|
|
#include "precomp.h"
#define ZONE_AP ZONE_DP
#define _GetState() (m_dwState & DP_MASK_STATE)
#define _SetState(s) (m_dwState = (m_dwState & ~DP_MASK_STATE) | (s & DP_MASK_STATE))
#define _GetPlatform() (m_dwState & DP_MASK_PLATFORM)
#define _SetPlatform(s) (m_dwState = (m_dwState & ~DP_MASK_PLATFORM) | (s & DP_MASK_PLATFORM))
int g_wavein_prepare = 0; int g_waveout_prepare = 0;
///////////////////////////////////////////////////////
//
// Public methods
//
HRESULT AudioPacket::Initialize ( MEDIAPACKETINIT * p ) { HRESULT hr = DPR_SUCCESS;
FX_ENTRY ("AdPckt::Init")
if (p == NULL) { DEBUGMSG (ZONE_AP, ("%s: invalid parameter (null ptr)\r\n", _fx_)); return DPR_INVALID_PARAMETER; }
hr = MediaPacket::Initialize( p); if (hr != DPR_SUCCESS) goto MyExit; // allocate conversion header only if m_pWaveData != m_pNetData
if (m_pRawData != m_pNetData) { if (m_dwState & DP_FLAG_ACM) { m_pStrmConvHdr = MemAlloc (sizeof (ACMSTREAMHEADER)); if (m_pStrmConvHdr == NULL) { DEBUGMSG (ZONE_AP, ("%s: MemAlloc4 (%ld) failed\r\n", _fx_, (ULONG) sizeof (ACMSTREAMHEADER))); hr = DPR_OUT_OF_MEMORY; goto MyExit; } } else { DEBUGMSG (ZONE_AP, ("%s: invalid platform (acm)\r\n", _fx_)); hr = DPR_INVALID_PLATFORM; goto MyExit; }
} else { m_pStrmConvHdr = NULL; }
// allocate device header
if (m_dwState & DP_FLAG_MMSYSTEM) { m_pDevHdr = MemAlloc (sizeof (WAVEHDR)); if (m_pDevHdr == NULL) { DEBUGMSG (ZONE_AP, ("%s: MemAlloc5 (%ld) failed\r\n", _fx_, (ULONG) sizeof (WAVEHDR))); hr = DPR_OUT_OF_MEMORY; goto MyExit; } } else { DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_)); hr = DPR_INVALID_PLATFORM; goto MyExit; }
MakeSilence ();
MyExit:
if (hr != DPR_SUCCESS) { m_fInitialized = FALSE; Release(); }
return hr; }
HRESULT AudioPacket::Play ( MMIODEST *pmmioDest, UINT uDataType ) { HRESULT hr = DPR_SUCCESS; DWORD dwState = _GetState (); MMRESULT mmr;
FX_ENTRY ("AdPckt::Play")
if (dwState != MP_STATE_DECODED && dwState != MP_STATE_RESET) { DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState)); return DPR_OUT_OF_SEQUENCE; }
if (uDataType == MP_DATATYPE_SILENCE) { LOG((LOGMSG_PLAY_SILENT,m_index,GetTickCount())); MakeSilence (); } else { if (uDataType == MP_DATATYPE_INTERPOLATED) { if (dwState == MP_STATE_DECODED) { LOG((LOGMSG_PLAY_INTERPOLATED,m_index,GetTickCount())); } else { LOG((LOGMSG_PLAY_SILENT,m_index,GetTickCount())); MakeSilence (); } } else { LOG((LOGMSG_PLAY,m_index, GetTickCount())); } }
if (m_hDev) { if (m_dwState & DP_FLAG_MMSYSTEM) { ((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data; // ((WAVEHDR *) m_pDevHdr)->dwBufferLength = (dwState == MP_STATE_DECODED ?
// ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed :
// m_pDevData->length);
((WAVEHDR *) m_pDevHdr)->dwBufferLength = (dwState == MP_STATE_DECODED ? m_cbValidRawData : m_pDevData->length);
((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this; ((WAVEHDR *) m_pDevHdr)->dwFlags &= ~(WHDR_DONE|WHDR_INQUEUE); ((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
// feed this buffer to play
mmr = waveOutWrite ((HWAVEOUT) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: waveOutWrite failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_WRITE_WAVE_DEV;
// this is an extremely rare error, but we've seen it
// occur on some sound cards
// in this case, just set the "done" bit, mark the
// state to the "playing", but still return an error.
((WAVEHDR *) m_pDevHdr)->dwFlags |= WHDR_DONE;
goto MyExit; } } else { DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_)); hr = DPR_INVALID_PLATFORM; goto MyExit; } if (pmmioDest && pmmioDest->fRecordToFile && pmmioDest->hmmioDst) { // write this buffer to disk
WriteToFile(pmmioDest); } } else { DEBUGMSG (ZONE_AP, ("%s: invalid handle\r\n", _fx_)); hr = DPR_INVALID_HANDLE; goto MyExit; }
MyExit:
if ((hr == DPR_SUCCESS) || (hr == DPR_CANT_WRITE_WAVE_DEV)) { _SetState (((uDataType == MP_DATATYPE_SILENCE) || (uDataType == MP_DATATYPE_INTERPOLATED))? MP_STATE_PLAYING_SILENCE : MP_STATE_PLAYING_BACK); } return hr; }
HRESULT AudioPacket::Record ( void ) { HRESULT hr = DPR_SUCCESS; MMRESULT mmr;
FX_ENTRY ("AdPckt::Record")
LOG((LOGMSG_RECORD,m_index));
if (_GetState () != MP_STATE_RESET) { DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState)); return DPR_OUT_OF_SEQUENCE; }
if (m_hDev) { if (m_dwState & DP_FLAG_MMSYSTEM) { ((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data; ((WAVEHDR *) m_pDevHdr)->dwBufferLength = m_pDevData->length; ((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this; ((WAVEHDR *) m_pDevHdr)->dwFlags |= WHDR_PREPARED; ((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
// feed this buffer to record
mmr = waveInAddBuffer ((HWAVEIN)m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: waveInAddBuffer failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_ADD_BUFFER; goto MyExit; } } else { DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_)); hr = DPR_INVALID_PLATFORM; goto MyExit; } } else { DEBUGMSG (ZONE_AP, ("%s: invalid handle\r\n", _fx_)); hr = DPR_INVALID_HANDLE; goto MyExit; }
MyExit:
if (hr == DPR_SUCCESS) _SetState (MP_STATE_RECORDING); return hr; }
BOOL AudioPacket::IsBufferDone ( void ) { FX_ENTRY ("AdPckt::IsBufferDone")
if (m_hDev) { if (m_dwState & DP_FLAG_MMSYSTEM) { return (((WAVEHDR *) m_pDevHdr)->dwFlags & WHDR_DONE); } }
return FALSE; }
HRESULT AudioPacket::MakeSilence ( void ) { // create white noise!!!
