_Decode; pfnClose = MSLHSB_Close_Decoder; cbMaxData = pCodecData->CodecInfo.wCodedBufferSize; } break;
}
if (hAccess == NULL) { if (pfnClose) (*pfnClose) (hAccess); DBGMSG (1, (_T ("%s: open failed, hAccess=0\r\n"), SZFN)); return ACMERR_NOTPOSSIBLE; }
psi = (PSTREAMINSTANCEDATA) LocalAlloc (LPTR, sizeof (STREAMINSTANCEDATA) + cbMaxData); if (psi == NULL) { DBGMSG (1, (_T ("%s: LocalAlloc failed\r\n"), SZFN)); if (pfnClose) (*pfnClose) (hAccess); return MMSYSERR_NOMEM; }
// fill out our instance structure
psi->pfnConvert = pfnConvert; psi->pfnClose = pfnClose; psi->hAccess = hAccess; psi->pCodecData = pCodecData; psi->fCompress = fCompress; psi->dwMaxBitRate = dwMaxBitRate; psi->fInit = TRUE;
// fill in our instance data--this will be passed back to all stream
// messages in the ACMDRVSTREAMINSTANCE structure. it is entirely
// up to the driver what gets stored (and maintained) in the
// fdwDriver and dwDriver members.
//
padsi->fdwDriver = 0; padsi->dwDriver = (DWORD_PTR) psi;
return MMSYSERR_NOERROR;
} // acmdStreamOpen()
//--------------------------------------------------------------------------;
//
// on ACMDM_STREAM_CLOSE
//
//--------------------------------------------------------------------------;
LRESULT FAR PASCAL acmdStreamClose ( PINSTANCEDATA pid, LPACMDRVSTREAMINSTANCE padsi ) { PSTREAMINSTANCEDATA psi;
FUNCTION_ENTRY ("acmdStreamClose") //
// the driver should clean up all privately allocated resources that
// were created for maintaining the stream instance. if no resources
// were allocated, then simply succeed.
//
// in the case of this driver, we need to free the stream instance
// structure that we allocated during acmdStreamOpen.
//
psi = (PSTREAMINSTANCEDATA) padsi->dwDriver; if (psi) { if (psi->fInit && psi->hAccess && psi->pfnClose) { (*(psi->pfnClose)) (psi->hAccess); LocalFree ((HLOCAL) psi); } } // if (psi)
return MMSYSERR_NOERROR;
} // acmdStreamClose()
//--------------------------------------------------------------------------;
//
// LRESULT FAR PASCAL acmdStreamSize
//
// Description:
// This function handles the ACMDM_STREAM_SIZE message. The purpose
// of this function is to provide the _largest size in bytes_ that
// the source or destination buffer needs to be given the input and
// output formats and the size in bytes of the source or destination
// data buffer.
//
// In other words: how big does my destination buffer need to be to
// hold the converted data? (ACM_STREAMSIZEF_SOURCE)
//
// Or: how big can my source buffer be given the destination buffer?
// (ACM_STREAMSIZEF_DESTINATION)
//
// Arguments:
// LPACMDRVSTREAMINSTANCE padsi: Pointer to instance data for the
// conversion stream. This structure was allocated by the ACM and
// filled with the most common instance data needed for conversions.
// The information in this structure is exactly the same as it was
// during the ACMDM_STREAM_OPEN message--so it is not necessary
// to re-verify the information referenced by this structure.
//
// LPACMDRVSTREAMSIZE padss: Specifies a pointer to the ACMDRVSTREAMSIZE
// structure that defines the conversion stream size query attributes.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero error code
// if the function fails.
//
// An ACM driver should return MMSYSERR_NOTSUPPORTED if a query type
// is requested that the driver does not understand. Note that a driver
// must support both the ACM_STREAMSIZEF_DESTINATION and
// ACM_STREAMSIZEF_SOURCE queries.
//
// If the conversion would be 'out of range' given the input arguments,
// then ACMERR_NOTPOSSIBLE should be returned.
