|
|
/*==========================================================================;
* * Copyright (C) 1999-2000 Microsoft Corporation. All Rights Reserved. * * File: vbuffer.cpp * Content: Implementation of the CVertexBuffer class. * * ***************************************************************************/ #include "ddrawpr.h"
#include "d3di.hpp"
#include "ddi.h"
#include "drawprim.hpp"
#include "vbuffer.hpp"
#include "resource.inl"
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::Create"
// Static class function for creating a VertexBuffer object.
// (Because it is static; it doesn't have a this pointer.)
//
// We do all parameter checking here to reduce the overhead
// in the constructor which is called by the internal Clone
// method which is used by resource management as part of the
// performance critical download operation.
// Creation function for Vertex Buffers
HRESULT CVertexBuffer::Create(CBaseDevice *pDevice, DWORD cbLength, DWORD Usage, DWORD dwFVF, D3DPOOL Pool, REF_TYPE refType, IDirect3DVertexBuffer8 **ppVertexBuffer) { HRESULT hr;
// Do parameter checking here
if (!VALID_PTR_PTR(ppVertexBuffer)) { DPF_ERR("Bad parameter passed for ppVertexBuffer for creating a vertex buffer"); return D3DERR_INVALIDCALL; }
// Zero-out return parameter
*ppVertexBuffer = NULL;
if (cbLength == 0) { DPF_ERR("Vertex buffer cannot be of zero size"); return D3DERR_INVALIDCALL; }
if (Pool != D3DPOOL_DEFAULT && Pool != D3DPOOL_MANAGED && Pool != D3DPOOL_SYSTEMMEM) { DPF_ERR("Vertex buffer pool should be default, managed or sysmem"); return D3DERR_INVALIDCALL; }
// Usage flag allowed for only mixed mode or software device
if ((Usage & D3DUSAGE_SOFTWAREPROCESSING) != 0 && (pDevice->BehaviorFlags() & D3DCREATE_MIXED_VERTEXPROCESSING) == 0 && (pDevice->BehaviorFlags() & D3DCREATE_SOFTWARE_VERTEXPROCESSING) == 0) { DPF_ERR("D3DUSAGE_SOFTWAREPROCESSING can be set only when device is mixed or software mode. CreateVertexBuffer fails."); return D3DERR_INVALIDCALL; }
// USAGE_DYNAMIC not allowed with management
if ((Usage & D3DUSAGE_DYNAMIC) != 0 && Pool == D3DPOOL_MANAGED) { DPF_ERR("D3DUSAGE_DYNAMIC cannot be used with managed vertex buffers"); return D3DERR_INVALIDCALL; }
// Validate FVF
if (dwFVF != 0 && cbLength < ComputeVertexSizeFVF(dwFVF)) { DPF_ERR("Vertex buffer size needs to enough to hold one vertex"); return D3DERR_INVALIDCALL; }
D3DPOOL ActualPool = Pool; DWORD ActualUsage = Usage;
// Infer Lock from absence of LoadOnce
if (!(Usage & D3DUSAGE_LOADONCE)) { ActualUsage |= D3DUSAGE_LOCK; }
// On a mixed device, POOL_SYSTEMMEM means the same as D3DUSAGE_SOFTWAREPROCESSING
if ((pDevice->BehaviorFlags() & D3DCREATE_MIXED_VERTEXPROCESSING) != 0 && Pool == D3DPOOL_SYSTEMMEM) { ActualUsage |= D3DUSAGE_SOFTWAREPROCESSING; }
/*
* Put a VB in system memory if the following conditions are TRUE * 1. (USAGE_SOFTWAREPROCESSING is set indicating app. wants to use software pipeline or if it is a software device) except if the vertices are pre-clipped TLVERTEX * 2. USAGE_POINTS is set and we might do emulation of point sprites except if it is a managed VB on a mixed device * 3. The driver does not support vidmem VBs * 4. Usage NPathes and driver does not support NPatches */ if (!pDevice->DriverSupportsVidmemVBs()) { ActualPool = D3DPOOL_SYSTEMMEM; // We don't set D3DUSAGE_SOFTWAREPROCESSING to ensure proper validation in fe code