FX_ENTRY ("AdPckt::MakeSilence")
if (m_pDevFmt) { if (m_pDevData) { FillSilenceBuf ((WAVEFORMATEX *) m_pDevFmt, (PBYTE) m_pDevData->data, (ULONG) m_pDevData->length); }
#if 0
if (m_pRawData != m_pDevData) { if (m_pRawData) ZeroMemory (m_pRawData->data, m_pRawData->length); }
if (m_pNetData != m_pRawData) { if (m_pNetData) ZeroMemory (m_pNetData->data, m_pNetData->length); } #endif
}
_SetState(MP_STATE_RESET); return DPR_SUCCESS; }
/*
Returns the max. peak-to-peak signal value scaled to the range [0,0xffff] Optional argument returns the peak value as well */ HRESULT AudioPacket::GetSignalStrength ( PDWORD pdwMaxStrength) { return ComputePower(pdwMaxStrength, NULL); }
HRESULT AudioPacket::ComputePower(PDWORD pdwMaxStrength, PWORD pwPeakStrength) { BYTE bMax, bMin, *pb; short sMax, sMin, *ps; UINT cbSize;
FX_ENTRY ("AdPckt::GetSignalStrength")
if (((WAVEFORMATEX *) m_pDevFmt)->wFormatTag != WAVE_FORMAT_PCM) return FALSE;
switch (((WAVEFORMATEX *) m_pDevFmt)->wBitsPerSample) { case 8: // unsigned char
pb = (PBYTE) (m_pDevData->data); cbSize = m_pDevData->length;
bMax = 0; bMin = 255;
for ( ; cbSize; cbSize--, pb++) { if (*pb > bMax) bMax = *pb; if (*pb < bMin) bMin = *pb; } if (pdwMaxStrength) { // 2^9 <-- 2^16 / 2^7
*pdwMaxStrength = ((DWORD) (bMax - bMin)) << 8; } if (pwPeakStrength) { *pwPeakStrength = (bMax > bMin) ? bMax : (WORD)(-bMin); *pwPeakStrength = (*pwPeakStrength) << 8; } break;
case 16: // (signed) short
ps = (short *) (m_pDevData->data); cbSize = m_pDevData->length;
sMax = sMin = 0;
for (cbSize >>= 1; cbSize; cbSize--, ps++) { if (*ps > sMax) sMax = *ps; if (*ps < sMin) sMin = *ps; } if (pdwMaxStrength) { *pdwMaxStrength = (DWORD) (sMax - sMin); // drop sign bit
} if (pwPeakStrength) { *pwPeakStrength = ((WORD)(sMax) > (WORD)(-sMin)) ? sMax : (WORD)(-sMin); } break;
default: if (pdwMaxStrength) *pdwMaxStrength = 0; if (pwPeakStrength) *pwPeakStrength = 0; break; } //LOG((LOGMSG_SILENT,m_index,fResult));
return DPR_SUCCESS; }
HRESULT AudioPacket::Interpolate ( MediaPacket * pPrev, MediaPacket * pNext) { HRESULT hr = DPR_SUCCESS; DPHANDLE hPrevDevAudio; NETBUF *pPrevDevData; PVOID pPrevDevHdr; WAVEFORMATEX *pPrevpwfDevAudio; WAVEFORMATEX *pNextpwfDevAudio; NETBUF *pNextDevData; PVOID pNextDevHdr; PCMSUB PCMSub;
FX_ENTRY ("AdPckt::Interpolate")
// Make sure this really is an empty packet, that the previous packet is not an
// empty packet and is being played back. It is not that important that we get
// a handle to the next packet. If the next packet is decoded, then it's cool,
// we can do a good job at interpolating between previous and next packet. If it's
// not, well, too bad, we'll just work with the previous packet.
if ((_GetState() != MP_STATE_RESET) || (pPrev->GetState() != MP_STATE_PLAYING_BACK)) { // DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState));
hr = DPR_OUT_OF_SEQUENCE; goto MyExit; }
// Get pointers to the member variables of interest in the previous and next
// packet. Test the next packet to find out if we can use it in the interpolation
// algorithm.
