|
|
//
// RANGE.CPP
//
// 2-20-96: (EricAn)
// Hacked from the Route66 source tree, eliminated stuff we don't use.
// Original copyright below - where did this thing come from?
//
// -*- C -*-
//
// Copyright 1992 Software Innovations, Inc.
//
// $Source: D:\CLASS\SOURCE\range.c-v $
// $Author: martin $
// $Date: 92/07/15 05:09:24 $
// $Revision: 1.1 $
//
//
#include "pch.hxx"
#include "range.h"
#include "dllmain.h"
#include <shlwapi.h>
// QUANTUM defines the number of m_rangeTable cells to be allocated at
// one time. Whenever the m_rangeTable becomes full, it is expanded
// by QUANTUM range cells. m_rangeTable's never shrink.
const int QUANTUM = 64;
inline int inRange(RangeType r, ULONG x) { return ((x>=r.low) && (x<=r.high)); };
CRangeList::CRangeList() { DllAddRef(); m_numRanges = 0; m_rangeTableSize = 0; m_rangeTable = NULL; m_lRefCount = 1; }
CRangeList::~CRangeList() { Assert(0 == m_lRefCount);
if (m_rangeTable) MemFree(m_rangeTable);
DllRelease(); }
HRESULT STDMETHODCALLTYPE CRangeList::QueryInterface(REFIID iid, void **ppvObject) { HRESULT hrResult;
Assert(m_lRefCount > 0); Assert(NULL != ppvObject);
// Init variables, check the arguments
hrResult = E_NOINTERFACE; if (NULL == ppvObject) goto exit;
*ppvObject = NULL;
// Find a ptr to the interface
if (IID_IUnknown == iid) *ppvObject = (IUnknown *) this;
if (IID_IRangeList == iid) *ppvObject = (IRangeList *) this;
// If we returned an interface, AddRef it
if (NULL != *ppvObject) { ((IUnknown *)*ppvObject)->AddRef(); hrResult = S_OK; }
exit: return hrResult; } // QueryInterface
//***************************************************************************
// Function: AddRef
//
// Purpose:
// This function should be called whenever someone makes a copy of a
// pointer to this object. It bumps the reference count so that we know
// there is one more pointer to this object, and thus we need one more
// release before we delete ourselves.
//
// Returns:
// A ULONG representing the current reference count. Although technically
// our reference count is signed, we should never return a negative number,
// anyways.
//***************************************************************************
ULONG STDMETHODCALLTYPE CRangeList::AddRef(void) { Assert(m_lRefCount > 0);
m_lRefCount += 1;
DOUT ("CRangeList::AddRef, returned Ref Count=%ld", m_lRefCount); return m_lRefCount; } // AddRef
//***************************************************************************
// Function: Release
//
// Purpose:
// This function should be called when a pointer to this object is to
// go out of commission. It knocks the reference count down by one, and
// automatically deletes the object if we see that nobody has a pointer
// to this object.
//
// Returns:
// A ULONG representing the current reference count. Although technically
// our reference count is signed, we should never return a negative number,
// anyways.