//
//--------------------------------------------------------------------------;
// #define GetBytesPerBlock(nSamplesPerSec, wBitsPerSample) (RT24_SAMPLESPERBLOCK8 * (wBitsPerSample) >> 3)
LRESULT FAR PASCAL acmdStreamSize ( LPACMDRVSTREAMINSTANCE padsi, LPACMDRVSTREAMSIZE padss ) {
LPWAVEFORMATEX pwfxSrc; LPWAVEFORMATEX pwfxDst; DWORD cBlocks; DWORD cbSrcLength; DWORD cbDstLength; WORD wPCMBufferSize; WORD wCodedBufferSize;
PSTREAMINSTANCEDATA psi;
FUNCTION_ENTRY ("acmdStreamSize")
psi = (PSTREAMINSTANCEDATA) padsi->dwDriver; if (psi == NULL) return ACMERR_NOTPOSSIBLE;
wPCMBufferSize = psi->pCodecData->CodecInfo.wPCMBufferSize; wCodedBufferSize = psi->pCodecData->CodecInfo.wCodedBufferSize;
cbSrcLength = padss->cbSrcLength; cbDstLength = padss->cbDstLength;
pwfxSrc = padsi->pwfxSrc; pwfxDst = padsi->pwfxDst;
switch (ACM_STREAMSIZEF_QUERYMASK & padss->fdwSize) { case ACM_STREAMSIZEF_SOURCE:
if (pwfxSrc->wFormatTag == WAVE_FORMAT_PCM) { switch (pwfxDst->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: // src pcm -> dst lh celp
#endif
case WAVE_FORMAT_LH_SB8: // src pcm -> dst lh sb8
case WAVE_FORMAT_LH_SB12: // src pcm -> dst lh sb12
case WAVE_FORMAT_LH_SB16: // src pcm -> dst lh sb16
cBlocks = cbSrcLength / wPCMBufferSize; if (cBlocks == 0) return ACMERR_NOTPOSSIBLE; if (cBlocks * wPCMBufferSize < cbSrcLength) cBlocks++; padss->cbDstLength = cBlocks * wCodedBufferSize; break; } } else { switch (pwfxSrc->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: // src lh celp -> dst pcm
cBlocks = cbSrcLength / wCodedBufferSize; if (cBlocks == 0) return ACMERR_NOTPOSSIBLE; if (cBlocks * wCodedBufferSize < cbSrcLength) cBlocks++; padss->cbDstLength = cBlocks * wPCMBufferSize; break; #endif
case WAVE_FORMAT_LH_SB8: // src lh sb8 -> dst pcm
case WAVE_FORMAT_LH_SB12: // src lh sb12 -> dst pcm
case WAVE_FORMAT_LH_SB16: // src lh sb16 -> dst pcm
padss->cbDstLength = cbSrcLength * wPCMBufferSize; break; } } return MMSYSERR_NOERROR;
case ACM_STREAMSIZEF_DESTINATION:
if (pwfxDst->wFormatTag == WAVE_FORMAT_PCM) { switch (pwfxSrc->wFormatTag) { #ifdef CELP4800
case WAVE_FORMAT_LH_CELP: // src lh celp <- dst pcm
#endif
case WAVE_FORMAT_LH_SB8: // src lh sb8 <- dst pcm
case WAVE_FORMAT_LH_SB12: // src lh sb12 <- dst pcm
case WAVE_FORMAT_LH_SB16: // src lh sb16 <- dst pcm
cBlocks = cbDstLength / wPCMBufferSize; if (cBlocks == 0) return ACMERR_NOTPOSSIBLE; padss->cbSrcLength = cBlocks * wCodedBufferSize; break; } } else { switch (pwfxDst->wFormatTag) { #ifdef NEW_ANSWER
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: // src pcm <- dst lh celp
#endif
case WAVE_FORMAT_LH_SB8: // src pcm <- dst lh sb8
case WAVE_FORMAT_LH_SB12: // src pcm <- dst lh sb12
case WAVE_FORMAT_LH_SB16: // src pcm <- dst lh sb16
cBlocks = cbDstLength / wCodedBufferSize; if (cBlocks == 0) return ACMERR_NOTPOSSIBLE; padss->cbSrcLength = cBlocks * wPCMBufferSize; break; #else
#ifdef CELP4800
case WAVE_FORMAT_LH_CELP: // src pcm <- dst lh celp
cBlocks = cbDstLength / wCodedBufferSize; if (cBlocks == 0) return ACMERR_NOTPOSSIBLE; padss->cbSrcLength = cBlocks * wPCMBufferSize; break; #endif
case WAVE_FORMAT_LH_SB8: // src pcm <- dst lh sb8
case WAVE_FORMAT_LH_SB12: // src pcm <- dst lh sb12
case WAVE_FORMAT_LH_SB16: // src pcm <- dst lh sb16
padss->cbSrcLength = cbDstLength * wPCMBufferSize; break; #endif
} } return MMSYSERR_NOERROR;
} // switch()
return MMSYSERR_NOTSUPPORTED;
} // acmdStreamSize()
//--------------------------------------------------------------------------;
//
// LRESULT FAR PASCAL acmdStreamConvert
//
// Description:
// This function handles the ACMDM_STREAM_CONVERT message. This is the
// whole purpose of writing an ACM driver--to convert data. This message
// is sent after a stream has been opened (the driver receives and
// succeeds the ACMDM_STREAM_OPEN message).