pPrev->GetProp (MP_PROP_DEV_HANDLE, (PDWORD_PTR)&hPrevDevAudio); pPrev->GetProp (MP_PROP_DEV_DATA, (PDWORD_PTR)&pPrevDevData); pPrev->GetProp (MP_PROP_DEV_MEDIA_HDR, (PDWORD_PTR)&pPrevDevHdr); pPrev->GetProp (MP_PROP_DEV_MEDIA_FORMAT, (PDWORD_PTR)&pPrevpwfDevAudio); if (hPrevDevAudio && pPrevDevData && pPrevDevHdr && pPrevpwfDevAudio && (pPrevpwfDevAudio->wFormatTag == 1) && (pPrevpwfDevAudio->nSamplesPerSec == 8000) && (pPrevpwfDevAudio->wBitsPerSample == 16)) { PCMSub.pwWaSuBf = (short *)m_pDevData->data; PCMSub.dwBfSize = ((WAVEHDR *) pPrevDevHdr)->dwBufferLength >> 1; PCMSub.dwSaPeSe = (DWORD)pPrevpwfDevAudio->nSamplesPerSec; PCMSub.dwBiPeSa = (DWORD)pPrevpwfDevAudio->wBitsPerSample; PCMSub.pwPrBf = (short *)pPrevDevData->data;
pNext->GetProp (MP_PROP_DEV_DATA, (PDWORD_PTR)&pNextDevData); pNext->GetProp (MP_PROP_DEV_MEDIA_HDR, (PDWORD_PTR)&pNextDevHdr); pNext->GetProp (MP_PROP_DEV_MEDIA_FORMAT, (PDWORD_PTR)&pNextpwfDevAudio);
// Do a bit of checking
if ((pNext->GetState() == MP_STATE_DECODED) && pNextDevData && pNextDevHdr && (PCMSub.dwBfSize == (((WAVEHDR *) pNextDevHdr)->dwBufferLength >> 1)) && pNextpwfDevAudio && (pNextpwfDevAudio->wFormatTag == 1) && (pNextpwfDevAudio->nSamplesPerSec == 8000) && (pNextpwfDevAudio->wBitsPerSample == 16)) { PCMSub.eTech = techPATT_MATCH_BOTH_SIGN_CC; //PCMSub.eTech = techDUPLICATE_PREV;
PCMSub.pwNeBf = (short *)pNextDevData->data; PCMSub.fScal = TRUE; } else { PCMSub.eTech = techPATT_MATCH_PREV_SIGN_CC; //PCMSub.eTech = techDUPLICATE_PREV;
PCMSub.pwNeBf = (short *)NULL; PCMSub.fScal = FALSE; } // Do the actual interpolation
hr = PCMSubstitute(&PCMSub); ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed = ((WAVEHDR *) pPrevDevHdr)->dwBufferLength; } else { DEBUGMSG (ZONE_AP, ("%s: can't interpolate\r\n", _fx_)); hr = DPR_INVALID_HANDLE; goto MyExit; }
LOG((LOGMSG_INTERPOLATED,m_index));
MyExit:
if (hr == DPR_SUCCESS) _SetState (MP_STATE_DECODED); else _SetState (MP_STATE_RESET);
return hr;
}
HRESULT AudioPacket::Open ( UINT uType, DPHANDLE hdl ) // called by RxStream or TxStream
{ HRESULT hr = DPR_SUCCESS; MMRESULT mmr;
FX_ENTRY ("AdPckt::Open")
switch (uType) { #ifdef PREP_HDR_PER_CONV
case MP_TYPE_RECVSTRMCONV: m_hStrmConv = hdl; break; #endif
case MP_TYPE_STREAMCONV: if ((m_hStrmConv = hdl) != NULL) { if (m_dwState & DP_FLAG_ACM) { // initialize the header
ZeroMemory (m_pStrmConvHdr, sizeof (ACMSTREAMHEADER)); ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbStruct = sizeof (ACMSTREAMHEADER); ((ACMSTREAMHEADER *) m_pStrmConvHdr)->fdwStatus = 0; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwUser = 0; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwSrcUser = 0; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLengthUsed = 0; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwDstUser = 0; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed = 0; if (m_dwState & DP_FLAG_SEND) { ((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbSrc = m_pRawData->data; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLength = m_pRawData->length; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbDst = m_pNetData->data; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLength = m_pNetData->length; } else if (m_dwState & DP_FLAG_RECV) { ((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbSrc = m_pNetData->data; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLength = m_pNetData->length; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbDst = m_pRawData->data; ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLength = m_pRawData->length; }
// prepare the header
mmr = acmStreamPrepareHeader ((HACMSTREAM) m_hStrmConv, (ACMSTREAMHEADER *) m_pStrmConvHdr, 0); if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: acmStreamPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_PREPARE_HEADER; goto MyExit; }
m_fStrmPrepared = TRUE; } else { hr = DPR_INVALID_PLATFORM; goto MyExit; } } break;
case MP_TYPE_DEV: if ((m_hDev = hdl) != NULL) { if (m_dwState & DP_FLAG_MMSYSTEM) { // initialize the header