//***************************************************************************
ULONG STDMETHODCALLTYPE CRangeList::Release(void) { Assert(m_lRefCount > 0); m_lRefCount -= 1; DOUT("CRangeList::Release, returned Ref Count = %ld", m_lRefCount);
if (0 == m_lRefCount) { delete this; return 0; } else return m_lRefCount; } // Release
HRESULT STDMETHODCALLTYPE CRangeList::IsInRange(const ULONG value) { Assert(m_lRefCount > 0); for (int i=0; i<m_numRanges; i++) if (inRange(m_rangeTable[i], value)) return S_OK; return S_FALSE; }
HRESULT STDMETHODCALLTYPE CRangeList::MinOfRange(const ULONG value, ULONG *pulMinOfRange) { Assert(m_lRefCount > 0); Assert(NULL != pulMinOfRange);
*pulMinOfRange = RL_RANGE_ERROR; if (RL_RANGE_ERROR == value) return S_OK; // No need to loop through the ranges
for (register int i=0; i<m_numRanges; i++) { if (inRange(m_rangeTable[i], value)) { *pulMinOfRange = m_rangeTable[i].low; break; } // if
} // for
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::MaxOfRange(const ULONG value, ULONG *pulMaxOfRange) { Assert(m_lRefCount > 0); Assert(NULL != pulMaxOfRange);
*pulMaxOfRange = RL_RANGE_ERROR; if (RL_RANGE_ERROR == value) return S_OK; // No need to loop through the ranges
for (register int i=0; i<m_numRanges; i++) { if (inRange(m_rangeTable[i], value)) { *pulMaxOfRange = m_rangeTable[i].high; break; } // if
} // for
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::Max(ULONG *pulMax) { Assert(m_lRefCount > 0); Assert(NULL != pulMax); if (m_numRanges==0) *pulMax = RL_RANGE_ERROR; else *pulMax = m_rangeTable[m_numRanges-1].high;
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::Min(ULONG *pulMin) { Assert(m_lRefCount > 0); Assert(NULL != pulMin); if (m_numRanges==0) *pulMin = RL_RANGE_ERROR; else *pulMin = m_rangeTable[0].low;
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::Save(LPBYTE *ppb, ULONG *pcb) { Assert(m_lRefCount > 0); Assert(ppb); Assert(pcb);
*pcb = m_numRanges * sizeof(RangeType); if (*pcb) { if (!MemAlloc((LPVOID*)ppb, *pcb)) return E_OUTOFMEMORY; CopyMemory(*ppb, m_rangeTable, *pcb); } else *ppb = NULL;
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::Load(LPBYTE pb, const ULONG cb) { Assert(m_lRefCount > 0); m_numRanges = m_rangeTableSize = cb / sizeof(RangeType); if (m_rangeTable) MemFree(m_rangeTable); m_rangeTable = (RangeType *)pb;
return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::AddSingleValue(const ULONG value) { Assert(m_lRefCount > 0); RangeType r = { value, value }; return AddRangeType(r); }
HRESULT STDMETHODCALLTYPE CRangeList::AddRange(const ULONG low, const ULONG high) { Assert(m_lRefCount > 0); RangeType r = { low, high }; return AddRangeType(r); }
HRESULT STDMETHODCALLTYPE CRangeList::AddRangeList(const IRangeList *prl) { Assert(m_lRefCount > 0); AssertSz(FALSE, "Not implemented, probably never will be"); return E_NOTIMPL; }
HRESULT CRangeList::AddRangeType(const RangeType range) { int possibleLoc; int insertPosition;
Assert(m_lRefCount > 0); if (range.low > range.high) { DOUTL(2, "Empty range passed to AddRange()"); return E_INVALIDARG; }
if (m_numRanges==0) { if (m_rangeTableSize == 0) if (!Expand()) return E_OUTOFMEMORY; m_numRanges = 1; CopyMemory(&m_rangeTable[0], &range, sizeof(RangeType)); } else { possibleLoc = BinarySearch(range.low); if (!((possibleLoc > -1) && (inRange(m_rangeTable[possibleLoc], range.low)) && (inRange(m_rangeTable[possibleLoc], range.high)))) { insertPosition = possibleLoc + 1; if (m_numRanges == m_rangeTableSize) if (!Expand()) return E_OUTOFMEMORY; ShiftRight(insertPosition, 1); CopyMemory(&m_rangeTable[insertPosition], &range, sizeof(RangeType)); if (insertPosition > 0) SubsumeDown(insertPosition); if (insertPosition < m_numRanges) SubsumeUpwards(insertPosition); } } return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::DeleteSingleValue(const ULONG value) { Assert(m_lRefCount > 0); RangeType r = { value, value }; return DeleteRangeType(r); }