//
// Arguments:
// HLOCAL pid: Pointer to private ACM driver instance structure.
// This structure is [optionally] allocated during the DRV_OPEN message
// which is handled by the acmdDriverOpen function.
//
// LPACMDRVSTREAMINSTANCE padsi: Pointer to instance data for the
// conversion stream. This structure was allocated by the ACM and
// filled with the most common instance data needed for conversions.
// The information in this structure is exactly the same as it was
// during the ACMDM_STREAM_OPEN message--so it is not necessary
// to re-verify the information referenced by this structure.
//
// LPACMDRVSTREAMHEADER padsh: Pointer to stream header structure
// that defines the source data and destination buffer to convert.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero error code
// if the function fails.
//
//--------------------------------------------------------------------------;
// We want to use as little stack as possible,
// So let's make all our local variables statics
LRESULT FAR PASCAL acmdStreamConvert ( PINSTANCEDATA pid, LPACMDRVSTREAMINSTANCE padsi, LPACMDRVSTREAMHEADER padsh ) { LH_ERRCODE lherr = LH_SUCCESS; DWORD dwInBufSize, dwOutBufSize; PBYTE pbSrc, pbDst, pData; DWORD dwPCMBufferSize, dwCodedBufferSize;
PSTREAMINSTANCEDATA psi;
FUNCTION_ENTRY ("acmdStreamConvert")
// this is a must
pbDst = padsh->pbDst; pbSrc = padsh->pbSrc;
// zero is a *must*
padsh->cbSrcLengthUsed = 0; padsh->cbDstLengthUsed = 0;
psi = (PSTREAMINSTANCEDATA) padsi->dwDriver; if (psi == NULL) return ACMERR_NOTPOSSIBLE;
dwPCMBufferSize = (DWORD) psi->pCodecData->CodecInfo.wPCMBufferSize; dwCodedBufferSize = (DWORD) psi->pCodecData->CodecInfo.wCodedBufferSize;
dwInBufSize = (DWORD) padsh->cbSrcLength; dwOutBufSize = (DWORD) padsh->cbDstLength; DBGMSG (1, (_T ("%s: prior: dwInBufSize=0x%lX, dwOutBufSize=0x%lX\r\n"), SZFN, dwInBufSize, dwOutBufSize));
/////////////////////////////////////////////
//
// ENCODING
//
if (psi->fCompress) { while (dwOutBufSize >= dwCodedBufferSize && dwInBufSize >= dwPCMBufferSize) { // ignore the data the codec cannot handle
// if (dwInBufSize > dwPCMBufferSize) dwInBufSize = dwPCMBufferSize;
dwInBufSize = dwPCMBufferSize;
// L&H codecs can only accept word
if (dwOutBufSize > 0x0FFF0UL) dwOutBufSize = 0x0FFF0UL;
// encode it
lherr = (*(psi->pfnConvert)) (psi->hAccess, pbSrc, (PWORD) &dwInBufSize, pbDst, (PWORD) &dwOutBufSize); DBGMSG (1, (_T ("%s: post: dwInBufSize=0x%lX, dwOutBufSize=0x%lX\r\n"), SZFN, dwInBufSize, dwOutBufSize)); if (lherr != LH_SUCCESS) { DBGMSG (1, (_T ("%s: LH*_**_Encode failed lherr=%ld\r\n"), SZFN, (long) lherr)); return MMSYSERR_NOTSUPPORTED; }
// return the info about the amount of data used and created
padsh->cbSrcLengthUsed += dwInBufSize; padsh->cbDstLengthUsed += dwOutBufSize;
// re-compute the buffer sizes
dwOutBufSize = (DWORD) (padsh->cbDstLength - padsh->cbDstLengthUsed); dwInBufSize = (DWORD) (padsh->cbSrcLength - padsh->cbSrcLengthUsed);