ZeroMemory (m_pDevHdr, sizeof (WAVEHDR)); ((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data; ((WAVEHDR *) m_pDevHdr)->dwBufferLength = m_pDevData->length; ((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this; ((WAVEHDR *) m_pDevHdr)->dwFlags = 0L; ((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
if (m_dwState & DP_FLAG_SEND) { g_wavein_prepare++;
// prepare the header
mmr = waveInPrepareHeader ((HWAVEIN) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: waveInPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_PREPARE_HEADER; goto MyExit; } } else if (m_dwState & DP_FLAG_RECV) { g_waveout_prepare++;
// prepare header
mmr = waveOutPrepareHeader ((HWAVEOUT) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: waveOutPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_PREPARE_HEADER; goto MyExit; } } else { hr = DPR_INVALID_PARAMETER; goto MyExit; }
m_fDevPrepared = TRUE; } else { hr = DPR_INVALID_PLATFORM; goto MyExit; } } else { hr = DPR_INVALID_HANDLE; goto MyExit; } break;
default: hr = DPR_INVALID_PARAMETER; goto MyExit; }
MyExit:
return hr; }
HRESULT AudioPacket::Close ( UINT uType ) // called by RxStream or TxStream
{ HRESULT hr = DPR_SUCCESS; MMRESULT mmr;
FX_ENTRY ("AdPckt::Close")
switch (uType) { #ifdef PREP_HDR_PER_CONV
case MP_TYPE_RECVSTRMCONV: #endif
case MP_TYPE_STREAMCONV: if (m_hStrmConv) { if (m_dwState & DP_FLAG_ACM) { if (m_fStrmPrepared) { // unprepare the header
if (m_dwState & DP_FLAG_RECV) { // Within acmStreamUnprepareHeader, there is a test that compares ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength
// to ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbPreparedSrcLength. If there isn't an exact match, MSACM32 will fail
// this call. That test is Ok when the size of the input buffer is constant, but with the variable bit rate codecs,
// we can receive packets with a size smaller than the max size we advertize when we prepare the buffers. In
// order to make this call succeed, we fix up ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength before the call.
((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength = ((ACMSTREAMHEADER *)m_pStrmConvHdr)->dwReservedDriver[7]; } mmr = acmStreamUnprepareHeader ((HACMSTREAM) m_hStrmConv, (ACMSTREAMHEADER *) m_pStrmConvHdr, 0); m_fStrmPrepared = FALSE; // don't care about any error
if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: acmStreamUnprepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr)); hr = DPR_CANT_UNPREPARE_HEADER; goto MyExit; } } }
if (uType == MP_TYPE_STREAMCONV) m_hStrmConv = NULL; } break;
case MP_TYPE_DEV: if (m_hDev) { if (m_fDevPrepared) { if (m_dwState & DP_FLAG_SEND) { g_wavein_prepare--; mmr = waveInUnprepareHeader ((HWAVEIN) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); } else if (m_dwState & DP_FLAG_RECV) { g_waveout_prepare--; mmr = waveOutUnprepareHeader ((HWAVEOUT) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR)); } else { hr = DPR_INVALID_PARAMETER; goto MyExit; }
m_fDevPrepared = FALSE; // don't care about any error
if (mmr != MMSYSERR_NOERROR) { DEBUGMSG (ZONE_AP, ("%s: Unprep hdr failed, mmr=0x%lX\r\n", _fx_, mmr)); hr = DPR_CANT_UNPREPARE_HEADER; goto MyExit; } }
m_hDev = NULL; } else { hr = DPR_INVALID_HANDLE; goto MyExit; } break;
default: hr = DPR_INVALID_PARAMETER; goto MyExit; }
MyExit:
return hr; }
void AudioPacket::WriteToFile (MMIODEST *pmmioDest) { MMRESULT mmr; long dwDataLength;
FX_ENTRY ("AdPckt::WriteToFile")
AudioFile::WriteDestFile(pmmioDest, m_pDevData->data, m_pDevData->length); }
void AudioPacket::ReadFromFile (MMIOSRC *pmmioSrc) { AudioFile::ReadSourceFile(pmmioSrc, (BYTE*)(((WAVEHDR*)m_pDevHdr)->lpData), ((WAVEHDR*)m_pDevHdr)->dwBytesRecorded); }
BOOL AudioPacket::IsSameMediaFormat(PVOID fmt1,PVOID fmt2) { return IsSameWaveFormat(fmt1,fmt2); }
/*************************************************************************
Function: PCMSubstitute(PCMSUB *)
Purpose : Fills up missing buffer with wave data.