} if (((pDevice->BehaviorFlags() & D3DCREATE_SOFTWARE_VERTEXPROCESSING) != 0 || (ActualUsage & D3DUSAGE_SOFTWAREPROCESSING) != 0) && !((dwFVF & D3DFVF_POSITION_MASK) == D3DFVF_XYZRHW && (ActualUsage & D3DUSAGE_DONOTCLIP) != 0)) { if((ActualUsage & D3DUSAGE_INTERNALBUFFER) == 0) { if ((pDevice->BehaviorFlags() & D3DCREATE_SOFTWARE_VERTEXPROCESSING) != 0 || ActualPool == D3DPOOL_DEFAULT) { ActualPool = D3DPOOL_SYSTEMMEM; // For software processing, pool can be only sysmem (POOLMANAGED is overwritten)
} ActualUsage |= D3DUSAGE_SOFTWAREPROCESSING; } } if ((ActualUsage & D3DUSAGE_NPATCHES) != 0 && (pDevice->GetD3DCaps()->DevCaps & D3DDEVCAPS_NPATCHES) == 0) { ActualPool = D3DPOOL_SYSTEMMEM; ActualUsage |= D3DUSAGE_SOFTWAREPROCESSING; }
if ((ActualUsage & D3DUSAGE_POINTS) != 0 && (static_cast<LPD3DBASE>(pDevice)->m_dwRuntimeFlags & D3DRT_DOPOINTSPRITEEMULATION) != 0) { if ((pDevice->BehaviorFlags() & D3DCREATE_SOFTWARE_VERTEXPROCESSING) != 0 || ActualPool == D3DPOOL_DEFAULT) { ActualPool = D3DPOOL_SYSTEMMEM; // For software processing, pool can be only sysmem (POOLMANAGED is overwritten)
} ActualUsage |= D3DUSAGE_SOFTWAREPROCESSING; }
CVertexBuffer *pVertexBuffer;
if (ActualPool == D3DPOOL_SYSTEMMEM || IsTypeD3DManaged(pDevice, D3DRTYPE_VERTEXBUFFER, ActualPool)) { hr = CreateSysmemVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &pVertexBuffer); } else { if (IsTypeDriverManaged(pDevice, D3DRTYPE_VERTEXBUFFER, ActualPool)) { // If the vertex buffer is driver managed, but the usage is softwareprocessing, then
// we turn off writeonly since the fe pipe WILL read from the sysmem backup (which
// actually lives in the driver). It follows that when a driver manages a VB/IB without
// writeonly, it MUST have a sysmem backup. (snene - 12/00)
if ((ActualUsage & D3DUSAGE_SOFTWAREPROCESSING) != 0) { ActualUsage &= ~D3DUSAGE_WRITEONLY; } hr = CreateDriverManagedVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &pVertexBuffer); // Driver managed vertex buffer creates can NEVER fail, except for catastrophic reasons so
// we don't fallback to sysmem. Even if we do fallback to sysmem here, there is no way
// deferred creates are going to fallback, so no point.
if (FAILED(hr)) { return hr; } } else { hr = CreateDriverVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &pVertexBuffer); } if (FAILED(hr) && (hr != D3DERR_OUTOFVIDEOMEMORY || (ActualUsage & D3DUSAGE_INTERNALBUFFER) != 0)) { if (hr == D3DERR_OUTOFVIDEOMEMORY) { DPF(2, "Out of video memory creating internal buffer"); } if (pDevice->VBFailOversDisabled()) { DPF_ERR("Cannot create Vidmem or Driver managed vertex buffer. Will ***NOT*** failover to Sysmem."); return hr; } ActualPool = D3DPOOL_SYSTEMMEM; hr = CreateSysmemVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &pVertexBuffer); } }
if (FAILED(hr)) { return hr; }
// We're done; just return the object
*ppVertexBuffer = pVertexBuffer;
return hr; } // static Create
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::CreateDriverVertexBuffer"
HRESULT CVertexBuffer::CreateDriverVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, CVertexBuffer **pVB) { HRESULT hr; CDriverVertexBuffer *pVertexBuffer;
// Zero out return
*pVB = 0;
if((pDevice->BehaviorFlags() & D3DCREATE_MULTITHREADED) != 0) { pVertexBuffer = new CDriverVertexBufferMT(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } else { pVertexBuffer = new CDriverVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } if (pVertexBuffer == 0) { DPF_ERR("Out of Memory creating vertex buffer"); return E_OUTOFMEMORY; } if (FAILED(hr)) { if (refType == REF_EXTERNAL) { // External objects get released
pVertexBuffer->Release(); } else { // Internal and intrinsic objects get decremented
DXGASSERT(refType == REF_INTERNAL || refType == REF_INTRINSIC); pVertexBuffer->DecrementUseCount(); } return hr; }
*pVB = static_cast<CVertexBuffer*>(pVertexBuffer);