// re-compute the buffer pointers
pbSrc = padsh->pbSrc + padsh->cbSrcLengthUsed; pbDst = padsh->pbDst + padsh->cbDstLengthUsed; }
goto MyExit; // spit out debug message
}
/////////////////////////////////////////////
//
// DECODING celp
//
#ifdef CELP4800
if (psi->pCodecData->wFormatTag == WAVE_FORMAT_LH_CELP) { while (dwOutBufSize >= dwPCMBufferSize && dwInBufSize >= dwCodedBufferSize) { // ignore the data that the codec cannot handle
// if (dwInBufSize > dwCodedBufferSize) dwInBufSize = dwCodedBufferSize;
dwInBufSize = dwCodedBufferSize;
// L&H codecs can only accept word
if (dwOutBufSize > 0x0FFF0UL) dwOutBufSize = 0x0FFF0UL;
// decode it
lherr = (*(psi->pfnConvert)) (psi->hAccess, pbSrc, (PWORD) &dwInBufSize, pbDst, (PWORD) &dwOutBufSize); DBGMSG (1, (_T ("%s: post: dwInBufSize=0x%lX, dwOutBufSize=0x%lX\r\n"), SZFN, dwInBufSize, dwOutBufSize)); if (lherr != LH_SUCCESS) { DBGMSG (1, (_T ("%s: LH*_**_Decode failed lherr=%ld\r\n"), SZFN, (long) lherr)); return MMSYSERR_NOTSUPPORTED; }
// return the info about the amount of data used and created
padsh->cbSrcLengthUsed += dwInBufSize; padsh->cbDstLengthUsed += dwOutBufSize;
// re-compute the buffer sizes
dwOutBufSize = (DWORD) (padsh->cbDstLength - padsh->cbDstLengthUsed); dwInBufSize = (DWORD) (padsh->cbSrcLength - padsh->cbSrcLengthUsed);
// re-compute the buffer pointers
pbSrc = padsh->pbSrc + padsh->cbSrcLengthUsed; pbDst = padsh->pbDst + padsh->cbDstLengthUsed; }
goto MyExit; // spit out debug message
} #endif
/////////////////////////////////////////////
//
// DECODING subbands
//
if (pid->wPacketData != LH_PACKET_DATA_FRAMED) {
//
// general application, such as sndrec32.exe and audcmp.exe
//
pData = &(psi->Data[0]); // use local constant
while (dwOutBufSize >= dwPCMBufferSize && dwInBufSize + psi->cbData >= dwCodedBufferSize) { DBGMSG (1, (_T ("%s: cbData=0x%X\r\n"), SZFN, psi->cbData)); // fill in the internal buffer as possible
if (psi->cbData < dwCodedBufferSize) { // buffer the coded data
dwInBufSize = dwCodedBufferSize - (DWORD) psi->cbData; CopyMemory (&(psi->Data[psi->cbData]), pbSrc, dwInBufSize); psi->cbData = (WORD) dwCodedBufferSize; padsh->cbSrcLengthUsed += dwInBufSize; }
// reset input buffer size
dwInBufSize = dwCodedBufferSize;
// L&H codecs can only accept word
if (dwOutBufSize > 0x0FFF0UL) dwOutBufSize = 0x0FFF0UL;
// decode it
lherr = (*(psi->pfnConvert)) (psi->hAccess, pData, (PWORD) &dwInBufSize, pbDst, (PWORD) &dwOutBufSize); DBGMSG (1, (_T ("%s: post: dwInBufSize=0x%lX, dwOutBufSize=0x%lX\r\n"), SZFN, dwInBufSize, dwOutBufSize)); if (lherr != LH_SUCCESS) { DBGMSG (1, (_T ("%s: LH*_**_Decode failed lherr=%ld\r\n"), SZFN, (long) lherr)); return MMSYSERR_NOTSUPPORTED; }
// update the amount of the remaining data
psi->cbData -= (WORD) dwInBufSize;
// move the remaining data to the beginning of the internal buffer
// I should have used MoveMemory, but it is an MSVC runtime call.