Returns : HRESULT. DPR_SUCCESS if everything is cool, some error code otherwise.
Params : pPCMSub == Pointer to wave substitution structure
Techniques: * Straight replication of the previous packet * Straight replication of the next packet * Replication of some part of the previous packet based on pattern matching * Replication of some part of the next packet based on pattern matching * Search window size need to be at least twice the size of the pattern!!!
Comments: * The algorithm searches previous packets to find pPCMSub->dwBfSize samples that resemble the missing packet. To do so it uses as a template the M speech samples that came just before the missing packet. The algorithm scans a search window of duration N samples to find the M samples that best match the template. It then uses as a replacement packet the L samples that follow the best match. * Current code assumes all the packets (current, previous, and next) have the same size. * Current code only takes 8kHz data. * Current code only takes 16bit data. * Current code requires that the matching pattern be smaller than packet.
History : Date Reason 04/16/95 Created - PhilF
*************************************************************************/ HRESULT AudioPacket::PCMSubstitute(PCMSUB *pPCMSub) { DWORD dwPaSize; // Pattern size in samples
DWORD dwSeWiSize; // Search window size in samples
short *pwPa = (short *)NULL; // Pointer to the pattern
short *pwPaSav = (short *)NULL; // Pointer to the pattern (copy)
short *pwPrSeWi = (short *)NULL; // Pointer to the previous buffer (search window)
short *pwPrSeWiSav = (short *)NULL; // Pointer to the previous buffer (search window) (copy)
short *pwNeSeWi = (short *)NULL; // Pointer to the next buffer (search window)
short *pwNeSeWiSav = (short *)NULL; // Pointer to the next buffer (search window) (copy)
DWORD i, j; // Counters
DWORD dwPrCCPosMax; // Sample position of the maximum cross-correlation between pattern and previous buffer
DWORD dwNeCCPosMax; // Sample position of the maximum cross-correlation between pattern and previous buffer
long lPrCCMax; // Max cross-correlation with previous buffer
long lNeCCMax; // Max cross-correlation with next buffer
long lCCNum; // Cross-correlation numerator
DWORD dwNuSaToCopy; // Number of samples to copy in the missing buffer
DWORD dwNuSaCopied; // Number of samples copied in the missing buffer
long alSign[2] = {1,-1}; // Sign array
DWORD dwPaAmp; // Amplitude of the pattern
DWORD dwPaAmpExp; // Expected amplitude of the pattern
DWORD dwNeSeWiAmp; // Amplitude of a segment of the window following the current window
DWORD dwNumPaInSeWin; // Number of patterns in search window
DWORD dwPrSeWiAmp; // Amplitude of a segment of the current window
BOOL fPaInPr; // Pattern is at the end of previous buffer of at the beginning of next buffer
// Test input parameters
if ((!pPCMSub) || (!pPCMSub->pwWaSuBf) || (pPCMSub->dwBiPeSa != 16) || (pPCMSub->dwSaPeSe != 8000)) return DPR_INVALID_PARAMETER;
// Check number of buffer available before and after missing packet
// In case there are no packet before or after the missing packet,
// just return; the packet will be filled with silence data later.