HRESULT STDMETHODCALLTYPE CRangeList::DeleteRange(const ULONG low, const ULONG high) { Assert(m_lRefCount > 0); RangeType r = { low, high }; return DeleteRangeType(r); }
HRESULT STDMETHODCALLTYPE CRangeList::DeleteRangeList(const IRangeList *prl) { Assert(m_lRefCount > 0); AssertSz(FALSE, "Not implemented, probably never will be"); return E_NOTIMPL; }
HRESULT CRangeList::DeleteRangeType(const RangeType range) { int lowEndChange; int highEndChange;
Assert(m_lRefCount > 0); if (range.low > range.high) { DOUTL(2, "Empty range passed to DeleteRange()"); return E_INVALIDARG; }
lowEndChange = BinarySearch(range.low); highEndChange = BinarySearch(range.high);
if ((lowEndChange != -1) && (highEndChange == lowEndChange)) { if (inRange(m_rangeTable[lowEndChange], range.low)) { if (inRange(m_rangeTable[lowEndChange], range.high)) { if ((m_rangeTable[lowEndChange].low == range.low) && (m_rangeTable[lowEndChange].high == range.high)) { if (lowEndChange == (m_numRanges-1)) { m_numRanges--; } else { ShiftLeft(lowEndChange + 1, 1); } } else { if (m_rangeTable[lowEndChange].low == range.low) { m_rangeTable[lowEndChange].low = range.high + 1; } else { if (m_rangeTable[lowEndChange].high == range.high) { Assert(range.low > 0); m_rangeTable[lowEndChange].high = range.low - 1; } else { // the range to be deleted is properly contained in
// m_rangeTable[lowEndChange]
if (m_numRanges == m_rangeTableSize) if (!Expand()) return E_OUTOFMEMORY; ShiftRight(lowEndChange + 1, 1); m_rangeTable[lowEndChange + 1].low = range.high + 1; m_rangeTable[lowEndChange + 1].high = m_rangeTable[lowEndChange].high; Assert(range.low > 0); m_rangeTable[lowEndChange].high = range.low - 1; } } } } else { // range.low is in m_rangeTable[lowEndChange], but range.high
// is not
if (m_rangeTable[lowEndChange].low == range.low) { ShiftLeft(lowEndChange + 1, 1); } else { Assert(range.low > 0); m_rangeTable[lowEndChange].high = range.low - 1; } } } // of the cases where range.low actually in m_rangeTable[lowEndChange]
} else { // of the cases where highEndChange == lowEndChange
if (lowEndChange != -1) { if (inRange(m_rangeTable[lowEndChange], range.low)) { if (range.low == m_rangeTable[lowEndChange].low) { lowEndChange = lowEndChange - 1; } else { Assert(range.low > 0); m_rangeTable[lowEndChange].high = range.low - 1; } } } if (highEndChange != -1) { if (inRange(m_rangeTable[highEndChange], range.high)) { if (range.high == m_rangeTable[highEndChange].high) { highEndChange = highEndChange + 1; } else { m_rangeTable[highEndChange].low = range.high + 1; } } else { highEndChange++; } } if (!(lowEndChange > highEndChange)) { // (0 <= lowEndChange < m_numRanges => m_rangeTable[lowEndChange] has received
// any requisite adjustments and is to be kept)
// and (0 <= highEndChange < m_numRanges => m_rangeTable[highEndChange]
// has received any requistie adjs. and is a keeper)
// and "forall" i [ lowEndChange < i < highEndChange =>
// m_rangeTable[i] is to be overwritten]
if (highEndChange >= m_numRanges) { m_numRanges = lowEndChange + 1; } else { if ((highEndChange - lowEndChange - 1) > 0) { ShiftLeft(highEndChange, (highEndChange-lowEndChange-1)); } } } // else there's a problem with this code...