return hr; }
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::CreateSysmemVertexBuffer"
HRESULT CVertexBuffer::CreateSysmemVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, CVertexBuffer **pVB) { HRESULT hr; CVertexBuffer *pVertexBuffer;
// Zero out return
*pVB = 0;
if((pDevice->BehaviorFlags() & D3DCREATE_MULTITHREADED) != 0) { pVertexBuffer = new CVertexBufferMT(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } else { pVertexBuffer = new CVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } if (pVertexBuffer == 0) { DPF_ERR("Out of Memory creating vertex buffer"); return E_OUTOFMEMORY; } if (FAILED(hr)) { if (refType == REF_EXTERNAL) { // External objects get released
pVertexBuffer->Release(); } else { // Internal and intrinsic objects get decremented
DXGASSERT(refType == REF_INTERNAL || refType == REF_INTRINSIC); pVertexBuffer->DecrementUseCount(); } return hr; }
*pVB = pVertexBuffer;
return hr; }
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::CreateDriverManagedVertexBuffer"
HRESULT CVertexBuffer::CreateDriverManagedVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, CVertexBuffer **pVB) { HRESULT hr; CDriverManagedVertexBuffer *pVertexBuffer;
// Zero out return
*pVB = 0;
if((pDevice->BehaviorFlags() & D3DCREATE_MULTITHREADED) != 0) { pVertexBuffer = new CDriverManagedVertexBufferMT(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } else { pVertexBuffer = new CDriverManagedVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, &hr); } if (pVertexBuffer == 0) { DPF_ERR("Out of Memory creating vertex buffer"); return E_OUTOFMEMORY; } if (FAILED(hr)) { if (refType == REF_EXTERNAL) { // External objects get released
pVertexBuffer->Release(); } else { // Internal and intrinsic objects get decremented
DXGASSERT(refType == REF_INTERNAL || refType == REF_INTRINSIC); pVertexBuffer->DecrementUseCount(); } return hr; }
*pVB = static_cast<CVertexBuffer*>(pVertexBuffer);
return hr; }
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::CVertexBuffer"
// Constructor the CVertexBuffer class
CVertexBuffer::CVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, HRESULT *phr ) : CBuffer(pDevice, cbLength, dwFVF, D3DFMT_VERTEXDATA, D3DRTYPE_VERTEXBUFFER, Usage, // UserUsage
ActualUsage, Pool, // UserPool
ActualPool, refType, phr) { if (FAILED(*phr)) return;
// Initialize basic structures
m_desc.Format = D3DFMT_VERTEXDATA; m_desc.Pool = ActualPool; m_desc.Usage = ActualUsage; m_desc.Type = D3DRTYPE_VERTEXBUFFER; m_desc.Size = cbLength; m_desc.FVF = dwFVF; m_usageUser = Usage;
if (dwFVF != 0) { m_vertsize = ComputeVertexSizeFVF(dwFVF); DXGASSERT(m_vertsize != 0); m_numverts = cbLength / m_vertsize; } else { m_vertsize = 0; m_numverts = 0; }
m_pClipCodes = 0;
// If this is a D3D managed buffer then we need
// to tell the Resource Manager to remember us. This has to happen
// at the very end of the constructor so that the important data
// members are built up correctly
if (CResource::IsTypeD3DManaged(Device(), D3DRTYPE_VERTEXBUFFER, ActualPool)) { *phr = InitializeRMHandle(); } } // CVertexBuffer::CVertexBuffer
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::Clone"
HRESULT CVertexBuffer::Clone(D3DPOOL Pool, CResource **ppResource) const { HRESULT hr; CVertexBuffer *pVertexBuffer; // Note: we treat clones the same as internal; because
// they are owned by the resource manager which
// is owned by the device.
hr = CreateDriverVertexBuffer(Device(), m_desc.Size, m_desc.FVF, m_desc.Usage, (m_desc.Usage | D3DUSAGE_WRITEONLY) & ~D3DUSAGE_SOFTWAREPROCESSING, // never seen by API!
Pool, Pool, // never seen by API!