if (!pPCMSub->pwPrBf && !pPCMSub->pwNeBf) return DPR_CANT_INTERPOLATE;
// Just replicate previous packet
if ((pPCMSub->eTech == techDUPLICATE_PREV) && pPCMSub->pwPrBf) CopyMemory(pPCMSub->pwWaSuBf, pPCMSub->pwPrBf, pPCMSub->dwBfSize << 1); else // Just replicate next packet
if ((pPCMSub->eTech == techDUPLICATE_NEXT) && pPCMSub->pwNeBf) CopyMemory(pPCMSub->pwWaSuBf, pPCMSub->pwNeBf, pPCMSub->dwBfSize << 1); else if ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || (pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC) || (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC)) {
// We use a search window with a size double the size of the matching pattern
// Experimentation will tell if this is a reasonable size or not
// Experimentation will also tell if 4ms size of the matching pattern is Ok
dwPaSize = pPCMSub->dwSaPeSe / 1000 * PATTERN_SIZE; if (dwPaSize > (pPCMSub->dwBfSize/2)) dwPaSize = pPCMSub->dwBfSize/2; if (!dwPaSize) return DPR_CANT_INTERPOLATE; #if 1
// For now look up the whole previous frame
dwSeWiSize = pPCMSub->dwBfSize; #else
dwSeWiSize = min(pPCMSub->dwBfSize, pPCMSub->dwSaPeSe / 1000 * SEARCH_SIZE); #endif
// In order to use pattern matching based techniques we need to have the
// previous buffer when doing a backward search, the next buffer
// when doing a forward search, the previous buffer and the next buffer
// when doing a full search
if (pPCMSub->pwPrBf && (pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC)) { pwPa = pwPaSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize; pwPrSeWi = pwPrSeWiSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwSeWiSize; } else if (pPCMSub->pwNeBf && (pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC)) { pwPa = pwPaSav = pPCMSub->pwNeBf; pwNeSeWi = pwNeSeWiSav = pPCMSub->pwNeBf; } else if (pPCMSub->pwPrBf && pPCMSub->pwNeBf && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC)) { // Use the pattern with the highest amplitude
pwPa = pwPaSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize; pwNeSeWi = pPCMSub->pwNeBf; pwPrSeWi = pwPrSeWiSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwSeWiSize; fPaInPr = TRUE; for (i=0, dwPaAmp = 0, dwNeSeWiAmp = 0; i<dwPaSize; i++, pwPa++, pwNeSeWi++) { dwPaAmp += abs(*pwPa); dwNeSeWiAmp += abs(*pwNeSeWi); } if (dwNeSeWiAmp > dwPaAmp) { pwPaSav = pPCMSub->pwNeBf; fPaInPr = FALSE; } pwPa = pwPaSav; pwNeSeWi = pwNeSeWiSav = pPCMSub->pwNeBf + dwPaSize/2; }
if (pwPa && (pwPrSeWi || pwNeSeWi)) { // Look for best match in previous packet
dwPrCCPosMax = 0; lPrCCMax = -((long)dwPaSize+1); if (pwPrSeWi && ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || ((fPaInPr) && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC)))) { // Look for the highest sign correlation between pattern and search window
for (i=0; i<(dwSeWiSize-dwPaSize-dwPaSize/2+1); i++, pwPa = pwPaSav, pwPrSeWi = pwPrSeWiSav + i) { // Compute the sign correlation between pattern, and search window
for (j=0, lCCNum = 0; j<dwPaSize; j++, pwPa++, pwPrSeWi++) lCCNum += alSign[(*pwPa ^ *pwPrSeWi)>> 15 & 1];
// Save position and value of highest sign correlation
if (lCCNum>lPrCCMax) { dwPrCCPosMax = i; lPrCCMax = lCCNum; } } }
// Look for best match in next packet