} return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::Next(const ULONG current, ULONG *pulNext) { int loc;
Assert(m_lRefCount > 0); Assert(NULL != pulNext); if (m_numRanges == 0) { *pulNext = RL_RANGE_ERROR; return S_OK; }
if ((loc = BinarySearch(current)) == -1) { *pulNext = m_rangeTable[0].low; return S_OK; } else if (loc == (m_numRanges-1)) { if (inRange(m_rangeTable[m_numRanges-1], current)) { if (inRange(m_rangeTable[m_numRanges-1], current + 1)) { *pulNext = current + 1; return S_OK; } else { *pulNext = RL_RANGE_ERROR; return S_OK; } } else { *pulNext = RL_RANGE_ERROR; return S_OK; } } else // case where loc == m_numRanges-1
{ // 1 <= loc < m_numRanges
if (inRange(m_rangeTable[loc], current)) { if (inRange(m_rangeTable[loc], current + 1)) { *pulNext = current + 1; return S_OK; } else { *pulNext = m_rangeTable[loc + 1].low; return S_OK; } } else { *pulNext = m_rangeTable[loc + 1].low; return S_OK; } } }
HRESULT STDMETHODCALLTYPE CRangeList::Prev(const ULONG current, ULONG *pulPrev) { int loc;
Assert(m_lRefCount > 0); Assert(NULL != pulPrev); if (m_numRanges == 0) { *pulPrev = RL_RANGE_ERROR; return S_OK; }
if ((loc = BinarySearch(current)) == -1) { *pulPrev = RL_RANGE_ERROR; return S_OK; } else if (loc == 0) { if (inRange(m_rangeTable[0], current)) { if (current > 0 && inRange(m_rangeTable[0], current - 1)) { *pulPrev = current - 1; return S_OK; } else { *pulPrev = RL_RANGE_ERROR; return S_OK; } } else { *pulPrev = m_rangeTable[0].high; return S_OK; } } else { // 1 < loc <= m_numRanges
if (inRange(m_rangeTable[loc], current)) { if (current > 0 && inRange(m_rangeTable[loc], current - 1)) { *pulPrev = current - 1; return S_OK; } else { *pulPrev = m_rangeTable[loc-1].high; return S_OK; } } else { *pulPrev = m_rangeTable[loc].high; return S_OK; } } }
HRESULT STDMETHODCALLTYPE CRangeList::Cardinality(ULONG *pulCardinality) { ULONG card = 0;
Assert(m_lRefCount > 0); Assert(NULL != pulCardinality); for (int i=0 ; i<m_numRanges ; i++) card += (m_rangeTable[i].high - m_rangeTable[i].low + 1);
*pulCardinality = card; return S_OK; }
HRESULT STDMETHODCALLTYPE CRangeList::CardinalityFrom(const ULONG ulStartPoint, ULONG *pulCardinalityFrom) { ULONG ulNumMsgsInRange; int i;
Assert(m_lRefCount > 0); Assert(NULL != pulCardinalityFrom); // Initialize variables
ulNumMsgsInRange = 0; *pulCardinalityFrom = 0;
// Find the range where ulStartPoint lives
i = BinarySearch(ulStartPoint + 1); if (-1 == i || ulStartPoint > m_rangeTable[i].high) return S_OK; // ulStartPoint + 1 is not in the range
// If ulStartPoint is at start or middle of range, add incomplete range to total
if (ulStartPoint >= m_rangeTable[i].low && ulStartPoint <= m_rangeTable[i].high) { // Add incomplete range to total - Don't include ulStartPoint!