REF_INTERNAL, &pVertexBuffer); *ppResource = static_cast<CResource*>(pVertexBuffer); return hr; } // CVertexBuffer::Clone
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetBufferDesc"
const D3DBUFFER_DESC* CVertexBuffer::GetBufferDesc() const { return (const D3DBUFFER_DESC*)&m_desc; } // CVertexBuffer::GetBufferDesc
// IUnknown methods
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::QueryInterface"
STDMETHODIMP CVertexBuffer::QueryInterface(REFIID riid, LPVOID FAR * ppvObj) { API_ENTER(Device());
if (!VALID_PTR_PTR(ppvObj)) { DPF_ERR("Invalid ppvObj parameter passed to CVertexBuffer::QueryInterface"); return D3DERR_INVALIDCALL; }
if (!VALID_PTR(&riid, sizeof(GUID))) { DPF_ERR("Invalid guid memory address to QueryInterface for VertexBuffer"); return D3DERR_INVALIDCALL; }
if (riid == IID_IDirect3DVertexBuffer8 || riid == IID_IDirect3DResource8 || riid == IID_IUnknown) { *ppvObj = static_cast<void*>(static_cast<IDirect3DVertexBuffer8 *>(this)); AddRef(); return S_OK; }
DPF_ERR("Unsupported Interface identifier passed to QueryInterface for VertexBuffer");
// Null out param
*ppvObj = NULL; return E_NOINTERFACE; } // QueryInterface
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::AddRef"
STDMETHODIMP_(ULONG) CVertexBuffer::AddRef() { API_ENTER_NO_LOCK(Device());
return AddRefImpl(); } // AddRef
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::Release"
STDMETHODIMP_(ULONG) CVertexBuffer::Release() { API_ENTER_SUBOBJECT_RELEASE(Device());
return ReleaseImpl(); } // Release
// IDirect3DResource methods
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetDevice"
STDMETHODIMP CVertexBuffer::GetDevice(IDirect3DDevice8 ** ppObj) { API_ENTER(Device());
return GetDeviceImpl(ppObj); } // GetDevice
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::SetPrivateData"
STDMETHODIMP CVertexBuffer::SetPrivateData(REFGUID riid, CONST VOID* pvData, DWORD cbData, DWORD dwFlags) { API_ENTER(Device());
// We use level zero for our data
return SetPrivateDataImpl(riid, pvData, cbData, dwFlags, 0); } // SetPrivateData
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetPrivateData"
STDMETHODIMP CVertexBuffer::GetPrivateData(REFGUID riid, LPVOID pvData, LPDWORD pcbData) { API_ENTER(Device());
// We use level zero for our data
return GetPrivateDataImpl(riid, pvData, pcbData, 0); } // GetPrivateData
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::FreePrivateData"
STDMETHODIMP CVertexBuffer::FreePrivateData(REFGUID riid) { API_ENTER(Device());
// We use level zero for our data
return FreePrivateDataImpl(riid, 0); } // FreePrivateData
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetPriority"
STDMETHODIMP_(DWORD) CVertexBuffer::GetPriority() { API_ENTER_RET(Device(), DWORD);
return GetPriorityImpl(); } // GetPriority
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::SetPriority"
STDMETHODIMP_(DWORD) CVertexBuffer::SetPriority(DWORD dwPriority) { API_ENTER_RET(Device(), DWORD);
return SetPriorityImpl(dwPriority); } // SetPriority
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::PreLoad"
STDMETHODIMP_(void) CVertexBuffer::PreLoad(void) { API_ENTER_VOID(Device());
PreLoadImpl(); return; } // PreLoad
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetType"
STDMETHODIMP_(D3DRESOURCETYPE) CVertexBuffer::GetType(void) { API_ENTER_RET(Device(), D3DRESOURCETYPE);
return m_desc.Type; } // GetType
// Vertex Buffer Methods
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::GetDesc"
STDMETHODIMP CVertexBuffer::GetDesc(D3DVERTEXBUFFER_DESC *pDesc) { API_ENTER(Device());
if (!VALID_WRITEPTR(pDesc, sizeof(D3DVERTEXBUFFER_DESC))) { DPF_ERR("bad pointer for pDesc passed to GetDesc for VertexBuffer"); return D3DERR_INVALIDCALL; }
*pDesc = m_desc;
// Need to return pool/usage that the user specified
pDesc->Pool = GetUserPool(); pDesc->Usage = m_usageUser;
return S_OK; } // GetDesc
#if DBG
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::ValidateLockParams"
HRESULT CVertexBuffer::ValidateLockParams(UINT cbOffsetToLock, UINT SizeToLock, BYTE **ppbData, DWORD dwFlags) const { if (!VALID_PTR_PTR(ppbData)) { DPF_ERR("Bad parameter passed for ppbData for locking a vertexbuffer"); return D3DERR_INVALIDCALL; }
if ((cbOffsetToLock != 0) && (SizeToLock == 0)) { DPF_ERR("Cannot lock zero bytes. Vertex Buffer Lock fails."); return D3DERR_INVALIDCALL; }
if (dwFlags & ~(D3DLOCK_VALID & ~D3DLOCK_NO_DIRTY_UPDATE)) // D3DLOCK_NO_DIRTY_UPDATE not valid for VBs
{ DPF_ERR("Invalid flags specified. Vertex Buffer Lock fails."); return D3DERR_INVALIDCALL; }
// Can it be locked?