// Use CopyMemory instead, which should be ok because the overlapping
// portion is copied before being overwritten.
if (psi->cbData) { CopyMemory (pData, &(psi->Data[dwInBufSize]), psi->cbData); }
// return the info about the amount of data used and created
padsh->cbDstLengthUsed += dwOutBufSize; // note that cbSrcLengthUsed has been updated already!!!
// re-compute the buffer sizes
dwOutBufSize = (DWORD) (padsh->cbDstLength - padsh->cbDstLengthUsed); dwInBufSize = (DWORD) (padsh->cbSrcLength - padsh->cbSrcLengthUsed);
// re-compute the buffer pointers
pbSrc = padsh->pbSrc + padsh->cbSrcLengthUsed; pbDst = padsh->pbDst + padsh->cbDstLengthUsed; }
// accomodate the final left-over bytes
if (dwInBufSize + psi->cbData < dwCodedBufferSize) { CopyMemory (&(psi->Data[psi->cbData]), pbSrc, dwInBufSize); psi->cbData += (WORD) dwInBufSize; padsh->cbSrcLengthUsed += dwInBufSize; }
} else {
//
// special case: datapump's subband packets
//
while (dwOutBufSize >= dwPCMBufferSize) { // hack the input size to be dwCodedBufferSize as required by L&H API
dwInBufSize = dwCodedBufferSize;
// L&H codecs can only accept word
if (dwOutBufSize > 0x0FFF0UL) dwOutBufSize = 0x0FFF0UL;
DBGMSG (1, (_T ("%s: calling: dwInBufSize=0x%lX, dwOutBufSize=0x%lX\r\n"), SZFN, dwInBufSize, dwOutBufSize));
// decode it
lherr = (*(psi->pfnConvert)) (psi->hAccess, pbSrc, (PWORD) &dwInBufSize, pbDst, (PWORD) &dwOutBufSize); DBGMSG (1, (_T ("%s: post: dwInBufSize=0x%X, dwOutBufSize=0x%X\r\n"), SZFN, dwInBufSize, dwOutBufSize)); if (lherr != LH_SUCCESS) { DBGMSG (1, (_T ("%s: LH*_**_Decode failed lherr=%ld\r\n"), SZFN, (long) lherr)); return MMSYSERR_NOTSUPPORTED; }
// return the info about the amount of data used and created
padsh->cbSrcLengthUsed += dwInBufSize; padsh->cbDstLengthUsed += dwOutBufSize;
// re-compute the buffer size
dwOutBufSize = (DWORD) (padsh->cbDstLength - padsh->cbDstLengthUsed);
// re-compute the buffer pointers
pbSrc = padsh->pbSrc + padsh->cbSrcLengthUsed; pbDst = padsh->pbDst + padsh->cbDstLengthUsed; }
}
MyExit:
DBGMSG (1, (_T ("%s: exit: cbSrcLengthUsed=0x%lX, cbDstLengthUsed=0x%lX\r\n"), SZFN, (DWORD) padsh->cbSrcLengthUsed, (DWORD) padsh->cbDstLengthUsed));
return MMSYSERR_NOERROR; }
//--------------------------------------------------------------------------;
//
// LRESULT FAR PASCAL DriverProc
//
// Description:
//
//
// Arguments:
// DWORD dwId: For most messages, dwId is the DWORD value that
// the driver returns in response to a DRV_OPEN message. Each time
// the driver is opened, through the OpenDriver API, the driver
// receives a DRV_OPEN message and can return an arbitrary, non-zero
// value. The installable driver interface saves this value and returns
// a unique driver handle to the application. Whenever the application
// sends a message to the driver using the driver handle, the interface
// routes the message to this entry point and passes the corresponding
// dwId. This mechanism allows the driver to use the same or different
// identifiers for multiple opens but ensures that driver handles are
// unique at the application interface layer.