ulNumMsgsInRange += m_rangeTable[i].high - ulStartPoint; i += 1; }
// Add the remaining WHOLE ranges
for (; i < m_numRanges; i++) ulNumMsgsInRange += m_rangeTable[i].high - m_rangeTable[i].low + 1;
*pulCardinalityFrom = ulNumMsgsInRange; return S_OK; } // Cardinality (with start point arg)
int CRangeList::BinarySearch(const ULONG value) const { // We are looking for `value' in the m_rangeTable. If value is in the
// set of valid ranges, we return the array subscript of the range
// containing `value'. If `value' is not contained in any of the
// ranges then return `loc' where
// (0 <= loc < m_numRanges =>
// (m_rangeTable[loc].low < rangeNum)
// "and" (m_rangeTable[loc + 1].low > rangeNum))
// "and" (loc = m_numRanges => rangeNum > m_rangeTable[m_numRanges].low)
// "and" (loc = -1 => m_numRanges = 0
// "or" rangeNum < m_rangeTable[0].low) }
long low, high, mid; int loc = -1;
Assert(m_lRefCount > 0);
if (m_numRanges == 0) return -1;
if (value < m_rangeTable[0].low) return -1;
low = 0; high = m_numRanges - 1; while (low <= high) { // inv: low < high - 1, and if rngNum is any where in m_rangeTable, it is in
// the range from m_rangeTable[low] to m_rangeTable[high]
mid = (low + high) / 2; if ((value >= m_rangeTable[mid].low) && ((mid == (m_numRanges-1)) || (value < m_rangeTable[mid + 1].low))) { loc = mid; high = low - 1; } else { if (value > m_rangeTable[mid].low) low = mid + 1; else high = mid - 1; } } return loc; }
// Expand() will grow the m_rangeTable by QUANTUM range cells.
BOOL CRangeList::Expand() { RangeType *newRangeTable;
Assert(m_lRefCount > 0); if (!MemAlloc((LPVOID*)&newRangeTable, (m_rangeTableSize + QUANTUM) * sizeof(RangeType))) return FALSE;
m_rangeTableSize += QUANTUM; if (m_rangeTable) { if (m_numRanges > 0) CopyMemory(newRangeTable, m_rangeTable, m_numRanges * sizeof(RangeType)); MemFree(m_rangeTable); } m_rangeTable = newRangeTable; return TRUE; }
void CRangeList::ShiftLeft(int low, int distance) { Assert(m_lRefCount > 0); if (m_numRanges - low) MoveMemory(&m_rangeTable[low-distance], &m_rangeTable[low], (m_numRanges-low)*sizeof(RangeType)); m_numRanges -= distance; }
void CRangeList::ShiftRight(int low, int distance) { Assert(m_lRefCount > 0); if (m_numRanges - low) MoveMemory(&m_rangeTable[low+distance], &m_rangeTable[low], (m_numRanges-low)*sizeof(RangeType)); m_numRanges += distance; }
// pre: (m_rangeTable[anchorPosition] has probably just been added to m_rangeTable.)
// 1 <= anchorPosition <= m_numRanges
// and ( anchorPosition = 1
// or (m_rangeTable[anchorPosition].low >
// m_rangeTable[anchorPosition - 1].high) )
// post: No overlapping or contiguous ranges from 1 to m_numRanges. }
void CRangeList::SubsumeUpwards(const int anchor) { int posOfLargerLow; int copyDownDistance; int copyPos;
Assert(m_lRefCount > 0); posOfLargerLow = anchor + 1; while ((posOfLargerLow < m_numRanges) && (m_rangeTable[posOfLargerLow].low <= m_rangeTable[anchor].high + 1)) posOfLargerLow++;
if (posOfLargerLow == m_numRanges) { if (m_rangeTable[m_numRanges-1].high > m_rangeTable[anchor].high) m_rangeTable[anchor].high = m_rangeTable[m_numRanges-1].high; m_numRanges = anchor + 1; } else { // posOfLargerLow now indexes the first element of m_rangeTable, looking from
// m_rangeTable[anchor], with .low > m_rangeTable[anchor].high + 1
if (posOfLargerLow > (anchor + 1)) { if (m_rangeTable[posOfLargerLow - 1].high > m_rangeTable[anchor].high) m_rangeTable[anchor].high = m_rangeTable[posOfLargerLow - 1].high; copyDownDistance = posOfLargerLow - anchor - 1; copyPos = posOfLargerLow; while (copyPos < m_numRanges) { m_rangeTable[copyPos - copyDownDistance] = m_rangeTable[copyPos]; copyPos = copyPos + 1; } m_numRanges -= copyDownDistance; } } }
void CRangeList::SubsumeDown(int& anchor) { int posOfSmallerHigh; int copyDownDistance; int copyPos;
Assert(m_lRefCount > 0); posOfSmallerHigh = anchor - 1; while ((posOfSmallerHigh >= 0) && (m_rangeTable[posOfSmallerHigh].high + 1 >= m_rangeTable[anchor].low)) { posOfSmallerHigh--; }
if (posOfSmallerHigh < 0) { if (m_rangeTable[0].low < m_rangeTable[anchor].low) m_rangeTable[anchor].low = m_rangeTable[0].low; }
// posOfSmallerHigh either has value 0 or subscripts the first element of
// m_rangeTable, looking down from anchor, with a .high that is
// less than m_rangeTable[anchor].low - 1.