if (!m_isLockable) { DPF_ERR("Vertex buffer with D3DUSAGE_LOADONCE can only be locked once"); return D3DERR_INVALIDCALL; } if ((dwFlags & (D3DLOCK_DISCARD | D3DLOCK_NOOVERWRITE)) != 0 && (m_usageUser & D3DUSAGE_DYNAMIC) == 0) { DPF_ERR("Can specify D3DLOCK_DISCARD or D3DLOCK_NOOVERWRITE for only Vertex Buffers created with D3DUSAGE_DYNAMIC"); return D3DERR_INVALIDCALL; } if ((dwFlags & (D3DLOCK_READONLY | D3DLOCK_DISCARD)) == (D3DLOCK_READONLY | D3DLOCK_DISCARD)) { DPF_ERR("Should not specify D3DLOCK_DISCARD along with D3DLOCK_READONLY. Vertex Buffer Lock fails."); return D3DERR_INVALIDCALL; } if ((dwFlags & D3DLOCK_READONLY) != 0 && (m_usageUser & D3DUSAGE_WRITEONLY) != 0) { DPF_ERR("Cannot do READ_ONLY lock on a WRITE_ONLY buffer. Vertex Buffer Lock fails."); return D3DERR_INVALIDCALL; }
if (ULONGLONG(cbOffsetToLock) + ULONGLONG(SizeToLock) > ULONGLONG(m_desc.Size)) { DPF_ERR("Lock failed: Locked area exceeds size of buffer. Vertex Buffer Lock fails."); return D3DERR_INVALIDCALL; }
if (m_LockCount == 0) { if ((m_usageUser & D3DUSAGE_DYNAMIC) == 0) { if (static_cast<CD3DBase*>(Device())->m_SceneStamp == m_SceneStamp && (m_usageUser & D3DUSAGE_WRITEONLY) != 0 && GetUserPool() != D3DPOOL_SYSTEMMEM) { DPF(1, "Static vertex buffer locked more than once per frame. Could have severe performance penalty."); } ((CVertexBuffer*)this)->m_SceneStamp = static_cast<CD3DBase*>(Device())->m_SceneStamp; } else { if ((dwFlags & (D3DLOCK_DISCARD | D3DLOCK_NOOVERWRITE)) == 0) { if (m_TimesLocked > 0 && (m_usageUser & D3DUSAGE_WRITEONLY) != 0 && GetUserPool() != D3DPOOL_SYSTEMMEM) { DPF(3, "Dynamic vertex buffer locked twice or more in a row without D3DLOCK_NOOVERWRITE or D3DLOCK_DISCARD. Could have severe performance penalty."); } ++(((CVertexBuffer*)this)->m_TimesLocked); } else { ((CVertexBuffer*)this)->m_TimesLocked = 0; } } }
DXGASSERT(m_LockCount < 0x80000000);
return S_OK; } // ValidateLockParams
#endif //DBG
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::Lock"
STDMETHODIMP CVertexBuffer::Lock(UINT cbOffsetToLock, UINT SizeToLock, BYTE **ppbData, DWORD dwFlags) { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK_HR however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
#if DBG
HRESULT hr = ValidateLockParams(cbOffsetToLock, SizeToLock, ppbData, dwFlags); if (FAILED(hr)) { return hr; } #endif // DBG
// Sanity check
#if DBG
if (m_LockCount != 0) { DXGASSERT(GetPrivateDataPointer() != 0); } #endif // DBG
// Increment our lock count
++m_LockCount;
if ((dwFlags & (D3DLOCK_READONLY | D3DLOCK_NOOVERWRITE)) == 0 && m_LockCount == 1) // for repeat locks, no syncing
{ Sync(); // Sync with device command queue
}
LockImpl(cbOffsetToLock, SizeToLock, ppbData, dwFlags, m_desc.Size);
return S_OK; } // Lock
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::Unlock"
STDMETHODIMP CVertexBuffer::Unlock() { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
#if DBG
// If we aren't locked; then something is wrong
if (m_LockCount == 0) { DPF_ERR("Unlock failed on a buffer; vertex buffer wasn't locked."); return D3DERR_INVALIDCALL; } #endif // DBG
// Decrement our lock count
--m_LockCount;
#if DBG
if ((m_usageUser & D3DUSAGE_LOADONCE) != 0 && m_LockCount == 0) { m_isLockable = FALSE; } #endif // DBG