dwNeCCPosMax = dwPaSize/2; lNeCCMax = -((long)dwPaSize+1); if (pwNeSeWi && ((pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC) || ((!fPaInPr) && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC)))) { // Look for the highest sign correlation between pattern and search window
for (i=dwPaSize/2; i<(dwSeWiSize-dwPaSize-dwPaSize/2+1); i++, pwPa = pwPaSav, pwNeSeWi = pwNeSeWiSav + i) { // Compute the sign correlation between pattern, and search window
for (j=0, lCCNum = 0; j<dwPaSize; j++, pwPa++, pwNeSeWi++) lCCNum += alSign[(*pwPa ^ *pwNeSeWi)>> 15 & 1];
// Save position and value of highest sign correlation
if (lCCNum>lNeCCMax) { dwNeCCPosMax = i; lNeCCMax = lCCNum; } } }
if ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || (pwPrSeWiSav && fPaInPr && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC))) { // Copy matching samples from the previous frame in missing frame
dwNuSaToCopy = pPCMSub->dwBfSize-dwPaSize-dwPrCCPosMax; CopyMemory(pPCMSub->pwWaSuBf, pwPrSeWiSav+dwPaSize+dwPrCCPosMax, dwNuSaToCopy << 1);
// Do it until missing packet is full
for (dwNuSaCopied = dwNuSaToCopy; dwNuSaCopied<pPCMSub->dwBfSize;dwNuSaCopied += dwNuSaToCopy) { dwNuSaToCopy = min(pPCMSub->dwBfSize-dwNuSaCopied, dwNuSaToCopy); CopyMemory(pPCMSub->pwWaSuBf + dwNuSaCopied, pwPrSeWiSav+dwPaSize+dwPrCCPosMax, dwNuSaToCopy << 1); } } else { // Copy matching samples from the next frame in missing frame
dwNuSaToCopy = dwNeCCPosMax; CopyMemory(pPCMSub->pwWaSuBf + pPCMSub->dwBfSize - dwNuSaToCopy, pPCMSub->pwNeBf, dwNuSaToCopy << 1);
// Do it until missing packet is full
for (dwNuSaCopied = dwNuSaToCopy; dwNuSaCopied<pPCMSub->dwBfSize;dwNuSaCopied += dwNuSaToCopy) { dwNuSaToCopy = min(pPCMSub->dwBfSize-dwNuSaCopied, dwNuSaToCopy); CopyMemory(pPCMSub->pwWaSuBf + pPCMSub->dwBfSize - dwNuSaCopied - dwNuSaToCopy, pPCMSub->pwNeBf+dwNeCCPosMax-dwNuSaToCopy, dwNuSaToCopy << 1); } }
if ((pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC) && pwNeSeWiSav && pwPrSeWiSav) { if (pPCMSub->fScal) { // Compute the amplitude of the pattern
for (i=0, dwPrSeWiAmp = 0, dwNeSeWiAmp = 0, pwPrSeWi = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize, pwNeSeWi = pPCMSub->pwNeBf; i<dwPaSize; i++, pwPrSeWi++, pwNeSeWi++) { dwPrSeWiAmp += abs(*pwPrSeWi); dwNeSeWiAmp += abs(*pwNeSeWi); } // Scale data
dwNumPaInSeWin = pPCMSub->dwBfSize/dwPaSize; for (i=0, pwPaSav = pPCMSub->pwWaSuBf; i<dwNumPaInSeWin; i++, pwPaSav += dwPaSize) { for (j=0, pwPa = pwPaSav, dwPaAmp = 0; j<dwPaSize; j++, pwPa++) dwPaAmp += abs(*pwPa); dwPaAmpExp = (dwPrSeWiAmp * (dwNumPaInSeWin - i) + dwNeSeWiAmp * (i + 1)) / (dwNumPaInSeWin + 1); for (;dwPaAmpExp > 65536; dwPaAmpExp >>= 1, dwPaAmp >>= 1) ; if (dwPaAmp && (dwPaAmp != dwPaAmpExp)) for (j=0, pwPa = pwPaSav; j<dwPaSize; j++, pwPa++) *pwPa = (short)((long)*pwPa * (long)dwPaAmpExp / (long)dwPaAmp); } } } } } else return DPR_CANT_INTERPOLATE;
return DPR_SUCCESS;
}
// returns length of uncompressed PCM data in buffer
DWORD AudioPacket::GetDevDataSamples() { DWORD dwState = _GetState(); DWORD cbData; if (dwState == MP_STATE_DECODED) // return actual length
cbData = ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed ; else if (m_pDevData) // return size of buffer
cbData = m_pDevData->length; else cbData = 0;
return cbData * 8/ ((WAVEFORMATEX *) m_pDevFmt)->wBitsPerSample; }
|