if (m_rangeTable[posOfSmallerHigh + 1].low < m_rangeTable[anchor].low) m_rangeTable[anchor].low = m_rangeTable[posOfSmallerHigh + 1].low; copyDownDistance = anchor - posOfSmallerHigh - 1; if (copyDownDistance > 0) { copyPos = anchor; while (copyPos < m_numRanges) { m_rangeTable[copyPos - copyDownDistance] = m_rangeTable[copyPos]; copyPos++; } m_numRanges -= copyDownDistance; anchor -= copyDownDistance; } }
//***************************************************************************
// Function: RangeToIMAPString
//
// Purpose:
// This function outputs the rangelist as an IMAP message set, suitable
// for use in IMAP commands.
//
// Arguments:
// LPSTR *ppszDestination [out] - an IMAP message set string is
// returned here. It is the responsibility of the caller to CoTaskMemFree
// this buffer when he is done with it. Pass in NULL if not interested.
// LPDWORD pdwLengthOfDestination [out] - if successful, this function
// returns the length of the IMAP msg set returned via pszDestination.
// Pass in NULL if not interested.
//
// Returns:
// HRESULT indicating success or failure.
//***************************************************************************
HRESULT STDMETHODCALLTYPE CRangeList::RangeToIMAPString(LPSTR *ppszDestination, LPDWORD pdwLengthOfDestination) { int i; BOOL bFirstRange; CByteStream bstmIMAPString; HRESULT hrResult;
Assert(m_lRefCount > 0);
// Initialize return values
if (ppszDestination) *ppszDestination = NULL; if (pdwLengthOfDestination) *pdwLengthOfDestination = 0;
hrResult = S_OK; bFirstRange = TRUE; // Suppress leading comma for first range
for (i = 0; i < m_numRanges; i += 1) { char szTemp[128]; int iLengthOfTemp;
// Convert current range to string form
if (m_rangeTable[i].low == m_rangeTable[i].high) iLengthOfTemp = wnsprintf(szTemp + 1, ARRAYSIZE(szTemp) - 1, "%lu", m_rangeTable[i].low); else iLengthOfTemp = wnsprintf(szTemp + 1, ARRAYSIZE(szTemp) - 1, "%lu:%lu", m_rangeTable[i].low, m_rangeTable[i].high);
if (FALSE == bFirstRange) { szTemp[0] = ','; // Prepend a comma
iLengthOfTemp += 1; // Include leading comma
}
// Append new range to destination buffer (with or without leading comma)
hrResult = bstmIMAPString.Write(bFirstRange ? szTemp + 1 : szTemp, iLengthOfTemp, NULL); if (FAILED(hrResult)) break;
bFirstRange = FALSE; } // for
if (SUCCEEDED(hrResult)) hrResult = bstmIMAPString.HrAcquireStringA(pdwLengthOfDestination, ppszDestination, ACQ_DISPLACE);
return hrResult; } // RangeToIMAPString
|