return S_OK; } // Unlock
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::AllocateClipCodes"
void CVertexBuffer::AllocateClipCodes() { if (m_pClipCodes == 0) { DXGASSERT(m_numverts != 0); m_pClipCodes = new WORD[m_numverts]; } }
#undef DPF_MODNAME
#define DPF_MODNAME "CVertexBuffer::UpdateDirtyPortion"
HRESULT CVertexBuffer::UpdateDirtyPortion(CResource *pResourceTarget) { if (IsDirty()) { if (Device()->CanBufBlt()) { D3DRANGE range; if(m_cbDirtyMin == 0 && m_cbDirtyMax == 0) { range.Offset = 0; range.Size = m_desc.Size; } else { range.Offset = m_cbDirtyMin; range.Size = m_cbDirtyMax - m_cbDirtyMin; } HRESULT hr = static_cast<LPD3DBASE>(Device())->BufBlt(static_cast<CBuffer*>(pResourceTarget), this, m_cbDirtyMin, &range); if (FAILED(hr)) { DPF_ERR("Failed to copy vertex buffer"); return hr; } } else { DXGASSERT(pResourceTarget->GetBufferDesc()->Pool == D3DPOOL_DEFAULT); // make sure that it is safe to assume that this is a driver VB
CDriverVertexBuffer *pBufferTarget = static_cast<CDriverVertexBuffer *>(pResourceTarget);
DXGASSERT((pBufferTarget->m_desc.Usage & D3DUSAGE_DYNAMIC) == 0); // Target can never be dynamic
DXGASSERT(pBufferTarget->m_pbData == 0); // Target can never be locked
HRESULT hr = pBufferTarget->LockI(D3DLOCK_NOSYSLOCK); if (FAILED(hr)) { DPF_ERR("Failed to lock driver vertex buffer"); return hr; } DXGASSERT(pBufferTarget->m_pbData != 0);
if(m_cbDirtyMin == 0 && m_cbDirtyMax == 0) { memcpy(pBufferTarget->m_pbData, GetPrivateDataPointer(), m_desc.Size); } else { memcpy(pBufferTarget->m_pbData + m_cbDirtyMin, GetPrivateDataPointer() + m_cbDirtyMin, m_cbDirtyMax - m_cbDirtyMin); }
hr = pBufferTarget->UnlockI(); if (FAILED(hr)) { DPF_ERR("Failed to unlock driver vertex buffer"); return hr; }
DXGASSERT(pBufferTarget->m_pbData == 0); // Target must be unlocked
}
// Mark ourselves as all clean now.
OnResourceClean(); }
return S_OK; } // CVertexBuffer::UpdateDirtyPortion
//=============================================
// Methods for the CDriverVertexBuffer class
//=============================================
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::CDriverVertexBuffer"
CDriverVertexBuffer::CDriverVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, HRESULT *phr ) : CVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, phr), m_pbData(0) { if (FAILED(*phr)) { // We want to allow drivers to fail creation of driver vbs. In this
// case we will fail-over to system memory. However, if we
// DPF an error here, it will be misunderstood. So don't DPF.
return; } } // CDriverVertexBuffer::CDriverVertexBuffer
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::~CDriverVertexBuffer"
CDriverVertexBuffer::~CDriverVertexBuffer() { if (m_pbData != 0) { HRESULT hr = UnlockI(); if (FAILED(hr)) { DPF_ERR("Failed to unlock driver vertex buffer"); } } } // CDriverVertexBuffer::~CDriverVertexBuffer
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::LockI"
HRESULT CDriverVertexBuffer::LockI(DWORD dwFlags) { // We sync first to make sure that the
// driver has already processed any data that
// it needs. LockI only gets called if for
// cases where we need the interlock i.e.