//
// The following messages are not related to a particular open instance
// of the driver. For these messages, the dwId will always be zero.
//
// DRV_LOAD, DRV_FREE, DRV_ENABLE, DRV_DISABLE, DRV_OPEN
//
// HDRVR hdrvr: This is the handle returned to the application
// by the driver interface.
//
// UINT uMsg: The requested action to be performed. Message
// values below DRV_RESERVED are used for globally defined messages.
// Message values from DRV_RESERVED to DRV_USER are used for defined
// driver protocols. Messages above DRV_USER are used for driver
// specific messages.
//
// LPARAM lParam1: Data for this message. Defined separately for
// each message.
//
// LPARAM lParam2: Data for this message. Defined separately for
// each message.
//
// Return (LRESULT):
// Defined separately for each message.
//
//--------------------------------------------------------------------------;
LRESULT CALLBACK DriverProc ( DWORD_PTR dwId, HDRVR hdrvr, UINT uMsg, LPARAM lParam1, LPARAM lParam2 ) {
PINSTANCEDATA pid; LRESULT dplr;
FUNCTION_ENTRY ("DriverProc")
pid = (PINSTANCEDATA)dwId;
switch (uMsg) { case DRV_LOAD: DBGMSG (1, (_T ("%s: DRV_LOAD\r\n"), SZFN)); return 1L;
case DRV_FREE: DBGMSG (1, (_T ("%s: DRV_FREE\r\n"), SZFN)); return 1L; // not that it matters since ACM does not check this return value
case DRV_OPEN: DBGMSG (1, (_T ("%s: DRV_OPEN\r\n"), SZFN)); return acmdDriverOpen (hdrvr, (LPACMDRVOPENDESC)lParam2);
case DRV_CLOSE: DBGMSG (1, (_T ("%s: DRV_CLOSE\r\n"), SZFN)); dplr = acmdDriverClose (pid); return dplr;
case DRV_INSTALL: DBGMSG (1, (_T ("%s: DRV_INSTALL\r\n"), SZFN)); return ((LRESULT)DRVCNF_RESTART);
case DRV_REMOVE: DBGMSG (1, (_T ("%s: DRV_REMOVE\r\n"), SZFN)); return ((LRESULT)DRVCNF_RESTART);
case DRV_ENABLE: DBGMSG (1, (_T ("%s: DRV_ENABLE\r\n"), SZFN)); return 1L;
case DRV_DISABLE: DBGMSG (1, (_T ("%s: DRV_DISABLE\r\n"), SZFN)); return 1L;
case DRV_QUERYCONFIGURE: // Does this driver support configuration?
DBGMSG (1, (_T ("%s: DRV_QUERYCONFIGURE\r\n"), SZFN)); lParam1 = -1L; lParam2 = 0L;
// fall through
case DRV_CONFIGURE: DBGMSG (1, (_T ("%s: DRV_CONFIGURE\r\n"), SZFN)); dplr = acmdDriverConfigure(pid, (HWND)lParam1, (LPDRVCONFIGINFO)lParam2); return dplr;
case ACMDM_DRIVER_DETAILS: DBGMSG (1, (_T ("%s: ACMDM_DRIVER_DETAILS\r\n"), SZFN)); dplr = acmdDriverDetails(pid, (LPACMDRIVERDETAILS)lParam1); return dplr;
case ACMDM_DRIVER_ABOUT: DBGMSG (1, (_T ("%s: ACMDM_DRIVER_ABOUT\r\n"), SZFN)); dplr = acmdDriverAbout(pid, (HWND)lParam1); return dplr;
case ACMDM_FORMAT_SUGGEST: DBGMSG (1, (_T ("%s: ACMDM_FORMAT_SUGGEST\r\n"), SZFN)); dplr = acmdFormatSuggest(pid, (LPACMDRVFORMATSUGGEST)lParam1); return dplr;
case ACMDM_FORMATTAG_DETAILS: DBGMSG (1, (_T ("%s: ACMDM_FORMATTAG_DETAILS\r\n"), SZFN)); dplr = acmdFormatTagDetails(pid, (LPACMFORMATTAGDETAILS)lParam1, lParam2); return dplr;
case ACMDM_FORMAT_DETAILS: DBGMSG (1, (_T ("%s: ACMDM_FORMAT_DETAILS\r\n"), SZFN)); dplr = acmdFormatDetails(pid, (LPACMFORMATDETAILS)lParam1, lParam2); return dplr;