// not readonly and not nooverwrite.
Sync();
// Prepare a LockData structure for the HAL call
D3D8_LOCKDATA lockData; ZeroMemory(&lockData, sizeof lockData);
lockData.hDD = Device()->GetHandle(); lockData.hSurface = BaseKernelHandle(); lockData.bHasRange = FALSE; lockData.dwFlags = dwFlags;
HRESULT hr = Device()->GetHalCallbacks()->Lock(&lockData); if (FAILED(hr)) { DPF_ERR("Failed to lock driver vertex buffer"); }
// Return value
m_pbData = (BYTE*)lockData.lpSurfData;
return hr; } // LockI
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::UnlockI"
HRESULT CDriverVertexBuffer::UnlockI() { // It is sometimes possible for the pre-DX8 DDI FlushStates to call
// Unlock twice. We safely filter this case.
if (m_pbData == 0) { DXGASSERT(!IS_DX8HAL_DEVICE(Device())); return D3D_OK; }
// Call the driver to perform the unlock
D3D8_UNLOCKDATA unlockData = { Device()->GetHandle(), BaseKernelHandle() };
HRESULT hr = Device()->GetHalCallbacks()->Unlock(&unlockData); if (FAILED(hr)) { DPF_ERR("Driver vertex buffer failed to unlock"); return hr; }
m_pbData = 0;
return hr; } // UnlockI
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::Lock"
STDMETHODIMP CDriverVertexBuffer::Lock(UINT cbOffsetToLock, UINT SizeToLock, BYTE **ppbData, DWORD dwFlags) { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
HRESULT hr; #if DBG
hr = ValidateLockParams(cbOffsetToLock, SizeToLock, ppbData, dwFlags); if (FAILED(hr)) { return hr; } #endif // DBG
// Sanity check
#if DBG
if (m_LockCount != 0) { DXGASSERT(m_pbData != 0); } #endif // DBG
// Increment our lock count
// This MUST be done first. DO NOT MOVE THIS LINE.
++m_LockCount;
if(((dwFlags & (D3DLOCK_READONLY | D3DLOCK_NOOVERWRITE)) == 0 || m_pbData == 0) && m_LockCount == 1) // Repeat locks need no work
{ hr = static_cast<LPD3DBASE>(Device())->m_pDDI->LockVB(this, dwFlags); if (FAILED(hr)) { DPF_ERR("Failed to lock driver vertex buffer"); *ppbData = 0; --m_LockCount; return hr; } }
*ppbData = m_pbData + cbOffsetToLock;
// Done
return S_OK; } // Lock
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverVertexBuffer::Unlock"
STDMETHODIMP CDriverVertexBuffer::Unlock() { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
#if DBG
// If we aren't locked; then something is wrong
if (m_LockCount == 0) { DPF_ERR("Unlock failed on a vertex buffer; buffer wasn't locked."); return D3DERR_INVALIDCALL; } #endif // DBG
if ((m_desc.Usage & D3DUSAGE_DYNAMIC) == 0 && m_LockCount == 1) // do work only for the last unlock
{ HRESULT hr = static_cast<LPD3DBASE>(Device())->m_pDDI->UnlockVB(this); if (FAILED(hr)) { DPF_ERR("Driver failed to unlock vertex buffer"); return hr; } }
// Decrement our lock count
--m_LockCount;
#if DBG
if ((m_usageUser & D3DUSAGE_LOADONCE) != 0 && m_LockCount == 0) { m_isLockable = FALSE; } #endif // DBG
// Done
return S_OK; } // Unlock
//=================================================
// Methods for the CDriverManagedVertexBuffer class
//=================================================
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverManagedVertexBuffer::CDriverManagedVertexBuffer"
CDriverManagedVertexBuffer::CDriverManagedVertexBuffer(CBaseDevice *pDevice, DWORD cbLength, DWORD dwFVF, DWORD Usage, DWORD ActualUsage, D3DPOOL Pool, D3DPOOL ActualPool, REF_TYPE refType, HRESULT *phr ) : CVertexBuffer(pDevice, cbLength, dwFVF, Usage, ActualUsage, Pool, ActualPool, refType, phr), m_pbData(0), m_bDriverCalled(FALSE) { if (FAILED(*phr)) return; // If writeonly is not set, we assume that the vertex/index buffer is going
// to be read from from time to time. Hence, for optimizing the readonly
// locks, we lock and cache the pointer. (snene - 12/00)
if ((ActualUsage & D3DUSAGE_WRITEONLY) == 0) { *phr = UpdateCachedPointer(pDevice); if (FAILED(*phr)) return; } } // CDriverManagedVertexBuffer::CDriverManagedVertexBuffer
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverManagedVertexBuffer::UpdateCachedPointer"
HRESULT CDriverManagedVertexBuffer::UpdateCachedPointer(CBaseDevice *pDevice) { HRESULT hr;
// Prepare a LockData structure for the HAL call
D3D8_LOCKDATA lockData; ZeroMemory(&lockData, sizeof lockData); lockData.hDD = pDevice->GetHandle(); lockData.hSurface = BaseKernelHandle(); lockData.bHasRange = FALSE; lockData.range.Offset = 0; lockData.range.Size = 0; lockData.dwFlags = D3DLOCK_READONLY; hr = pDevice->GetHalCallbacks()->Lock(&lockData); if (FAILED(hr)) return hr; // Call the driver to perform the unlock
D3D8_UNLOCKDATA unlockData = { pDevice->GetHandle(), BaseKernelHandle() }; hr = pDevice->GetHalCallbacks()->Unlock(&unlockData); if (FAILED(hr)) return hr; m_pbData = (BYTE*)lockData.lpSurfData;
return S_OK; } // CDriverManagedVertexBuffer::UpdateCachedPointer
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverManagedVertexBuffer::Lock"
STDMETHODIMP CDriverManagedVertexBuffer::Lock(UINT cbOffsetToLock, UINT SizeToLock, BYTE **ppbData, DWORD dwFlags) { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
HRESULT hr = S_OK; #if DBG
hr = ValidateLockParams(cbOffsetToLock, SizeToLock, ppbData, dwFlags); if (FAILED(hr)) { return hr; } #endif // DBG
// Increment our lock count
++m_LockCount;
if((dwFlags & D3DLOCK_READONLY) == 0) { // Sync with device command queue
Sync();
// Prepare a LockData structure for the HAL call
D3D8_LOCKDATA lockData; ZeroMemory(&lockData, sizeof lockData);
lockData.hDD = Device()->GetHandle(); lockData.hSurface = BaseKernelHandle(); lockData.bHasRange = (SizeToLock != 0); lockData.range.Offset = cbOffsetToLock; lockData.range.Size = SizeToLock; lockData.dwFlags = dwFlags;
hr = Device()->GetHalCallbacks()->Lock(&lockData); if (FAILED(hr)) { *ppbData = 0; DPF_ERR("Failed to lock driver managed vertex buffer"); return hr; } else { // Update cached pointer
m_pbData = (BYTE*)lockData.lpSurfData - cbOffsetToLock; m_bDriverCalled = TRUE; } }
*ppbData = m_pbData + cbOffsetToLock;
return hr;
} // Lock
#undef DPF_MODNAME
#define DPF_MODNAME "CDriverManagedVertexBuffer::Unlock"
STDMETHODIMP CDriverManagedVertexBuffer::Unlock() { // We do not take the API lock here since the MT class will take it for
// a multithreaded device. For a non-multithreaded device, there is no
// MT class nor do we bother to take the API lock. We still need to
// call API_ENTER_NO_LOCK however for validation of the THIS pointer in
// Debug builds
API_ENTER_NO_LOCK_HR(Device());
#if DBG
// If we aren't locked; then something is wrong
if (m_LockCount == 0) { DPF_ERR("Unlock failed on a vertex buffer; buffer wasn't locked."); return D3DERR_INVALIDCALL; } #endif // DBG
if (m_bDriverCalled) { // Call the driver to perform the unlock
D3D8_UNLOCKDATA unlockData = { Device()->GetHandle(), BaseKernelHandle() };
HRESULT hr = Device()->GetHalCallbacks()->Unlock(&unlockData); if (FAILED(hr)) { DPF_ERR("Driver vertex buffer failed to unlock"); return hr; }
m_bDriverCalled = FALSE; }
// Decrement our lock count
--m_LockCount;
#if DBG
if ((m_usageUser & D3DUSAGE_LOADONCE) != 0 && m_LockCount == 0) { m_isLockable = FALSE; } #endif // DBG
return S_OK; } // Unlock
// End of file : vbuffer.cpp
|