case ACMDM_STREAM_OPEN: DBGMSG (1, (_T ("%s: ACMDM_STREAM_OPEN\r\n"), SZFN)); dplr = acmdStreamOpen(pid, (LPACMDRVSTREAMINSTANCE)lParam1); return dplr;
case ACMDM_STREAM_CLOSE: DBGMSG (1, (_T ("%s: ACMDM_STREAM_CLOSE\r\n"), SZFN)); return acmdStreamClose(pid, (LPACMDRVSTREAMINSTANCE)lParam1);
case ACMDM_STREAM_SIZE: DBGMSG (1, (_T ("%s: ACMDM_STREAM_SIZE\r\n"), SZFN)); return acmdStreamSize((LPACMDRVSTREAMINSTANCE)lParam1, (LPACMDRVSTREAMSIZE)lParam2);
case ACMDM_STREAM_CONVERT: DBGMSG (1, (_T ("%s: ACMDM_STREAM_CONVERT\r\n"), SZFN)); dplr = acmdStreamConvert(pid, (LPACMDRVSTREAMINSTANCE)lParam1, (LPACMDRVSTREAMHEADER)lParam2); return dplr;
case ACMDM_STREAM_PREPARE: DBGMSG (1, (_T ("%s: ACMDM_STREAM_PREPARE\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
case ACMDM_STREAM_UNPREPARE: DBGMSG (1, (_T ("%s: ACMDM_STREAM_UNPREPARE\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
#if defined (_DEBUG) && 0
// Trap some extra known messages so our debug output can show them
case ACMDM_STREAM_RESET: DBGMSG (1, (_T ("%s: ACMDM_STREAM_RESET\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
case ACMDM_DRIVER_NOTIFY: DBGMSG (1, (_T ("%s: ACMDM_DRIVER_NOTIFY\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
case DRV_EXITSESSION: DBGMSG (1, (_T ("%s: DRV_EXITSESSION\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
case DRV_EXITAPPLICATION: DBGMSG (1, (_T ("%s: DRV_EXITAPPLICATION\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
case DRV_POWER: DBGMSG (1, (_T ("%s: DRV_POWER\r\n"), SZFN)); return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
#endif
}
// if we are executing the following code, then this ACM driver does not
// handle the message that was sent. there are two ranges of messages
// we need to deal with:
//
// o ACM specific driver messages: if an ACM driver does not answer a
// message sent in the ACM driver message range, then it must
// return MMSYSERR_NOTSUPPORTED. this applies to the 'user'
// range as well (for consistency).
//
// o other installable driver messages: if an ACM driver does not
// answer a message that is NOT in the ACM driver message range,
// then it must call DefDriverProc and return that result.
// the exception to this is ACM driver procedures installed as
// ACM_DRIVERADDF_FUNCTION through acmDriverAdd. in this case,
// the driver procedure should conform to the ACMDRIVERPROC
// prototype and also return zero instead of calling DefDriverProc.
if (uMsg == ACMDM_LH_DATA_PACKAGING) { if (pid) { pid->wPacketData = (WORD) lParam1; } } else { //DBGMSG (1, (_T ("%s: bad uMsg=%d\r\n"), uMsg));
return MMSYSERR_NOTSUPPORTED; }
return DefDriverProc (dwId, hdrvr, uMsg, lParam1, lParam2);
} // DriverProc()
#ifdef _DEBUG
// CurtSm hack ... don't spew all the time
UINT DebugLH = 0;
void FAR CDECL MyDbgPrintf ( LPTSTR lpszFormat, ... ) { static TCHAR buf[1024]; va_list arglist;
if (!DebugLH) return;
va_start(arglist, lpszFormat); wvsprintf ((LPTSTR) buf, (LPCSTR)lpszFormat, #if 0
(LPSTR) (((LPBYTE) &lpszFormat) + sizeof (lpszFormat))); #else
arglist); #endif
OutputDebugString ((LPTSTR) buf); }
#endif //...def _DEBUG
|